Applied Analysis and Optimization Yokohama Publishers

Volume 1, Number 3, 2017, 411-422 ISSN 2189-1664 Online Journal
© Copyright 2017

INVARIANCE OF THE k-CAUCHY-FUETER EQUATIONS AND
HARDY SPACE OVER THE QUATERNIONIC SIEGEL UPPER
HALF-SPACE

YUN SHI AND WEI WANG

ABSTRACT. The k-Cauchy-Fueter operators and k-regular functions on the quater-
nionic Siegel upper half-space are quaternionic counterparts of the Cauchy-Riemann
operator and holomophic functions on the complex Siegel upper half-space in the
theory of several complex valuables. 1-regular functions are the usual quater-
nionic regular functions. In this paper, we give the transformation formulae for
the k-Cauchy-Fueter operators under automorphisms of the quaternionic Siegel
upper half-space. We also discuss the Hardy space, and the Cauchy-Szegd kernel
and their basic properties.

1. INTRODUCTION

The classical Hardy space H> (R%r) consists of holomorphic functions on the upper
half-plane Rﬁ_ such that

[oe)
sup [ |fw+ i)y < +oc.
y>0J —co

The set of all boundary values forms a closed subspace of L?(R) and the Cauchy-
Szegd integral is the projection operator from L?(R) to this closed subspace. The
Cauchy-Szeg6 integral is written as a convolution with the Cauchy-Szegd kernel,
which is the reproducing kernel for the functions in H 2(R3_). This construction
was generalized to several complex variables (cf. [4]). In [2] it was generalized to
quaternionic regular functions on the quaternionic Siegel upper half-space, and the
Cauchy-Szego kernel was given explicitly for any dimension n. In the present paper,
we give an analogue construction for k-regular functions and give some basic prop-
erties of Cauchy-Szego kernel. 1-regular functions are usual quaternionic regular
functions.
The quaternionic Siegel upper half-space is

(11) Un = {q = (q17q27' . a%z) = (qlaql) S Hn‘RGQI > ‘q/‘2}7

where we denote ¢’ = (qo,...,q,) € H" 1. We consider the k-Cauchy-Fueter oper-
ator over the quaternionic Siegel upper half-space

(1.2) D : C™(Uy,, OFC?) — C®(U,, " 1C? @ C*")
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k = 1,2,..., where ®PC? is the p-th symmetric power of C?. We can identify
OFC? = CF1 by (2.8). A CFtlvalued distribution f on U, is called k-regular if
2 f = 0 in the sense of distributions.

The (4n — 1)-dimensional quaternionic Heisenberg group is ¢ = H" ! @ ImH
equipped with the multiplication given by

(1.3) (s,¢)-(t,p) = [s+t+2> Im(dp;).d +7 |,
j=1

where ¢',p’ € H¥"~* and s,t € ImH. We can identify # with the boundary dU,, of
the Siegel upper half-space

(1.4) Oy = {a=(q1,42,---,qn) = (q1,4') € H"[Req1 = |¢[*},
using the projection

w: OU, — I,

(1.5) (‘QIP + xoi + x3j + 24k, q’) — (22l + 23 + x4k, q’).
Let dB(-) be the Lebesgue measure on dlU,, obtained by pulling back by the projec-
tion 7, the Haar measure on the group 7.

For any function F : 0U,, — CF1, we write F. for its vertical translate. We
mean that the vertical direction is given by the positive direction of Req; : F.(q) =
F(q + ce), where e = (1,0,0,...,0). If £ > 0, then F. is defined in a neighborhood
of OU,, in particular, on U,. The Hardy space H?(Uy,) consists of all k-regular
functions F' on dU,, for which

(1.6) sup /8 IF.()[248(g) < +c.

e>0

The norm ||F|| g2(y,) of F' is then the square root of the left-hand side of (1.6).
This paper is organized as follows. In Section 2, we recall definitions of the k-
Cauchy-Fueter operator, k-regular functions and the quaternionic Siegel upper Half-
space. In Section 3, we give the transformation formulae for the k-Cauchy-Fueter
operators under automorphisms of the quaternionic Siegel upper half-space. In
Section 4, we discuss the boundary values of k-regular functions in the Siegel upper
half-space U,, and invariance properties of the Hardy space H?(U,,). In Section 5, we
introduce the notion of the Cauchy-Szegd kernel and shows their basic properties.
The explicit form of the Cauchy-Szego kernel is under investigation in progress.

2. THE QUATERNIONIC SIEGEL UPPER HALF-SPACE AND k-CAUCHY-FUETER
OPERATORS

Proposition 2.1 (cf. Proposition 2.2 in [2]). The Siegel upper half space Uy, is
invariant under the following transformations.
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(1) dilations:
(2.1) 6r: (q1,¢) — (Pqu,rq), > 0.
(2) left translations:
(2:2) 7t (q1,4") — (p1.0) - (q1,4);

forp=(p1,p") € OU,.
(3) rotations:

(23) Ry : (qhq,) — (QIv aq,): for a € Sp(n - 1)7
where Sp(n — 1) = {U € GL(n — 1,H)|UU? = I,,_1}, and
(2.4) Ry : (q1,¢) — (Gquo,q o), for o € H, |o| = 1.

To write down the k-Cauchy-Fueter operator in terms of complex variables, we
will use the well known embedding of quaternionic algebra H into C2*? :

. . . T+ iCCQ —I3 — il‘4
(2.5) T w1+ x0i + x3j + w4k — ( s —iry @y — ity )
We need complex vector fields Z4 4 on U, as follows:
ZOO ZOI 8@:1 + ia{Ez _6333 - iaﬂ:4
ZIO le 813 - iaau; 6w1 - iamz
(Zaw)=| =] :
Z(2n72)0 Z(2n72)1 8@;",3 + iaan;n,z _aa:4n,1 - iaa:4n
Z(2n71)0 Z(anl)l 8174n—1 - iaﬂ?zln 81477,73 - i814'rL72

The matrices

(carp) = < _01 (1) )7 (") = < (1) _01 )

are used to raise or lower primed indices, e.g.
/ Al
ZA = Z ZABIEB A .

B'=0/,1"
Here (¢4'P') is the inverse of (¢ 4/pr). Then Z% = Zay, ZY = —Zao, icc.
—0Opy — 104, —0y, — 104,
Oy — 104, — 0Oy + 104,
(Z A') — : :
_89047171 - iamn _89647173 - i8$4n72

843477,73 - iamnfz _63847171 + iaun

where A = 0,1,...,2n — 1, A’ = 0/,1". An element of C? is denoted by (far) with
A" = 0/,1'. The symmetric power ®*C? is a subspace of ®*C2, whose element is
a 2F-tuple (fagay..a;) with AlLAS AL = 0,1, such that faja,..a, € C are
invariant under permutations of subscripts, i.e.

Fagay..ap = fAZu)Afy(z)-"A;(k)
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for any permutation o of k letters. The k-Cauchy-Fueter operator Z in (1.2) over
the quaternionic Siegel upper half-space is given by

A/
(2.6) (2H)aymai= Y. Za'fajay.a,
Al=0/,1

We have isomorphisms
(27) Qk(c2 ~ Ck+1, @k_ICQ ® (CQ ~ (C2k,

by identifying f € ®FC2 and F € ©F~1C? @ C*" with

Fyor..o0
fooo..o :
Jroor..o Foo..o@2n-1)
(2.8) f=| frvoo |, F= :
: Fiyr 1o
frvv. v

Fiy v@n-)

respectively. Thus the k-Cauchy-Fueter operator is a (2nk) x (k+ 1)-matrix valued
differential operator:

(2.9)
9 =

g —i0a, — ) —i0ay
Oy —i0a, R

78""4'n71 7iaz4n 7614,”73 7iaz4n72

aﬂc4'n73 7iar4n72 78“0471,71 +1614n
Oy —i0s, 0y, —i0s,
By —i0s, Oy +ids,

—Ougp_1 =102y, —Ouy, 5 =100y, o
Orgp_3=1004, o  —Ory, 1 +i02y,

Oy —i0a, T
Oy —10s, Dy +i0a,

=0y =102y, =0y, 3—10z4, ,

Orgp_3=100y, o —0Ory, 1+i0zy,

(see (3.2) in [7] for similar operators on the quaternionic space H" and (2.11) in [3]
on the quagernionic Heisenberg group for case k = 2). But here our operators are
defined over the quaternionic Siegel upper half-space.
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3. THE TRANSFORMATION FORMULA FOR THE k-CAUCHY-FUETER OPERATORS

We can extend the definition of embedding 7 in (2.5) to a mapping from quater-
nionic (I x m)-matrices to complex (2] x 2m)-matrices. Let A = (Aji)ixm be a
quaternionic (I x m)-matrix and write

Aji, = ajy +ia2, + jay, + kaj, € H.

We define 7(A) is the complex (2] x 2m)-matrix (T(A]k))fzgﬁIl, ie.
T(Ago) 7(Ap1) . 7(Ao(m—1))
(3.1) 7(A) = 7(410) 7(14.111) T(Al(.m_l)) :
T(Ag—o) T(Ag—) - T(Ag—ym-1)
where 7(A;;) is the complex (2 x 2)-matrix
(32) e = ggz 333242 ;‘;i’“_};jéi’f ).

Though our 7 is the conjugate of 7 in [5], we still have the following proposition.

Proposition 3.1 (Proposition 2.1 in [5]). (1) 7(AB) = 7(A)T(B) for a quater-
nionic (p x m)-matriz A and a quaternionic (m xl)-matriz B. In particular,
for ¢ = Aq, q,¢' € H", A € GL(n,H), we have

(3.3) 7(¢") = 7(A)7(q)
as complex (2n x 2)-matriz.

(2) T(AY) = (A)t for a quaternionic (n x n)-matriz A.

Proposition 3.2 (Proposition 3.1.1 in [2]). Let f = fo + if1 +jfo+ kfs : D — H

be C-smooth function, where D is a domain in H™.

(1) Define the pull-back function f of f under the mapping ¢ — Q = aq for
a = (a;;) € GL(n,H) by f := f(aq). Then we have

(3.4) 04, f(q) = a;00,f(Q).
=1

where Oy, = O,y + 100y, 1 + JO0uy; o + K02y 5
(2) Define the pull-back function f of f under the mapping ¢ — Q = qo for
o€ H by f(q) = f(quo,...,qn,0). Then we have
(3.5) g, f (@) = 9, (7 £(Q))-
From Proposition 3.2, we can derive the transformation formula of the k-Cauchy-
Fueter operators under automorphisms of the quaternionic Siegel upper half-space.

Proposition 3.3. Let f = (fAllAIZ“‘A;g) € ®FC? be C'-smooth function.
(1) For a= (ajx) € GL(n,H), we have

2n—1

(3.6) (Rav2f)aya = D T(@5(2f)ay. a1
B=0
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(2) For fized o = 0¢ + 01 + joo + kos € H with |o| =1, we have

(3.7) (Rou?)agya = (7)o 410
where
N N
(3.8) faraya (@)= > (U )Ai foray..ars
D'=0",1

with the 2 x 2 complex matrix

(3.9) 5C oo+ i1 02 — 103
' ' —09 — 103 09— 101 )

Proof. (1) Recall that for a differentiable mapping 7' : R** — R*" the pushing
forward of a vector field X is defined as

(3.10) TX f(z) = X[f(T(x))].
(3.4) implies

(3.11) Rau0y f| oy = D @104 f
=1

Because f is arbitrarily chosen, we have

Ra*ﬁq. = C_lljéql-

J

By applying mapping 7 in (3.1)-(3.2), we get

2n—1
(312) Ra*ZAA’ = Z T(ét)EZBA/.
B=0
Thus
(RasZ)aympa = Y. BaZapefa
Al,B'=0"1"
2n—1

_\B iy
=Y > r@)aZepe® N a

B=0 A' \B'=0'1'

Z Re) A AL

B=0
(2) (3.5) implies that
(3.13) Rg*éqlf‘qa = (04,0) f\qo_.
Because f is arbitrarily chosen, we have

Ry.0q = 040
By applying mapping 7 again, we get
(RowZaar) = (Zaa)T(0),
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i.e.
A’
(3.14) Ry Zan = Z ZacrT(0)cr-
=01
So we have
Al _ ’ 1Al
RoZy' = Y. Zaor(@)Ge® M
B,C'=0/,1'
D’ _\B' _B'A
(3 15) == Z ZA €D/0/T(O')C,5 1
' B/,C",D'=0/,1/
A/
_ ! (CAREE
oy ()
D'=0'1" b

The last identity holds because

1 o9 —io1 09 +iog —1 —O'C
-1 —09 +io3 09+ 107 1 o ’
by the definition of ¢© in (3.9). Thus

(Rou21(@) ay.. g =12 (a0 yia= > Zat (fag .y (00)

Al =01/

A/
= ]%U*ZAlfA’l...A;C

qo

D/

— Ay ([ cC
= Y  Z (0 >A’1 foray. A

AlLD'=0/,1/
qo

The proposition is proved. O

Corollary 3.4. The space of all k-regular functions on Uy, is invariant under the
transformations defined in Proposition 2.1. Namely, if f is k-regular on the Siegel
upper half-space Uy, then the functions f(7,(q)),p € OUn; f(Ra(q)), a € Sp(n — 1);
f given by (3.8) and f(6.(q)) are all k-regular on U,.

Proof. The k-regularity of f(Ra(q)) and f follows directly from Proposition 3.3.
As the 1-regular case in [2], the translation 7, in (2.2) can be represented as a
composition of the linear transformation given by the quaternionic matrix

1 29
0 Infl ’

and the Euclidean translation (q1,¢’) — (¢1 + p1,¢ + p’). The first transformation
preserves the k-regularity of a function by Proposition 3.3, while the later one obvi-
ously preserves the k-regularity of a function since the k-Cauchy-Fueter operators
have constant coefficients.

It is obviously that f(d,(q)) is k-regular on U,,. The corollary is proved. O
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4. THE HARDY SPACE

The identification of the quaternionic Heisenberg group and the boundary of the
quaternionic Siegel upper half-space allows us to define the Lebesgue measure dj(-)
on 0U, by pulling back by the projection 7 defined in (1.5), the Haar measure on
H

Set 7* = —2' and O = 2*9. We have the following lemma.
Lemma 4.1. (cf. Lemma 3.3 in [6])

1
(4.1) O=92"9 =A. ,

1 (k+1)x (k+1)

where A 1= — Z;ﬁl 8%], is the Laplacian.
By (4.1), it is straightforward to see that if f is k-regular, then

fO’O’O’.‘.O’

(4.2) Af =0, where f= fl/o,?,mO/

fl’l’l’...l’

So each component of a k-regular function F is harmonic. A function F € H?(U,,)
has boundary value F that belongs to L?(0U,,) in the following sense.

Theorem 4.2. Suppose that F € H*(U,). Then

1. There exists a function F® € L?(0U,,) such that F(q+ ce)|oy, — F°(q) as
e — 0 in L%(0U,) norm.

2. I1F°) 2 ou,) = IF |l mr2a,)-
3. The space of all boundary values forms a closed subspace of the space L?(0Uy,).

Proof. The proof is just like the 1-regular case in [2]. We omit details. O

Proposition 4.3. The Hardy space H*(U,) is a complex Hilbert space under the
inner product (F,G) = (F*,G®) 12aqu,)-

Proof. All the real part and imaginary part of fa;  a; for A, =0,17=1,...k
are harmonic on U,,. Thus for g € U,

1
Fae @ = 1357 [ @OV ),

where B is a small ball centered at g and contained in U,,, from which we see that

(4.3) stQLWWww
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There exist a,b > 0 such that B € Uy.qp := {q € Uy|a < Reqy — |¢'|*> < b}, and so

2
dxy...d
|B| /nab £L'1, 7x4n)’ X1 Tdn

1
|B| (a,b) xR4n—1

2

(4.4) 1:1+Z|xj|2,:v2,... dzq...dxy,

< / da, / Fp+21)PdB(p) < ell 32,

where ¢ = (b—a)/|B| is a positive constant depending on ¢, and independent of the
functions f € H2(U,). We can prove the completeness just like the Cauchy-Fueter
case in [2]. We omit the details. O

Corollary 4.4. The Hardy space H?(U,) is invariant under the transformations of
Proposition 2.1.

Proof. Since the k-regularity property and the hypersurface oU,, + ce (¢ > 0) are
invariant under these transformations by Corollary 3.4 and the measure dj either
invariant or has a finite distortion, the proof follows. O

5. THE CAUCHY-SZEGO KERNEL

Theorem 5.1. The Cauchy-Szegé kernel S(q,p) is a unique ©FC?® (@kC2)*—valued
function, defined on Uy, xU,, satisfying the following conditions. By the identification
OFC2 = CHL in (2.8), S(q,p) is a (k+ 1) x (k + 1)-matriz valued function.

1. For each p € Uy, the function q — S(q,p) is reqular for p € Uy, and belongs

to H?(Uy,). This allows to define the boundary value S°(q, p) for each p € Uy,
and for almost all ¢ € OU,,.

2. The kernel S is symmetric: S(q,p) = S(p,q) ) for each (q,p) € Up, X Uy,
The symmetry permits to extend the definition of S(q,p) so that for each
q € Uy, the function Sy(q,p) is defined for almost every p € U, (here we
use the subscript b to indicate the boundary value with respect to the second
argument).

3. The kernel S satisfies the reproducing property in the following sense

(5.1) F@)= | Sia. Q)F'(Q)dB(Q), q€ U,
where F € H*(Up,).

Proof. For fixed ¢ € U, and fixed j =1,...,k + 1, define a complex functional
l,: H*(U,) — C,

(52) F s Fi(g),

where Fj is the j-th component of F. It is bounded by estimate (4.4). Apply
Riesz’s representation theorem to see that there exists an element, denoted by
K](aQ) € HQ(un)v such that -Fj(q) = <F7KJ(7Q)> = <Fb7K§)('7Q)>L2(8Un)' Here
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K;(-,-) is nontrivial and the boundary value K b(p, q) exists for almost all p € OU,.
We have

(5.3) Fi(q) = /8 (FYQ). K*(Q.0))dB(Q).

Let K(q,p) be the (k+1) x (k+ 1)-matrix, whose j-th column is K;(q, p). Then its
(j, k)-th entry is

Ki(g,p) = | (KNQ,p), K}(Q,))dB(Q)

-/ . )
-/, h@.0

So we have

(5.4) K(g,p) = K(p,q) "

Denote S(q,p) := K(p,q) ) for (q,p) € Up x Uy,. Then S(q,p) = K(q,p) is regular

t

in ¢, and S(q,p) = K(p,q) = S(p,q) . The function S has the boundary values as
in Theorem 4.2. Moreover, we have

(5.5) Sh(a,p) = S°(p,q)’

for ¢ € Uy, p € OU,, which follows from the symmetry S(q,p + ce) = S(p + ce, q)t
by taking e — 0 + .

To show the uniqueness, suppose that S (+,-) is another function satisfying The-
orem 5.1. By definition its j-th column S;(-,q) € H?(U,) for any fixed ¢ € U,.
Choose an arbitrary p € U,, and apply the reproducing formula (5.1) of S(-,-) and
S(-,-) to get

S = [ Sp.Q)8Qq)dBQ / 55Q.0) 50, Q) dB(Q)

U,
(5.6)
/ Sh(9,Q)S*(Q, p)dB(Q) = S(@.p) = 5(p.9)-
by using (5.5) for S(-,-) and S(-,-). The theorem is proved. O

Since the Siegel upper half-space possesses some invariance properties, it is ex-
pected that the Cauchy-Szegd kernel also inherits them. We have the following
proposition (see Proposition 5.1 in [2] for the Cauchy-Fueter case). In terms of

c e . . B]...B, . . .
multi-indices, we write the kernel S as (S G A/k) , 1.e. (5.1) is written as
1AL

Faa(= [ S (0, QUFY,_y (QB(Q)

"By, ,B/k_O/ v
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Proposition 5.2. The Cauchy-Szegé kernel has following invariance properties.

S(q, Q) =5(1p(q), 7(Q)),
S(‘]a Q) :S(RG(Q)7 Ra(Q))a

7 S@Q) =S6i(0). (@),
se = X (o) L (0. R (5°)
’ a WV aq \Fel@) fo I E
C!,D'=0",1

for q¢,Q € Uy, where p € OU,,, a € Sp(n — 1), r > 0 and |o| = 1.
Proof. The proof of first three identities are just like the 1-regular case in [2]. We
omit details. We only prove the last identity.

Since Y g 1 (JC)Z foray. . a; (Rs(q)) is k-regular in ¢ by Corollary 3.4, the

’ 1

function
D/

> (6‘C> L (Ro-1(q))

D'=0',1

is also k-regular in q. As R, : (q1,q") — (dq10,¢ o) is orthogonal map (cf. P. 1639
in [2]), it follows that for fixed A} ... A},

_C D’
> (0 )A/IFD'A/Q.‘.A;C(ROH(Q))
D'=0",1/
B! ..B o\ Y
[ e (o), P R @)45@Q
ou, k B
" B,...Bj,D'=0,1'
D/

[ i @ R(Q) () P (@15(Q)
" B;,..,B},D'=01' !

Since df is invariant under the orthogonal transformation R,. Substituting
R,-1(q) = q, we get

Fug ., = /8 ) 3 (UC)C/ (St)eritay (Ro(a), Fo(Q)) (a‘C)D'

A, B!
" Bf,...,B},C"\D'=0",1/ ! 1

F by (Q)AB(Q),

1 0
C-C _
o= (1)

¢ D'B,..B],
> (o), Socnat 4t (Rola). Bo(Q)
c'=0",1/ 1
is also k-regular in g for fixed D', B .. B}, by Corollary 3.4, belongs to H?(U,,) and
symmetric. The last identity in (5.7) follows by the uniqueness of the reproducing
kernel S(q,p) in Theorem 5.1. O

by

The function
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