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under such a mapping is called a metric segment.
Assume that (X, ρ) contains a family M of metric lines such that for each pair

of distinct points x and y in X, there is a unique metric line in M which passes
through x and y. This metric line determines a unique metric segment joining x
and y. We denote this segment by [x, y]. For each 0 ≤ t ≤ 1, there is a unique point
z in [x, y] such that

ρ(x, z) = tρ(x, y) and ρ(z, y) = (1− t)ρ(x, y).

This point is denoted by (1− t)x⊕ ty. We say that X, or more precisely (X, ρ,M),
is a hyperbolic space if

ρ
(1
2
x⊕ 1

2
y,

1

2
x⊕ 1

2
z
)
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ρ(y, z)

for all x, y and z in X. An equivalent requirement is that
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2
(ρ(x,w) + ρ(y, z))

for all x, y, z and w in X. This inequality, in its turn, implies that

ρ((1− t)x⊕ ty, (1− t)w ⊕ tz) ≤ (1− t)ρ(x,w) + tρ(y, z)

for all points x, y, z and w in X, and all numbers 0 ≤ t ≤ 1.
It is clear that all normed linear spaces are hyperbolic in this sense. A discussion

of more examples of hyperbolic spaces and, in particular, of the Hilbert ball with
the hyperbolic metric can be found, for example, in [6, 9, 10].

We call a set K ⊂ X ρ-convex if [x, y] ⊂ K for all x and y in K.
A property of elements of a complete metric space Z is said to be generic (typical)

in Z if the set of all elements of Z which have this property contains an everywhere
dense Gδ subset of Z. In this case we also say that the property holds for a generic
(typical) element of Z or that a generic (typical) element of Z has this property.

It is known that a typical nonexpansive self-mapping of a bounded, closed and ρ-
convex subset of a complete hyperbolic metric space has a unique fixed point which
is the uniform limit of all its iterates [12, 14]. As a matter of fact, the subset of all
those nonexpansive mappings which lack this property is small not only in the sense
of Baire category, but also in the sense of porosity, a concept which we now recall.

Let Z be a complete metric space. We denote by BZ(y, r) the closed ball of center
y ∈ Z and radius r > 0. A subset E ⊂ Z is called porous in Z if there exist numbers
α ∈ (0, 1) and r0 > 0 such that for each number r ∈ (0, r0] and each point y ∈ Z,
there exists a point z ∈ Z for which

BZ(z, αr) ⊂ BZ(y, r) \ E.
A subset of the space Z is called σ-porous in Z if it is a countable union of porous
subsets of Z.

Note that in the definition of a porous set we can assume that the point y belongs
to E.

Other notions of porosity can be found in the literature. We use this rather
strong concept of porosity which has already found applications in, for instance,
approximation theory, the calculus of variations and nonlinear analysis. See, for
example, [14, 18] and the references mentioned therein.
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Since porous sets are nowhere dense, all σ-porous sets are of the first Baire
category. If Z is a finite-dimensional Euclidean space, then σ-porous sets are also of
Lebesgue measure zero. In fact, the class of σ-porous sets in such a space is much
smaller than the class of sets which have Lebesgue measure zero and are of the first
Baire category.

2. A porosity result

Suppose that (X, ρ,M) is a complete hyperbolic space and that K is a nonempty,
closed and ρ-convex subset of the space X.

Fix a point θ ∈ K. Denote by A the set of all operators A : K → K such that

(2.1) ρ(A(x), A(y)) ≤ ρ(x, y) for all x, y ∈ K.

Such operators are said to be nonexpansive.
By (2.1), for every pair of mappings A,B ∈ A and every point x ∈ K,

ρ(A(x), B(x)) ≤ ρ(A(x), A(θ)) + ρ(A(θ), B(θ)) + ρ(B(θ), B(x))

≤ ρ(x, θ) + ρ(A(θ), B(θ)) + ρ(x, θ)

and

(2.2) ρ(A(x), B(x)) ≤ 2ρ(x, θ) + ρ(A(θ), B(θ)).

For every pair of mappings A,B ∈ A, set [15]

(2.3) d(A,B) := inf{λ > 0 : ρ(A(x), B(x)) ≤ λ(ρ(x, θ) + 1) for all x ∈ K}.
In view of (2.2) and (2.3), for every pair of mappings A,B ∈ A, d(A,B) is well
defined,

(2.4) d(A,B) = sup{ρ(A(x), B(x))(ρ(x, θ) + 1)−1 : x ∈ K},
d : A × A → [0,∞) is a metric on A and the metric space (A, d) is complete. It
is clear that the topology induced by the metric d is stronger than the topology
of uniform convergence on bounded sets, but weaker than the topology of uniform
convergence on all of K. This topology does not depend on the choice of the point
θ. More precisely, if we take θ1 ̸= θ, then we get Lipschitz-equivalent metrics. In
order to see this, take θ1 ∈ K \ {θ} and for every pair of mappings A,B ∈ A, define

d1(A,B) := sup{ρ(A(x), B(x))(ρ(x, θ1) + 1)−1 : x ∈ K}.
Let A,B ∈ A be given. Then for every point x ∈ K, we have

ρ(A(x), B(x)) ≤ d(A,B)(ρ(x, θ) + 1) ≤ d(A,B)(ρ(x, θ1) + 1 + ρ(θ1, θ))

≤ d(A,B)(ρ(x, θ1) + 1)(ρ(θ1, θ) + 1).

In view of the relation above,

d1(A,B) ≤ d(A,B)(ρ(θ, θ1) + 1).

For every point x ∈ K and every positive number r, set

B(x, r) := {y ∈ K : ρ(x, y) ≤ r}.
Denote by M the collection of all sequences of operators {At}∞t=1 ⊂ A such that

(2.5) sup{ρ(θ,At(θ)) : t = 1, 2, . . . } <∞.
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Let {At}∞t=1, {Bt}∞t=1 ∈ M. It follows from (2.2) and (2.5) that for each x ∈ K
and each integer t ≥ 1,

(2.6)

ρ(At(x), Bt(x)) ≤ 2ρ(x, θ) + ρ(At(θ), Bt(θ))

≤ 2ρ(x, θ) + ρ(At(θ), θ) + ρ(θ,Bt(θ))

≤ (ρ(x, θ) + 1)(2 + sup{ρ(Ai(θ), θ) : i = 1, 2, . . . }
+ sup{ρ(Bi(θ), θ) : i = 1, 2, . . . }).

Define

(2.7) dM({At}∞t=1, {Bt}∞t=1)

:= sup{ρ(At(x), Bt(x))(ρ(x, θ) + 1)−1 : x ∈ K, t = 1, 2, . . . }.

By (2.6) and (2.7), dM({At}∞t=1, {Bt}∞t=1) <∞. In view of (2.4) and (2.7),

(2.8) dM({At}∞t=1, {Bt}∞t=1) = sup{d(At, Bt) : t = 1, 2, . . . }.

It is not difficult to see that dM is a metric onM and that the metric space (M, dM)
is complete.

Let {At}∞t=1 ∈ M and letD be a nonempty subset ofK. We say that the sequence
{At}∞t=1 is contractive in the sense of Rakotch [8] on D if there exists a decreasing
function ϕ : [0,∞) → [0, 1] such that

(2.9) ϕ(t) < 1 for all t > 0

and

(2.10) ρ(At(x), At(y)) ≤ ϕ(ρ(x, y))ρ(x, y) for all x, y ∈ D and all t = 1, 2 . . . .

It is not difficult to see that {At}∞t=1 is Rakotch contractive on D if and only if for
every β > 0,

sup{ρ(At(x), At(y))ρ(x, y)
−1 : t ∈ {1, 2, . . . }, x, y ∈ D and ρ(x, y) ≥ β} < 1.

One of our goals in this paper is to establish the following result.

Theorem 2.1. There exists a set F∗ ⊂ M such that its complement M \ F∗ is
σ-porous in (M, dM) and for each sequence {At}∞t=1 ∈ F∗, there exists MA > 0
such that for each M ≥MA, we have

At(B(θ,M)) ⊂ B(θ,M), t = 1, 2, . . . ,

and the sequence {At}∞t=1 is Rakotch contractive on B(θ,M).

At this point we note that several results regarding the asymptotic behavior of
contractive sequences can be found in [13,14,16,17].

3. An auxiliary result

Proposition 3.1. There exists a set F ⊂ M such that its complement M \ F is
porous in (M, dM) and each sequence {At}∞t=1 ∈ F has the following property:

(P1) there exists a positive number M∗ such that for every number M ≥M∗,

∪{B(At(z), 1) : z ∈ B(θ,M), t ∈ {1, 2, . . . }} ⊂ B(θ,M).
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Proof. Denote by F the collection of all sequences of mappings {At}∞t=1 ∈ M for
which property (P1) holds. We claim that M \ F is porous in (M, dM). To see
this, we first set

(3.1) α = 1/8.

Let

(3.2) {At}∞t=1 ∈ M \ F and r ∈ (0, 1].

Fix a natural number n for which

(3.3) ρ(θ,At(θ)) ≤ n, t = 1, 2, . . . .

Set

(3.4) γ = 4−1r

and

(3.5) M∗ = 8(n+ 2)r−1.

For every point x ∈ K and every t ∈ {1, 2, . . . }, define

(3.6) A
(γ)
t (x) := (1− γ)At(x)⊕ γAt(θ).

It follows from (2.1) and (3.6) that for every integer t ≥ 1 and every pair of points
x, y ∈ K,

(3.7)
ρ(A

(γ)
t (x), A

(γ)
t (y)) = ρ((1− γ)At(x)⊕ γAt(θ), (1− γ)At(y)⊕ γAt(θ))

≤ (1− γ)ρ(At(x), At(y)) ≤ (1− γ)ρ(x, y).

Relations (2.1) and (3.6) imply that

(3.8)

d({A(γ)
t }∞t=1, {At}∞t=1)

= sup{ρ(A(γ)
t (x), At(x))(ρ(x, θ) + 1)−1 : x ∈ K, t ∈ {1, 2, . . . }}

≤ sup{γρ(At(x), At(θ))(ρ(x, θ) + 1)−1 : x ∈ K, t ∈ {1, 2, . . . }} ≤ γ.

Now assume that a sequence of mappings {Ct}∞t=1 ∈ M satisfies

(3.9) dM({Ct}∞t=1, {A
(γ)
t }∞t=1) ≤ αr.

By (3.1), (3.4), (3.8) and (3.9), we have
(3.10)

dM({Ct}∞t=1, {At}∞t=1) ≤ dM({Ct}∞t=1, {A
(γ)
t }∞t=1) + dM({A(γ)

t }∞t=1, {At}∞t=1)

≤ αr + γ ≤ r/2.

Assume that

(3.11) M ≥M∗, z ∈ B(θ,M), t ∈ {1, 2, . . . }, u ∈ B(Ct(z), 1).

In view of (3.11),

(3.12) ρ(θ, u) ≤ ρ(θ, Ct(z)) + ρ(Ct(z), u) ≤ ρ(θ, Ct(z)) + 1.
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Relations (2.7), (3.9) and (3.11) imply that

(3.13)

ρ(θ, Ct(z)) ≤ ρ(θ,A
(γ)
t (z)) + ρ(A

(γ)
t (z), Ct(z))

≤ ρ(θ,A
(γ)
t (z)) + dM({Ct}∞t=1, {A

(γ)
t }∞t=1)(ρ(z, θ) + 1)

≤ ρ(θ,A
(γ)
t (z)) + αr(ρ(z, θ) + 1)

≤ ρ(θ,A
(γ)
t (z)) + αr(M + 1).

It follows from (2.1), (3.3) and (3.6) that

(3.14)

ρ(θ,A
(γ)
t (z)) ≤ ρ(θ,At(θ)) + ρ(At(θ), A

(γ)
t (z))

≤ n+ ρ(At(θ), (1− γ)At(z)⊕ γAt(θ))

≤ n+ (1− γ)ρ(At(θ), At(z))

≤ n+ (1− γ)ρ(θ, z).

By (3.1), (3.2), (3.4), (3.5) and (3.11)–(3.14), we have

ρ(θ, u) ≤ 1 + αr(M + 1) + n+ (1− γ)ρ(θ, z)

≤ 1 + αr + n+M(1− γ + αr)

≤ 2 + n+M(1− γ/2) ≤M + 2 + n−Mγ/2

≤M + 2 + n− (r/8)8(n+ 2)r−1 =M

and
ρ(θ, u) ≤M.

Thus we have shown that (3.11) implies that ρ(θ, u) ≤M and

B(Ct(z), 1) ⊂ B(θ,M)

for all z ∈ B(θ,M) and all t ∈ {1, 2, . . . }. Hence
{Ct}∞t=1 ∈ F .

Since (3.9) implies (3.10), it follows that

{{Ct}∞t=1 ∈ M : dM({Ct}∞t=1, {A
(γ)
t }∞t=1) ≤ αr}

⊂ F ∩ {{Ct}∞t=1 ∈ M : dM({Ct}∞t=1, {At}∞t=1) ≤ r}.
Therefore M\F is porous in (M, dM), as claimed. Proposition 3.1 is proved. �

4. Proof of Theorem 2.1

We may assume without loss of generality that the setK is not a singleton. Hence
we can fix a number κ ∈ (0, 1) for which there exist two points u, v ∈ K such that

(4.1) κ ≤ ρ(u, v).

We also fix a natural number n0 which satisfies

(4.2) n0 > max{ρ(θ, u), ρ(θ, v)}.
For every natural number n ≥ n0, denote by Fn the collection of all sequences of
mappings {At}∞t=1 ∈ M such that

sup{ρ(At(x), At(y))ρ(x, y)
−1 :
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(4.3) x, y ∈ B(θ, n) and ρ(x, y) ≥ κn−1, t = 1, 2, . . . } < 1.

Theorem 2.1 follows from Proposition 3.1 and our next result.

Proposition 4.1. For each integer n ≥ n0, the set M\Fn is σ-porous in (M, dM).

Proof. For every natural number p, define

(4.4) Mp := {{At}∞t=1 ∈ M : ρ(θ,At(θ)) ≤ p, t = 1, 2, . . . }.

Let n ≥ n0 be an integer. It is clear that

(4.5) M\Fn = ∪∞
p=1(Mp \ Fn).

In order to complete the proof of the proposition, it is sufficient to show that for
any natural number p, the set Mp \ Fn is porous in (M, dM).

To this end, let p ≥ 1 be an integer. Define

(4.6) α = (64n2p)−1κ.

Assume that

(4.7) {At}∞t=1 ∈ Mp \ Fn and r ∈ (0, 1].

Let

(4.8) γ = (4p)−1r.

For every point x ∈ K and every integer t ≥ 1, set

(4.9) A
(γ)
t (x) := (1− γ)At(x)⊕ γθ.

In view of (2.1) and (4.9), for all points x, y ∈ K and all natural numbers t ≥ 1, we
have

(4.10)
ρ(A

(γ)
t (x), A

(γ)
t (y)) = ρ((1− γ)At(x)⊕ γθ, (1− γ)At(y)⊕ γθ)

≤ (1− γ)ρ(At(x), At(y)) ≤ (1− γ)ρ(x, y).

Relations (2.1), (4.4) and (4.9) imply that for all points x ∈ K and all natural
numbers t, we have

(4.11)

ρ(At(x), A
(γ)
t (x)) = ρ((1− γ)At(x)⊕ γθ,At(x))

≤ γρ(At(x), θ) ≤ γ(ρ(At(x), At(θ)) + ρ(At(θ), θ))

≤ γ(ρ(x, θ) + ρ(At(θ), θ))

≤ γ(ρ(x, θ) + p)

≤ pγ(ρ(x, θ) + 1).

It follows from (2.7), (4.8) and (4.11) that

(4.12) dM({At}∞t=1, {A
(γ)
t }∞t=1) ≤ pγ = r/4.

Assume that the sequence {Bt}∞t=1 ∈ M satisfies

(4.13) dM({Bt}∞t=1, {A
(γ)
t }∞t=1) ≤ αr.
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By (4.6), (4.12) and (4.13), we have

(4.14)

dM({Bt}∞t=1, {At}∞t=1) ≤ dM({Bt}∞t=1, {A
(γ)
t }∞t=1)

+ dM({A(γ)
t }∞t=1, {At}∞t=1)

≤ αr + r/4 < r.

Assume that

(4.15) x, y ∈ B(θ, n), ρ(x, y) ≥ κn−1, t ∈ {1, 2, . . . }.
In view of (4.10), (4.13) and (4.15),

ρ(Bt(x), Bt(y)) ≤ ρ(Bt(x), A
(γ)
t (x)) + ρ(A

(γ)
t (x), A

(γ)
t (y)) + ρ(A

(γ)
t (y), Bt(y))

≤ αr(ρ(x, θ) + 1) + (1− γ)ρ(x, y) + αr(ρ(x, θ) + 1)

≤ 2αr(n+ 1) + (1− γ)ρ(x, y).

When combined with (4.6), (4.8) and (4.15), the above inequality implies that

(4.16)
ρ(Bt(x), Bt(y))ρ(x, y)

−1 ≤ 1− γ + 2αr(n+ 1)κ−1n

≤ 1− (4p)−1r + r(8p)−1.

Thus (4.15) implies (4.16). Therefore

sup{ρ(Bt(x), Bt(y))ρ(x, y)
−1 : x, y ∈ B(θ, n) and ρ(x, y) ≥ κn−1, t ∈ {1, 2, . . . }}

≤ 1− (8p)−1r

and
{Bt}∞t=1 ∈ Fn.

Together with (4.14) this implies that

{{Bt}∞t=1 ∈ M : dM({Bt}∞t=1, {A
(γ)
t }∞t=1) ≤ αr}

⊂ Fn ∩ {{Bt}∞t=1 ∈ M : d({Bt}∞t=1, {At}∞t=1) ≤ r}.
Thus Mp\Fn is indeed porous in (M, dM). This completes the proof of Proposition
4.1. �

5. First convergence result

Using the notations, definitions and assumptions introduced in Section 2, we
prove in this section the following result.

Theorem 5.1. Assume that {At}∞t=1 ∈ M, there exists a positive number MA such
that for each M ≥MA,

(5.1) At(B(θ,M)) ⊂ B(θ,M), t = 1, 2, . . . ,

and that the sequence of mappings {At}∞t=1 is Rakotch contractive on B(θ,M).
Let M, ϵ > 0. Then there exists a natural number nϵ such that for each mapping

r : {1, 2, . . . } → {1, 2, . . . },
each pair of points x, y ∈ B(θ,M) and each integer n ≥ nϵ,

ρ(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y)) ≤ ϵ.
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Proof. We may assume without loss of generality thatM ≥MA. Since the sequence
of mappings {At}∞t=1 is Rakotch contractive on B(θ,M), there exists a decreasing
function ϕ : [0,∞) → [0, 1] such that

(5.2) ϕ(t) < 1 for all t > 0

and

(5.3) ρ(At(x), At(y)) ≤ ϕ(ρ(x, y))ρ(x, y) for all x, y ∈ B(θ,M)

and all integers t ≥ 1.
Denote by A0 the identity operator I : K → K: I(x) = x for all x ∈ K.
Choose a natural number

(5.4) nϵ > 2M(ϵ(1− ϕ(ϵ))−1.

Assume that

r : {1, 2, . . . } → {1, 2, . . . }

and that

(5.5) x, y ∈ B(θ,M).

In order to complete the proof of the theorem, we should show that for all integers
n ≥ nϵ,

ρ(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y)) ≤ ϵ.

Since all the mappings At, t = 1, 2, . . . , are nonexpansive, it is sufficient to show
that there exists an integer m ∈ [1, nϵ] such that

ρ(Ar(m) · · ·Ar(1)(x), Ar(m) · · ·Ar(1)(y)) ≤ ϵ.

Suppose to the contrary that this is not true. Then

(5.6) ρ(Ar(m) · · ·Ar(1)(x), Ar(m) · · ·Ar(1)(y)) > ϵ

for all m = 1, . . . , nϵ. Since all the mappings At, t = 1, 2, . . . , are nonexpansive, we
have

(5.7) ρ(x, y) > ϵ.

Set

r(0) = 0.

Assume that an integer

t ∈ [0, nϵ − 1].

By (5.1), (5.3) and (5.5),

ρ(Ar(t+1) · · ·Ar(0)(x), Ar(t+1) · · ·Ar(0)(y)) ≤ ϕ(ρ(Ar(t) · · ·Ar(0)(x), Ar(t) · · ·Ar(0)(y)))

×ρ(Ar(t) · · ·Ar(0)(x), Ar(t) · · ·Ar(0)(y)).
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Since the function ϕ is decreasing, it follows from (5.6), (5.7) and the above relation
that

ρ(Ar(t) · · ·Ar(0)(x), Ar(t) · · ·Ar(0)(y))

− ρ(Ar(t+1) · · ·Ar(0)(x), Ar(t+1) · · ·Ar(0)(y))

≥ ρ(Ar(t) · · ·Ar(0)(x), Ar(t) · · ·Ar(0)(y))(5.8)

× (1− ϕ(ρ(Ar(t) · · ·Ar(0)(x), Ar(t) · · ·Ar(0)(y))))

≥ ϵ(1− ϕ(ϵ)).

By (5.5) and (5.8),

2M ≥ ρ(x, y) = ρ(Ar(0)(x), Ar(0)(y))

≥ ρ(Ar(0)(x), Ar(0)(y))− ρ(Ar(nϵ) · · ·Ar(0)(x), Ar(nϵ) · · ·Ar(0)(y))

=

nϵ−1∑
t=0

[ρ(Ar(t) · · ·Ar(0)(x), Ar(t) · · ·Ar(0)(y))

− ρ(Ar(t+1) · · ·Ar(0)(x), Ar(t+1) · · ·Ar(0)(y))]

≥ nϵϵ(1− ϕ(ϵ))

and

nϵ ≤ 2M(ϵ(1− ϕ(ϵ))−1.

This, however, contradicts (5.4). The contradiction we have reached completes the
proof of Theorem 5.1. �

Proposition 5.2. Let {At}∞t=1 ∈ M, MA > 0 and let

(5.9) At(B(θ,MA)) ⊂ B(θ,MA), t = 1, 2, . . . .

Then for each M ≥MA,

At(B(θ,M)) ⊂ B(θ,M), t = 1, 2, . . . .

Proof. Let

(5.10) M > MA, x ∈ B(θ,M).

In view of (5.10) and the properties of hyperbolic spaces, there exists

(5.11) z ∈ [x, θ]

such that

(5.12) ρ(θ, z) =MA

and

(5.13) ρ(z, x) =M −MA.

By (2.1), (5.9), (5.12) and (5.13), for any natural number t,

ρ(θ,At(x)) ≤ ρ(θ,At(z)) + ρ(At(z), At(x))

≤MA + ρ(z, x) ≤M.

Proposition 5.2 is proved. �
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6. Second convergence result

We again use the notations, definitions and assumptions introduced in Section 2.
This section is devoted to the proof of the following result.

Theorem 6.1. Assume that {At}∞t=1 ∈ M, MA > 0,

(6.1) At(B(θ,MA)) ⊂ B(θ,MA), t = 1, 2, . . . ,

and that a subsequence of mappings {Atk}∞k=1 is Rakotch contractive on B(θ,M)
for every M ≥MA.

Let M, ϵ > 0. Then there exists a natural number nϵ such that for each pair of
points x, y ∈ B(θ,M) and each integer n ≥ nϵ,

ρ(An · · ·A1(x), An · · ·A1(y)) ≤ ϵ.

Proof. We may assume without loss of generality that M > MA. Proposition 5.2
and (6.1) imply that

(6.2) At(B(θ,M)) ⊂ B(θ,M), t = 1, 2, . . . ,

and there exists a decreasing function ϕ : [0,∞) → [0, 1] such that

(6.3) ϕ(t) < 1 for all t > 0

and

(6.4) ρ(Atk(x), Atk(y)) ≤ ϕ(ρ(x, y))ρ(x, y) for all x, y ∈ B(θ,M)

and all integers k ≥ 1.
Denote by A0 the identity operator I : K → K: I(x) = x for all x ∈ K.
Choose a natural number

(6.5) kϵ > 2M(ϵ(1− ϕ(ϵ))−1 + 1,

set

(6.6) nϵ = tkϵ

and

t0 = 0.

Assume that

(6.7) x, y ∈ B(θ,M).

In order to complete the proof of the theorem, we need to show that for all integers
n ≥ nϵ,

ρ(An · · ·A1(x), An · · ·A1(y)) ≤ ϵ.

Since all the mappings At, t = 1, 2, . . . , are nonexpansive, it is sufficient to show
that there exists an integer m ∈ [1, nϵ] such that

ρ(Am · · ·A1(x), Am · · ·A1(y)) ≤ ϵ.

Suppose to the contrary that this does not hold. Then

(6.8) ρ(Am · · ·A1(x), Am · · ·A1(y)) > ϵ
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for all m = 1, . . . , nϵ. Since all mappings At, t = 1, 2, . . . , are nonexpansive, in view
of (6.8), we have

(6.9) ρ(x, y) > ϵ.

Assume that an integer

k ∈ [0, kϵ − 1].

By (6.2) and (6.7),

Atk · · ·A0(x) ∈ B(θ,M)

and

(6.10) Atk · · ·A0(y) ∈ B(θ,M).

By (6.7)–(6.9),

(6.11) ρ(Atk · · ·A0(x), Atk · · ·A0(y)) > ϵ.

It follows from (6.4) that

(6.12)
ρ(Atk+1

· · ·A0(x), Atk+1
· · ·A0(y)) ≤ ϕ(ρ(Atk · · ·A0(x), Atk · · ·A0(y)))

× ρ(Atk · · ·A0(x), Atk · · ·A0(y)).

By (6.11) and (6.12),

ρ(Atk · · ·A0(x), Atk · · ·A0(y))− ρ(Atk+1
· · ·A0(x), Atk+1

· · ·A0(y))

≥ ρ(Atk · · ·A0(x), Atk · · ·A0(y))

× (1− ϕ(ρ(Atk · · ·A0(x), Atk · · ·A0(y))))

≥ ϵ(1− ϕ(ϵ))

and
(6.13)
ρ(Atk+1

· · ·A0(x), Atk+1
· · ·A0(y)) ≤ ρ(Atk · · ·A0(x), Atk · · ·A0(y))− ϵ(1− ϕ(ϵ)).

By (6.7),

2M ≥ ρ(x, y) ≥ ρ(x, y)− ρ(Anϵ · · ·A0(x), Anϵ · · ·A0(y))

=

nϵ−1∑
t=0

[ρ(Atk · · ·At0(x), Atk · · ·At0(y))

− ρ(Atk+1
· · ·At0(x), Atk+1

· · ·At0(y))]

≥ kϵϵ(1− ϕ(ϵ))

and

kϵ ≤ 2M(ϵ(1− ϕ(ϵ))−1.

This contradicts (6.5). The contradiction we have reached completes the proof of
Theorem 6.1. �
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7. Matkowski contractions

We continue to use the notations, definitions and assumptions introduced in
Section 2.

Let {At}∞t=1 ∈ M and let D be a nonempty subset of K. We say that the
sequence {At}∞t=1 is contractive in the sense of Matkowski [7,14] on D if there exists
an increasing function ψ : [0,∞) → [0,∞) such that

(7.1) lim
n→∞

ψn(s) = 0 for all s > 0

and
ρ(At(x), At(y)) ≤ ψ(ρ(x, y)) for all x, y ∈ D and all t = 1, 2 . . . .

In this section we prove the following two theorems (Theorems 7.1 and 7.2).

Theorem 7.1. Assume that {At}∞t=1 ∈ M, MA > 0, for each M ≥MA,

(7.1) At(B(θ,M)) ⊂ B(θ,M), t = 1, 2, . . . ,

and that the sequence of mappings {At}∞t=1 is Matkowski contractive on B(θ,M).
Let M, ϵ > 0. Then there exists a natural number nϵ such that for each mapping

r : {1, 2, . . . } → {1, 2, . . . },
each pair of points x, y ∈ B(θ,M) and each integer n ≥ nϵ,

ρ(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y)) ≤ ϵ.

Proof. We may assume without loss of generality thatM ≥MA. Since the sequence
of mappings {At}∞t=1 is Matkowski contractive on B(θ,M), there exists an increasing
function ψ : [0,∞) → [0,∞) such that

(7.3) lim
n→∞

ψn(s) = 0 for all s > 0

and

(7.4) ρ(At(x), At(y)) ≤ ψ(ρ(x, y)) for all x, y ∈ B(θ,M) and all t = 1, 2 . . . .

Denote by A0 the identity operator I : K → K: I(x) = x for all x ∈ K. By (7.3),
there exists a natural number nϵ such that

(7.5) ψnϵ(2M) < ϵ.

Assume that
r : {1, 2, . . . } → {1, 2, . . . }

and that

(7.6) x, y ∈ B(θ,M).

Set
r(0) = 0.

In order to complete the proof of the theorem, we should show that for all integers
n ≥ nϵ,

ρ(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y)) ≤ ϵ.

Since all the mappings At, t = 1, 2, . . . , are nonexpansive, it suffices to show that

ρ(Ar(nϵ) · · ·Ar(1)(x), Ar(nϵ) · · ·Ar(1)(y)) ≤ ϵ.
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It follows from (7.6) that for all integers n ≥ 1,

ρ(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y)) ≤ 2M.

By (7.2) and (7.4), for all integers n ∈ [0, nϵ − 1],

ρ(Ar(n+1) · · ·Ar(0)(x), Ar(n+1) · · ·Ar(0)(y))

≤ ψ(ρ(Ar(n) · · ·Ar(0)(x), Ar(n) · · ·Ar(0)(y))).

Together with (7.5) and (7.6) this implies that

ρ(Ar(nϵ) · · ·Ar(0)(x), Ar(nϵ) · · ·Ar(0)(y))

≤ ψnϵ(ρ(x, y)) ≤ ψnϵ(2M) < ϵ.

This completes the proof of Theorem 7.1. �
Theorem 7.2. Assume that {At}∞t=1 ∈ M, MA > 0, that for every M ≥MA,

(7.7) At(B(θ,M)) ⊂ B(θ,M), t = 1, 2, . . . ,

and that a subsequence of mappings {Atk}∞k=1 is Matkowski contractive on B(θ,M)
for every M ≥MA.

Let M, ϵ > 0. Then there exists a natural number nϵ such that for each pair of
points x, y ∈ B(θ,M) and each integer n ≥ nϵ,

ρ(An · · ·A1(x), An · · ·A1(y)) ≤ ϵ.

Proof. We may assume without loss of generality that M > MA. There exists an
increasing function ψ : [0,∞) → [0,∞) such that

(7.8) lim
n→∞

ψn(s) = 0 for all s > 0

and

(7.9) ρ(Atk(x), Atk(y)) ≤ ψ(ρ(x, y)) for all x, y ∈ B(θ,M) and all k = 1, 2 . . . .

By (7.8), there exists a natural number kϵ such that

(7.10) ψk(2M) < ϵ for all integers k ≥ kϵ.

Set
nϵ = tkϵ

and
t0 = 0.

Denote by A0 the identity operator I : K → K: I(x) = x for all x ∈ K.
Assume that

(7.11) x, y ∈ B(θ,M).

Since all the mappings At, t = 1, 2, . . . , are nonexpansive, for all integers n ≥ 1, we
have

ρ(An · · ·A1(x), An · · ·A1(y)) ≤ 2M.

By (7.7) and (7.9), for all integers k ≥ 0,

ρ(Atk+1
· · ·At0(x), Atk+1

· · ·At0(y)) ≤ ψ(ρ(Atk+1−1 · · ·At0(x), Atk+1−1 · · ·At0(y)))

≤ ψ(ρ(Atk · · ·At0(x), Atk · · ·At0(y))).
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When combined with (7.10) and (7.11), this implies that for all integers k ≥ kϵ,

ρ(Atk · · ·At0(x), Atk · · ·At0(y)) ≤ ψk(ρ(x, y)) ≤ ψk(2M) ≤ ϵ.

This completes the proof of Theorem 7.2. �

8. Unrestricted infinite products

We again use the notation, definitions and assumptions introduced in Section 2.
Let E ⊂ A and let D be a nonempty subset of K. We say that the set E is

contractive in the sense of Rakotch [8] on D if there exists a decreasing function
ϕ : [0,∞) → [0, 1] such that

(8.1) ϕ(t) < 1 for all t > 0

and

(8.2) ρ(A(x), A(y)) ≤ ϕ(ρ(x, y))ρ(x, y) for all x, y ∈ D and all A ∈ E.

In this section we prove the following result.

Theorem 8.1. Assume that {At}∞t=1 ∈ M,

E ⊂ {At : t = 1, 2, . . . }
is nonempty and there exists a positive number MA such that for each M ≥MA,

(8.3) At(B(θ,M)) ⊂ B(θ,M), t = 1, 2, . . . ,

and that the set E is Rakotch contractive on B(θ,M).
Let M, ϵ > 0 and p̄ be a natural number. Then there exists a natural number n∗

such that for each mapping

r : {1, 2, . . . } → {1, 2, . . . }
which satisfies

(8.4) {Ar(i) : i = kp̄+ 1, . . . , (k + 1)p̄} ∩ E ̸= ∅, k = 0, 1, . . . ,

each pair of points x, y ∈ B(θ,M) and for each integer n ≥ n∗,

ρ(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y)) ≤ ϵ.

Proof. We may assume without any loss of generality that M ≥MA. Since the set
E is Rakotch contractive on B(θ,M), there exists a decreasing function ϕ : [0,∞) →
[0, 1] such that

(8.5) ϕ(t) < 1 for all t > 0

and

(8.6) ρ(A(x), A(y)) ≤ ϕ(ρ(x, y))ρ(x, y) for all x, y ∈ B(θ,M)

and all A ∈ E.
Denote by A0 the identity operator I : K → K: I(x) = x for all x ∈ K.
Choose a natural number

(8.7) k∗ > 2M(ϵ(1− ϕ(ϵ))−1

and set

(8.8) n∗ = k∗p̄+ 1.
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Assume that the mapping

r : {1, 2, . . . } → {1, 2, . . . }

satisfies (8.4) and that

(8.9) x, y ∈ B(θ,M).

In order to complete the proof of the theorem, we need to show that for all integers
n ≥ n∗,

ρ(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y)) ≤ ϵ.

Since all the mappings At, t = 1, 2, . . . , are nonexpansive, it suffices to show that

ρ(Ar(n∗) · · ·Ar(1)(x), Ar(n∗) · · ·Ar(1)(y)) ≤ ϵ.

Suppose to the contrary that this inequality does not hold. Then

(8.10) ρ(Ar(n∗) · · ·Ar(1)(x), Ar(n∗) · · ·Ar(1)(y)) > ϵ.

Since all the mappings At, t = 1, 2, . . . , are nonexpansive, it follows from (8.10)
that

(8.11) ρ(x, y) > ϵ

and

(8.12) ρ(Ar(k) · · ·Ar(1)(x), Ar(k) · · ·Ar(1)(y)) > ϵ

for all k = 1, . . . , n∗.
Set

r(0) = 0.

Assume that an integer

(8.13) t ∈ [0, n∗ − 1].

It is clear that

ρ(Ar(t+1) · · ·Ar(0)(x), Ar(t+1) · · ·Ar(0)(y)) ≤ ρ(Ar(t) · · ·Ar(0)(x), Ar(t) · · ·Ar(0)(y))

and if

Ar(t+1) ∈ E,

then in view of (8.6) and (8.11)–(8.13),

(8.14)

ρ(Ar(t+1) · · ·Ar(0)(x), Ar(t+1) · · ·Ar(0)(y))

≤ ϕ(ρ(Ar(t) · · ·Ar(0)(x), Ar(t) · · ·Ar(0)(y)))

× ρ(Ar(t) · · ·Ar(0)(x), Ar(t) · · ·Ar(0)(y))

≤ ϕ(ϵ)ρ(Ar(t) · · ·Ar(0)(x), Ar(t) · · ·Ar(0)(y)).
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By (8.9) and (8.11)–(8.14),

2M ≥ ρ(x, y)

= ρ(Ar(0)(x), Ar(0)(y))

≥ ρ(Ar(0)(x), Ar(0)(y))− ρ(Ar(n∗) · · ·Ar(0)(x), Ar(n∗) · · ·Ar(0)(y))

=

n∗−1∑
i=0

[ρ(Ar(i) · · ·Ar(0)(x), Ar(i) · · ·Ar(0)(y))

− ρ(Ar(i+1) · · ·Ar(0)(x), Ar(i+1) · · ·Ar(0)(y))]

≥
∑

{ρ(Ar(i) · · ·Ar(0)(x), Ar(i) · · ·Ar(0)(y))

− ρ(Ar(i+1) · · ·Ar(0)(x), Ar(i+1) · · ·Ar(0)(y)) :

i ∈ {0, . . . , n∗ − 1}, Ar(i+1) ∈ E}

≥
∑

{(1− ϕ(ϵ))ρ(Ar(i) · · ·Ar(0)(x), Ar(i) · · ·Ar(0)(y)) :

i ∈ {0, . . . , n∗ − 1}, Ar(i+1) ∈ E}
≥ ϵ(1− ϕ(ϵ))Card{i ∈ {0, . . . , nϵ − 1} : Ar(i+1) ∈ E}.

By the above relation, (8.4) and (8.8),

2M ≥ (ϵ(1− ϕ(ϵ))k∗.

This contradicts (8.7). The contradiction we have reached completes the proof of
Theorem 8.1. �

9. Inexact infinite products

We continue to use the notations, definitions and assumptions introduced in
Section 2.

In this section we prove the following result.

Theorem 9.1. Assume that {At}∞t=1 ∈ M, there exists a positive number MA such
that for each M ≥MA,

(9.1) At(B(θ,M)) ⊂ B(θ,M), t = 1, 2, . . . ,

and that the sequence of mappings {At}∞t=1 is Rakotch contractive on B(θ,M).
Let M, ϵ > 0, {ϵi}∞i=1 ⊂ [0,∞) satisfy

(9.2)
∞∑
i=0

ϵi <∞.

Then there exists a natural number n∗ such that for each mapping

r : {1, 2, . . . } → {1, 2, . . . }
and each pair of sequences {xi}∞i=0, {yi}∞i=0 ⊂ K satisfying

(9.3) x0, y0 ∈ B(θ,M)

and

(9.4) ρ(xi+1, Ar(i+1)(xi)), ρ(yi+1, Ar(i+1)(yi)) ≤ ϵi
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for each integer i ≥ 0, the inequality

ρ(xn, yn) ≤ ϵ

holds for all integers n ≥ n∗.

Proof. We may assume without any loss of generality that M ≥MA. Set

(9.5) Λ =

∞∑
i=0

ϵi.

Let a sequence {zi}∞i=0 ⊂ K satisfy for each integer i ≥ 0,

(9.6) ρ(zi+1, Ar(i+1)(zi)) ≤ ϵi.

Let k ≥ 0 be an integer. Define

(9.7) z
(k)
k = zk

and

(9.8) z
(k)
i+1 = Ar(i+1)(z

(k)
i ) for all integers i ≥ k.

We claim that for all integers i ≥ k + 1,

(9.9) ρ(zi, z
(k)
i ) ≤

i−1∑
j=k

ϵj .

By (9.6), (9.7) and (9.8),

ρ(zk+1, z
(k)
k+1) = ρ(zk+1, Ar(k+1)(z

(k)
k )) = ρ(zk+1, Ar(k+1)(zk)) ≤ ϵk.

Thus (9.9) holds for i = k + 1.
Assume now that i ≥ k + 1 is an integer and that (9.9) holds. In view of (9.6),

(9.8) and (9.9),

ρ(zi+1, z
(k)
i+1) ≤ ρ(zi+1, Ar(i+1)(zi)) + ρ(Ar(i+1)(zi), Ar(i+1)(z

(k)
i ))

≤ ϵi + ρ(zi, z
(k)
i ) ≤

i∑
j=k

ϵj .

Thus we have shown by induction that (9.9) indeed holds for all integers i ≥ k+ 1.
By (9.1), (9.7) and (9.8),

(9.10) z
(0)
i ∈ B(θ,M), i = 0, 1, . . . .

Relations (9.5), (9.9) and (9.10) imply that

(9.11) zi ∈ B(θ,M + Λ), i = 0, 1, . . . .

It follows from (9.1), (9.7), (9.8) and (9.11) that

(9.12) z
(k)
i ∈ B(θ,M + Λ), k ∈ {0, 1, . . . }, i ∈ {k, k + 1, . . . }.

By Theorem 5.1, there exists a natural number ñ such that the following property
holds:

(P2) for each mapping

r : {1, 2, . . . } → {1, 2, . . . },
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each pair of points x, y ∈ B(θ,M + Λ) and for each integer n ≥ ñ,

ρ(Ar(n) · · ·Ar(1)(x), Ar(n) · · ·Ar(1)(y)) ≤ ϵ/2.

In view of (9.2), there exists a natural number n0 such that

(9.13)
∞∑

i=n0

ϵi < ϵ/4.

Set

(9.14) n∗ = ñ+ n0.

Assume that the mapping

r : {1, 2, . . . } → {1, 2, . . . },

and that sequences {xi}∞i=0, {yi}∞i=0 ⊂ K satisfy

(9.15) x0, y0 ∈ B(θ,M)

and

(9.16) ρ(xi+1, Ar(i+1)(xi)), ρ(yi+1, Ar(i+1)(yi)) ≤ ϵi

for each integer i ≥ 0.

For each integer k ≥ 0 and each integer i ≥ k, define x
(k)
i , y

(k)
i as in (9.7) and

(9.8). As it was shown in (9.9), (9.11) and (9.12),

(9.17) xi, yi ∈ B(θ,M + Λ), i ∈ {0, 1, . . . },

(9.18) x
(k)
i , y

(k)
i ∈ B(θ,M + Λ), k ∈ {0, 1, . . . }, i ∈ {k, k + 1, . . . }

and for each integer k ≥ 0 and each integer i ≥ k,

(9.19) ρ(xi, x
(k)
i ), ρ(yi, y

(k)
i ) ≤

i−1∑
j=k

ϵj .

Property (P2), (9.7), (9.8) and (9.17) imply that

(9.20) ρ(x
(n0)
i , y

(n0)
i ) ≤ ϵ/2 for all integers i ≥ ñ+ n0.

By (9.13) and (9.19), for all integers i ≥ ñ+ n0,

ρ(xi, x
(n0)
i ), ρ(yi, y

(n0)
i ) ≤

∞∑
j=n0

ϵj < ϵ/4.

When combined with (9.20), this implies that for each integer i ≥ n∗ = ñ+ n0,

ρ(xi, yi) < ϵ.

The proof of Theorem 9.1 is complete. �
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