Yokohama Publishers ISSN 2189-1664 Online Journal C Copyright 2017

INVARIANCE OF THE *k*-CAUCHY-FUETER EQUATIONS AND HARDY SPACE OVER THE QUATERNIONIC SIEGEL UPPER HALF-SPACE

YUN SHI AND WEI WANG

ABSTRACT. The k-Cauchy-Fueter operators and k-regular functions on the quaternionic Siegel upper half-space are quaternionic counterparts of the Cauchy-Riemann operator and holomophic functions on the complex Siegel upper half-space in the theory of several complex valuables. 1-regular functions are the usual quaternionic regular functions. In this paper, we give the transformation formulae for the k-Cauchy-Fueter operators under automorphisms of the quaternionic Siegel upper half-space. We also discuss the Hardy space, and the Cauchy-Szegö kernel and their basic properties.

1. INTRODUCTION

The classical Hardy space $H^2(\mathbb{R}^2_+)$ consists of holomorphic functions on the upper half-plane \mathbb{R}^2_+ such that

$$\sup_{y>0}\int_{-\infty}^{\infty}|f(x+iy)|^2\mathrm{d} y<+\infty.$$

The set of all boundary values forms a closed subspace of $L^2(\mathbb{R})$ and the Cauchy-Szegö integral is the projection operator from $L^2(\mathbb{R})$ to this closed subspace. The Cauchy-Szegö integral is written as a convolution with the Cauchy-Szegö kernel, which is the reproducing kernel for the functions in $H^2(\mathbb{R}^2_+)$. This construction was generalized to several complex variables (cf. [4]). In [2] it was generalized to quaternionic regular functions on the quaternionic Siegel upper half-space, and the Cauchy-Szegö kernel was given explicitly for any dimension n. In the present paper, we give an analogue construction for k-regular functions and give some basic properties of Cauchy-Szegö kernel. 1-regular functions are usual quaternionic regular functions.

The quaternionic Siegel upper half-space is

(1.1)
$$\mathcal{U}_n := \left\{ q = (q_1, q_2, \dots, q_n) = (q_1, q') \in \mathbb{H}^n | \operatorname{Re} q_1 > |q'|^2 \right\},$$

where we denote $q' = (q_2, \ldots, q_n) \in \mathbb{H}^{n-1}$. We consider the *k*-Cauchy-Fueter operator over the quaternionic Siegel upper half-space

(1.2)
$$\mathscr{D}: C^{\infty}(\mathcal{U}_n, \odot^k \mathbb{C}^2) \to C^{\infty}(\mathcal{U}_n, \odot^{k-1} \mathbb{C}^2 \otimes \mathbb{C}^{2n})$$

²⁰¹⁰ Mathematics Subject Classification. 30G35, 32V05.

 $Key\ words\ and\ phrases.$ The $k\mbox{-}Cauchy\mbox{-}Fueter\ operator,\ k\mbox{-}regular\ functions,\ the\ quaternionic}$ Siegel upper half-space.

Supported by National Nature Science Foundation in China (No. 11571305).

 $k = 1, 2, \ldots$, where $\odot^p \mathbb{C}^2$ is the *p*-th symmetric power of \mathbb{C}^2 . We can identify $\odot^k \mathbb{C}^2 \cong \mathbb{C}^{k+1}$ by (2.8). A \mathbb{C}^{k+1} -valued distribution f on \mathcal{U}_n is called *k*-regular if $\mathscr{D}f = 0$ in the sense of distributions.

The (4n - 1)-dimensional quaternionic Heisenberg group is $\mathscr{H} := \mathbb{H}^{n-1} \oplus \operatorname{Im}\mathbb{H}$ equipped with the multiplication given by

(1.3)
$$(s,q') \cdot (t,p') = \left(s+t+2\sum_{j=1}^{n} \operatorname{Im}(\overline{q'_j}p'_j), q'+p'\right),$$

where $q', p' \in \mathbb{H}^{4n-4}$ and $s, t \in \text{Im}\mathbb{H}$. We can identify \mathscr{H} with the boundary $\partial \mathcal{U}_n$ of the Siegel upper half-space

(1.4)
$$\partial \mathcal{U}_n := \left\{ q = (q_1, q_2, \dots, q_n) = (q_1, q') \in \mathbb{H}^n | \operatorname{Re} q_1 = |q'|^2 \right\},$$

using the projection

(1.5)
$$\pi: \partial \mathcal{U}_n \longrightarrow \mathscr{H},$$
$$(|q'|^2 + x_2 \mathbf{i} + x_3 \mathbf{j} + x_4 \mathbf{k}, q') \longmapsto (x_2 \mathbf{i} + x_3 \mathbf{j} + x_4 \mathbf{k}, q').$$

Let $d\beta(\cdot)$ be the Lebesgue measure on $\partial \mathcal{U}_n$ obtained by pulling back by the projection π , the Haar measure on the group \mathcal{H} .

For any function $F : \partial \mathcal{U}_n \to \mathbb{C}^{k+1}$, we write F_{ε} for its vertical translate. We mean that the vertical direction is given by the positive direction of $\operatorname{Re} q_1 : F_{\varepsilon}(q) = F(q + \varepsilon \mathbf{e})$, where $\mathbf{e} = (1, 0, 0, \dots, 0)$. If $\varepsilon > 0$, then F_{ε} is defined in a neighborhood of $\partial \mathcal{U}_n$, in particular, on \mathcal{U}_n . The Hardy space $H^2(\mathcal{U}_n)$ consists of all k-regular functions F on $\partial \mathcal{U}_n$ for which

(1.6)
$$\sup_{\varepsilon>0} \int_{\partial \mathcal{U}_n} |F_{\varepsilon}(q)|^2 \mathrm{d}\beta(q) < +\infty.$$

The norm $||F||_{H^2(\mathcal{U}_n)}$ of F is then the square root of the left-hand side of (1.6).

This paper is organized as follows. In Section 2, we recall definitions of the k-Cauchy-Fueter operator, k-regular functions and the quaternionic Siegel upper Half-space. In Section 3, we give the transformation formulae for the k-Cauchy-Fueter operators under automorphisms of the quaternionic Siegel upper half-space. In Section 4, we discuss the boundary values of k-regular functions in the Siegel upper half-space \mathcal{U}_n and invariance properties of the Hardy space $H^2(\mathcal{U}_n)$. In Section 5, we introduce the notion of the Cauchy-Szegö kernel and shows their basic properties. The explicit form of the Cauchy-Szegö kernel is under investigation in progress.

2. The quaternionic Siegel upper Half-space and k-Cauchy-Fueter operators

Proposition 2.1 (cf. Proposition 2.2 in [2]). The Siegel upper half space U_n is invariant under the following transformations.

(1) dilations:

(2.1)
$$\delta_r: (q_1, q') \longrightarrow (r^2 q_1, rq'), \ r > 0$$

(2) left translations:

(2.2)
$$\tau_p: (q_1, q') \longrightarrow (p_1, p') \cdot (q_1, q'),$$

for $p = (p_1, p') \in \partial \mathcal{U}_n$. (3) rotations:

(2.3)
$$R_{\mathbf{a}}: (q_1, q') \longrightarrow (q_1, \mathbf{a}q'), \text{ for } \mathbf{a} \in \operatorname{Sp}(n-1),$$

where
$$\text{Sp}(n-1) = \{U \in \text{GL}(n-1,\mathbb{H}) | UU^{\circ} = I_{n-1}\}$$
, and

(2.4)
$$R_{\sigma}: (q_1, q') \longrightarrow (\bar{\sigma}q_1\sigma, q'\sigma), \text{ for } \sigma \in \mathbb{H}, \ |\sigma| = 1.$$

To write down the k-Cauchy-Fueter operator in terms of complex variables, we will use the well known embedding of quaternionic algebra \mathbb{H} into $\mathbb{C}^{2\times 2}$:

(2.5)
$$\tau : x_1 + x_2 \mathbf{i} + x_3 \mathbf{j} + x_4 \mathbf{k} \mapsto \begin{pmatrix} x_1 + \mathbf{i} x_2 & -x_3 - \mathbf{i} x_4 \\ x_3 - \mathbf{i} x_4 & x_1 - \mathbf{i} x_2 \end{pmatrix}.$$

We need complex vector fields $Z_{AA'}$ on \mathcal{U}_n as follows:

$$(Z_{AA'}) = \begin{pmatrix} Z_{00} & Z_{01} \\ Z_{10} & Z_{11} \\ \vdots & \vdots \\ Z_{(2n-2)0} & Z_{(2n-2)1} \\ Z_{(2n-1)0} & Z_{(2n-1)1} \end{pmatrix} := \begin{pmatrix} \partial_{x_1} + \mathbf{i}\partial_{x_2} & -\partial_{x_3} - \mathbf{i}\partial_{x_4} \\ \partial_{x_3} - \mathbf{i}\partial_{x_4} & \partial_{x_1} - \mathbf{i}\partial_{x_2} \\ \vdots & \vdots \\ \partial_{x_{4n-3}} + \mathbf{i}\partial_{x_{4n-2}} & -\partial_{x_{4n-1}} - \mathbf{i}\partial_{x_{4n}} \\ \partial_{x_{4n-3}} - \mathbf{i}\partial_{x_{4n}} & \partial_{x_{4n-3}} - \mathbf{i}\partial_{x_{4n-2}} \end{pmatrix}.$$

The matrices

$$(\varepsilon_{A'B'}) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad (\varepsilon^{A'B'}) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

are used to raise or lower primed indices, e.g.

$$Z_A^{A'} = \sum_{B'=0',1'} Z_{AB'} \varepsilon^{B'A}$$

Here $(\varepsilon^{A'B'})$ is the inverse of $(\varepsilon_{A'B'})$. Then $Z_A^{0'} = Z_{A1'}, Z_A^{1'} = -Z_{A0'}$, i.e.

$$\left(Z_A^{A'} \right) = \begin{pmatrix} -\partial_{x_3} - \mathbf{i}\partial_{x_4} & -\partial_{x_1} - \mathbf{i}\partial_{x_2} \\ \partial_{x_1} - \mathbf{i}\partial_{x_2} & -\partial_{x_3} + \mathbf{i}\partial_{x_4} \\ \vdots & \vdots \\ -\partial_{x_{4n-1}} - \mathbf{i}\partial_{x_{4n}} & -\partial_{x_{4n-3}} - \mathbf{i}\partial_{x_{4n-2}} \\ \partial_{x_{4n-3}} - \mathbf{i}\partial_{x_{4n-2}} & -\partial_{x_{4n-1}} + \mathbf{i}\partial_{x_{4n}} \end{pmatrix}$$

where $A = 0, 1, \ldots, 2n - 1$, A' = 0', 1'. An element of \mathbb{C}^2 is denoted by $(f_{A'})$ with A' = 0', 1'. The symmetric power $\odot^k \mathbb{C}^2$ is a subspace of $\otimes^k \mathbb{C}^2$, whose element is a 2^k -tuple $(f_{A'_1A'_2\dots A'_k})$ with $A'_1, A'_2, \ldots, A'_k = 0', 1'$, such that $f_{A'_1A'_2\dots A'_k} \in \mathbb{C}$ are invariant under permutations of subscripts, i.e.

$$f_{A'_{1}A'_{2}...A'_{k}} = f_{A'_{\sigma(1)}A'_{\sigma(2)}...A'_{\sigma(k)}}$$

for any permutation σ of k letters. The k-Cauchy-Fueter operator \mathscr{D} in (1.2) over the quaternionic Siegel upper half-space is given by

(2.6)
$$(\mathscr{D}f)_{A'_{2}\dots A'_{k}A} := \sum_{A'_{1}=0',1'} Z_{A}^{A'_{1}} f_{A'_{1}A'_{2}\dots A'_{k}}.$$

We have isomorphisms

(2.7)
$$\odot^k \mathbb{C}^2 \cong \mathbb{C}^{k+1}, \quad \odot^{k-1} \mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^{2k},$$

by identifying $f \in \odot^k \mathbb{C}^2$ and $F \in \odot^{k-1} \mathbb{C}^2 \otimes \mathbb{C}^{2n}$ with

(2.8)
$$f := \begin{pmatrix} f_{0'0'0'\dots0'} \\ f_{1'0'0'\dots0'} \\ f_{1'1'0'\dots0'} \\ \vdots \\ f_{1'1'1'\dots1'} \end{pmatrix}, \quad F := \begin{pmatrix} F_{0'0'\dots0'0} \\ \vdots \\ F_{0'0'\dots0'(2n-1)} \\ \vdots \\ F_{1'1'\dots1'0} \\ \vdots \\ F_{1'1'\dots1'(2n-1)} \end{pmatrix}$$

respectively. Thus the k-Cauchy-Fueter operator is a $(2nk)\times(k+1)\text{-matrix}$ valued differential operator:

$$\mathscr{D} =$$

.

(see (3.2) in [7] for similar operators on the quaternionic space \mathbb{H}^n and (2.11) in [3] on the quagernionic Heisenberg group for case k = 2). But here our operators are defined over the quaternionic Siegel upper half-space.

3. The transformation formula for the k-Cauchy-Fueter operators

We can extend the definition of embedding τ in (2.5) to a mapping from quaternionic $(l \times m)$ -matrices to complex $(2l \times 2m)$ -matrices. Let $A = (A_{ik})_{l \times m}$ be a quaternionic $(l \times m)$ -matrix and write

$$A_{jk} = a_{jk}^1 + \mathbf{i}a_{jk}^2 + \mathbf{j}a_{jk}^3 + \mathbf{k}a_{jk}^4 \in \mathbb{H}$$

We define $\tau(A)$ is the complex $(2l \times 2m)$ -matrix $(\tau(A_{jk}))_{j=0,\dots,l-1}^{k=0,\dots,m-1}$, i.e.

(3.1)
$$\tau(A) = \begin{pmatrix} \tau(A_{00}) & \tau(A_{01}) & \dots & \tau(A_{0(m-1)}) \\ \tau(A_{10}) & \tau(A_{11}) & \dots & \tau(A_{1(m-1)}) \\ \vdots & \vdots & \dots & \vdots \\ \tau(A_{(l-1)0}) & \tau(A_{(l-1)1}) & \dots & \tau(A_{(l-1)(m-1)}) \end{pmatrix},$$

where $\tau(A_{ik})$ is the complex (2×2) -matrix

(3.2)
$$\tau(A_{jk}) = \begin{pmatrix} a_{jk}^1 + \mathbf{i}a_{jk}^2 & -a_{jk}^3 - \mathbf{i}a_{jk}^4 \\ a_{jk}^3 - \mathbf{i}a_{jk}^4 & a_{jk}^1 - \mathbf{i}a_{jk}^2 \end{pmatrix}$$

Though our τ is the conjugate of τ in [5], we still have the following proposition.

Proposition 3.1 (Proposition 2.1 in [5]). (1) $\tau(AB) = \tau(A)\tau(B)$ for a quaternionic $(p \times m)$ -matrix A and a quaternionic $(m \times l)$ -matrix B. In particular, for q' = Aq, $q, q' \in \mathbb{H}^n$, $A \in \mathrm{GL}(n, \mathbb{H})$, we have

(3.3)
$$\tau(q') = \tau(A)\tau(q)$$

as complex $(2n \times 2)$ -matrix. (2) $\tau(\overline{A}^t) = \overline{\tau(A)}^t$ for a quaternionic $(n \times n)$ -matrix A.

Proposition 3.2 (Proposition 3.1.1 in [2]). Let $f = f_0 + if_1 + jf_2 + kf_3 : D \to \mathbb{H}$ be C^1 -smooth function, where D is a domain in \mathbb{H}^n .

(1) Define the pull-back function \hat{f} of f under the mapping $q \to Q = \mathbf{a}q$ for $\mathbf{a} = (a_{jk}) \in GL(n, \mathbb{H})$ by $\hat{f} := f(\mathbf{a}q)$. Then we have

(3.4)
$$\partial_{q_j}\hat{f}(q) = \sum_{l=1}^n \bar{a}_{lj}\bar{\partial}_{Q_l}f(Q),$$

where $\partial_{q_j} = \partial_{x_{4j}} + i\partial_{x_{4j+1}} + j\partial_{x_{4j+2}} + k\partial_{x_{4j+3}}$.

(2) Define the pull-back function \tilde{f} of f under the mapping $q \to Q = q\sigma$ for $\sigma \in \mathbb{H}$ by $\tilde{f}(q) := f(q_1 \sigma, \dots, q_n \sigma)$. Then we have

(3.5)
$$\partial_{q_l} f(q) = \bar{\partial}_{Q_l} (\bar{\sigma} f(Q)).$$

From Proposition 3.2, we can derive the transformation formula of the k-Cauchy-Fueter operators under automorphisms of the quaternionic Siegel upper half-space.

Proposition 3.3. Let $f = (f_{A'_1A'_2...A'_k}) \in \odot^k \mathbb{C}^2$ be C^1 -smooth function. (1) For $\mathbf{a} = (a_{jk}) \in GL(n, \mathbb{H})$, we have

(3.6)
$$(R_{\boldsymbol{a}*}\mathscr{D}f)_{A'_{2}\ldots A'_{k}A} = \sum_{B=0}^{2n-1} \tau(\overline{\boldsymbol{a}}^{t})^{B}_{A}(\mathscr{D}f)_{A'_{2}\ldots A'_{k}B}$$

(2) For fixed
$$\sigma = \sigma_0 + i\sigma_1 + j\sigma_2 + k\sigma_3 \in \mathbb{H}$$
 with $|\sigma| = 1$, we have

(3.7)
$$(R_{\sigma*}\mathscr{D}f)_{A'_2\dots A'_kA} = \left(\mathscr{D}\tilde{f}\right)_{A'_2\dots A'_kA},$$

where

(3.8)
$$\tilde{f}_{A'_1A'_2\dots A'_k}(q) = \sum_{D'=0',1'} \left(\sigma^{\mathbb{C}}\right)^{D'}_{A'_1} f_{D'A'_2\dots A'_k},$$

with the 2×2 complex matrix

(3.9)
$$\sigma^{\mathbb{C}} := \begin{pmatrix} \sigma_0 + i\sigma_1 & \sigma_2 - i\sigma_3 \\ -\sigma_2 - i\sigma_3 & \sigma_0 - i\sigma_1 \end{pmatrix}.$$

Proof. (1) Recall that for a differentiable mapping $T : \mathbb{R}^{4n} \to \mathbb{R}^{4n}$, the pushing forward of a vector field X is defined as

(3.10)
$$T_*Xf(x) = X[f(T(x))].$$

(3.4) implies

(3.11)
$$R_{\mathbf{a}*}\bar{\partial}_{q_j}f\big|_{\mathbf{a}q} = \sum_{l=1}^n \bar{a}_{lj}\bar{\partial}_{q_l}f\Big|_{\mathbf{a}q}$$

Because f is arbitrarily chosen, we have

$$R_{\mathbf{a}*}\bar{\partial}_{q_j} = \sum_{l=1}^n \bar{a}_{lj}\bar{\partial}_{q_l}.$$

By applying mapping τ in (3.1)-(3.2), we get

(3.12)
$$R_{\mathbf{a}*}Z_{AA'} = \sum_{B=0}^{2n-1} \tau(\bar{\mathbf{a}}^t)_A^B Z_{BA'}.$$

Thus

$$(R_{\mathbf{a}*}\mathscr{D}f)_{A'_{2}...A'_{k}A} = \sum_{A'_{1},B'=0',1'} R_{\mathbf{a}*}Z_{AB'}\varepsilon^{B'A'_{1}}f_{A'_{1}...A'_{k}}$$
$$= \sum_{B=0}^{2n-1} \sum_{A'_{1},B'=0',1'} \tau(\bar{\mathbf{a}}^{t})^{B}_{A}Z_{BB'}\varepsilon^{B'A'_{1}}f_{A'_{1}...A'_{k}}$$
$$= \sum_{B=0}^{2n-1} \tau(\bar{\mathbf{a}}^{t})^{B}_{A}(\mathscr{D}f)_{A'_{2}...A'_{k}B}.$$

(2) (3.5) implies that

(3.13) $R_{\sigma*}\bar{\partial}_{q_l}f\big|_{q\sigma} = \left(\bar{\partial}_{q_l}\bar{\sigma}\right)f\big|_{q\sigma}.$

Because f is arbitrarily chosen, we have

$$R_{\sigma*}\bar{\partial}_{q_l}=\bar{\partial}_{q_l}\bar{\sigma}.$$

By applying mapping τ again, we get

$$(R_{\sigma*}Z_{AA'}) = (Z_{AA'})\tau(\bar{\sigma}),$$

i.e.

(3.14)
$$R_{\sigma*}Z_{AA'} = \sum_{C'=0',1'} Z_{AC'}\tau(\bar{\sigma})_{C'}^{A'}$$

So we have

(3.15)

$$R_{\sigma*}Z_{A}^{A'_{1}} = \sum_{B',C'=0',1'} Z_{AC'}\tau(\bar{\sigma})_{C'}^{B'}\varepsilon^{B'A'_{1}}$$

$$= \sum_{B',C',D'=0',1'} Z_{A}^{D'}\varepsilon_{D'C'}\tau(\bar{\sigma})_{C'}^{B'}\varepsilon^{B'A'_{1}}$$

$$= \sum_{D'=0',1'} Z_{A}^{D'} \left(\sigma^{\mathbb{C}}\right)_{D'}^{A'_{1}}.$$

The last identity holds because

$$\begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} \sigma_0 - \mathbf{i}\sigma_1 & \sigma_2 + \mathbf{i}\sigma_3 \\ -\sigma_2 + \mathbf{i}\sigma_3 & \sigma_0 + \mathbf{i}\sigma_1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \sigma^{\mathbb{C}},$$

by the definition of $\sigma^{\mathbb{C}}$ in (3.9). Thus

$$(R_{\sigma*}\mathscr{D}f(q))_{A'_{2}\dots A'_{k}A} = [\mathscr{D}(f(q\sigma))]_{A'_{2}\dots A'_{k}A} = \sum_{A'_{1}=0',1'} Z_{A}^{A'_{1}} \left(f_{A'_{1}\dots A'_{k}}(q\sigma) \right)$$
$$= R_{\sigma*} Z_{A}^{A'_{1}} f_{A'_{1}\dots A'_{k}} \Big|_{q\sigma}$$
$$= \sum_{A'_{1},D'=0',1'} Z_{A}^{A'_{1}} \left(\sigma^{\mathbb{C}} \right)_{A'_{1}}^{D'} f_{D'A'_{2}\dots A'_{k}} \Big|_{q\sigma}.$$

The proposition is proved.

Corollary 3.4. The space of all k-regular functions on \mathcal{U}_n is invariant under the transformations defined in Proposition 2.1. Namely, if f is k-regular on the Siegel upper half-space \mathcal{U}_n , then the functions $f(\tau_p(q)), p \in \partial \mathcal{U}_n$; $f(R_{\mathbf{a}}(q)), \mathbf{a} \in \operatorname{Sp}(n-1)$; \tilde{f} given by (3.8) and $f(\delta_r(q))$ are all k-regular on \mathcal{U}_n .

Proof. The k-regularity of $f(R_{\mathbf{a}}(q))$ and \tilde{f} follows directly from Proposition 3.3. As the 1-regular case in [2], the translation τ_p in (2.2) can be represented as a composition of the linear transformation given by the quaternionic matrix

$$\begin{pmatrix} 1 & 2\bar{p}' \\ 0 & I_{n-1} \end{pmatrix},$$

and the Euclidean translation $(q_1, q') \rightarrow (q_1 + p_1, q' + p')$. The first transformation preserves the k-regularity of a function by Proposition 3.3, while the later one obviously preserves the k-regularity of a function since the k-Cauchy-Fueter operators have constant coefficients.

It is obviously that $f(\delta_r(q))$ is k-regular on \mathcal{U}_n . The corollary is proved.

4. The Hardy space

The identification of the quaternionic Heisenberg group and the boundary of the quaternionic Siegel upper half-space allows us to define the Lebesgue measure $d\beta(\cdot)$ on $\partial \mathcal{U}_n$ by pulling back by the projection π defined in (1.5), the Haar measure on \mathcal{H} .

Set $\mathscr{D}^* = -\overline{\mathscr{D}}^t$ and $\Box = \mathscr{D}^*\mathscr{D}$. We have the following lemma.

Lemma 4.1. (cf. Lemma 3.3 in [6])

(4.1)
$$\Box = \mathscr{D}^* \mathscr{D} = \Delta \cdot \begin{pmatrix} 1 & & & \\ 2 & & & \\ & \ddots & & \\ & & & 2 & \\ & & & & 1 \end{pmatrix}_{(k+1) \times (k+1)}$$

where $\Delta := -\sum_{j=1}^{4n} \partial_{x_j}^2$ is the Laplacian.

By (4.1), it is straightforward to see that if f is k-regular, then

(4.2)
$$\Delta f = 0, \quad \text{where } f = \begin{pmatrix} f_{0'0'0'\dots0'} \\ f_{1'0'0'\dots0'} \\ \vdots \\ f_{1'1'\dots1'} \end{pmatrix}.$$

So each component of a k-regular function F is harmonic. A function $F \in H^2(\mathcal{U}_n)$ has boundary value F^b that belongs to $L^2(\partial \mathcal{U}_n)$ in the following sense.

Theorem 4.2. Suppose that $F \in H^2(\mathcal{U}_n)$. Then

- 1. There exists a function $F^b \in L^2(\partial \mathcal{U}_n)$ such that $F(q + \varepsilon e)|_{\partial \mathcal{U}_n} \to F^b(q)$ as $\varepsilon \to 0$ in $L^2(\partial \mathcal{U}_n)$ norm.
- 2. $||F^b||_{L^2(\partial \mathcal{U}_n)} = ||F||_{H^2(\mathcal{U}_n)}.$
- 3. The space of all boundary values forms a closed subspace of the space $L^2(\partial \mathcal{U}_n)$.

Proof. The proof is just like the 1-regular case in [2]. We omit details. \Box

Proposition 4.3. The Hardy space $H^2(\mathcal{U}_n)$ is a complex Hilbert space under the inner product $\langle F, G \rangle = \langle F^b, G^b \rangle_{L^2(\partial \mathcal{U}_n)}$.

Proof. All the real part and imaginary part of $f_{A'_1...A'_k}$ for $A'_j = 0', 1', j = 1, ..., k$, are harmonic on \mathcal{U}_n . Thus for $q \in \mathcal{U}_n$,

$$f_{A'_1...A'_k}(q) = \frac{1}{|B|} \int_B f_{A'_1...A'_k}(p) \mathrm{d}V(p),$$

where B is a small ball centered at q and contained in \mathcal{U}_n , from which we see that

(4.3)
$$|f(q)|^2 \le \frac{1}{|B|} \int_B |f(p)|^2 \mathrm{d}V(p).$$

There exist a, b > 0 such that $B \in \mathcal{U}_{n;a,b} := \{q \in \mathcal{U}_n | a < \operatorname{Re} q_1 - |q'|^2 < b\}$, and so

(4.4)
$$|f(q)|^{2} \leq \frac{1}{|B|} \int_{\mathcal{U}_{n;a,b}} |f(x_{1}, \dots, x_{4n})|^{2} \mathrm{d}x_{1} \dots \mathrm{d}x_{4n}$$
$$\leq \frac{1}{|B|} \int_{(a,b) \times \mathbb{R}^{4n-1}} \left| f\left(x_{1} + \sum_{j=5}^{4n} |x_{j}|^{2}, x_{2}, \dots\right) \right|^{2} \mathrm{d}x_{1} \dots \mathrm{d}x_{4n}$$
$$\leq \frac{1}{|B|} \int_{a}^{b} \mathrm{d}x_{1} \int_{\partial \mathcal{U}_{n}} |f(p+x_{1}\mathbf{e})|^{2} \mathrm{d}\beta(p) \leq c ||f||^{2}_{H^{2}(\mathcal{U}_{n})},$$

where c = (b-a)/|B| is a positive constant depending on q, and independent of the functions $f \in H^2(\mathcal{U}_n)$. We can prove the completeness just like the Cauchy-Fueter case in [2]. We omit the details.

Corollary 4.4. The Hardy space $H^2(\mathcal{U}_n)$ is invariant under the transformations of Proposition 2.1.

Proof. Since the k-regularity property and the hypersurface $\partial \mathcal{U}_n + \varepsilon \mathbf{e}$ ($\varepsilon > 0$) are invariant under these transformations by Corollary 3.4 and the measure $d\beta$ either invariant or has a finite distortion, the proof follows.

5. The Cauchy-Szegö Kernel

Theorem 5.1. The Cauchy-Szegö kernel S(q, p) is a unique $\odot^k \mathbb{C}^2 \otimes (\odot^k \mathbb{C}^2)^*$ -valued function, defined on $\mathcal{U}_n \times \mathcal{U}_n$ satisfying the following conditions. By the identification $\odot^k \mathbb{C}^2 \cong \mathbb{C}^{k+1}$ in (2.8), S(q, p) is a $(k+1) \times (k+1)$ -matrix valued function.

- 1. For each $p \in \mathcal{U}_n$, the function $q \mapsto S(q, p)$ is regular for $p \in \mathcal{U}_n$, and belongs to $H^2(\mathcal{U}_n)$. This allows to define the boundary value $S^b(q, p)$ for each $p \in \mathcal{U}_n$, and for almost all $q \in \partial \mathcal{U}_n$.
- 2. The kernel S is symmetric: $S(q,p) = \overline{S(p,q)}^t$ for each $(q,p) \in \mathcal{U}_n \times \mathcal{U}_n$. The symmetry permits to extend the definition of S(q,p) so that for each $q \in \mathcal{U}_n$, the function $S_b(q,p)$ is defined for almost every $p \in \mathcal{U}_n$ (here we use the subscript b to indicate the boundary value with respect to the second argument).
- 3. The kernel S satisfies the reproducing property in the following sense

(5.1)
$$F(q) = \int_{\partial \mathcal{U}_n} S_b(q, Q) F^b(Q) d\beta(Q), \quad q \in \mathcal{U}_n,$$

where $F \in H^2(\mathcal{U}_n).$

Proof. For fixed $q \in \mathcal{U}_n$ and fixed $j = 1, \ldots, k + 1$, define a complex functional

(5.2)
$$l_q: H^2(\mathcal{U}_n) \longrightarrow \mathbb{C},$$
$$F \longmapsto F_j(q),$$

where F_j is the *j*-th component of *F*. It is bounded by estimate (4.4). Apply Riesz's representation theorem to see that there exists an element, denoted by $K_j(\cdot,q) \in H^2(\mathcal{U}_n)$, such that $F_j(q) = \langle F, K_j(\cdot,q) \rangle = \langle F^b, K_j^b(\cdot,q) \rangle_{L^2(\partial \mathcal{U}_n)}$. Here $K_j(\cdot, \cdot)$ is nontrivial and the boundary value $K^b(p, q)$ exists for almost all $p \in \partial \mathcal{U}_n$. We have

(5.3)
$$F_j(q) = \int_{\partial \mathcal{U}_n} \langle F^b(Q), K_j^b(Q, q) \rangle \mathrm{d}\beta(Q).$$

Let K(q, p) be the $(k+1) \times (k+1)$ -matrix, whose *j*-th column is $K_j(q, p)$. Then its (j, k)-th entry is

$$K_{jk}(q,p) = \int_{\partial \mathcal{U}_n} \langle K_k^b(Q,p), K_j^b(Q,q) \rangle \mathrm{d}\beta(Q) \\ = \overline{\int_{\partial \mathcal{U}_n} \langle K_j^b(Q,q), K_k^b(Q,p) \rangle \mathrm{d}\beta(Q)} = \overline{K_{kj}(p,q)}.$$

So we have

(5.4)
$$K(q,p) = \overline{K(p,q)}^t.$$

Denote $S(q, p) := \overline{K(p, q)}^t$ for $(q, p) \in \mathcal{U}_n \times \mathcal{U}_n$. Then S(q, p) = K(q, p) is regular in q, and $S(q, p) = \overline{K(p, q)}^t = \overline{S(p, q)}^t$. The function S has the boundary values as in Theorem 4.2. Moreover, we have

(5.5)
$$S_b(q,p) = \overline{S^b(p,q)}^t$$

for $q \in \mathcal{U}_n$, $p \in \partial \mathcal{U}_n$, which follows from the symmetry $S(q, p + \varepsilon \mathbf{e}) = \overline{S(p + \varepsilon \mathbf{e}, q)}^t$ by taking $\varepsilon \to 0 + .$

To show the uniqueness, suppose that $\tilde{S}(\cdot, \cdot)$ is another function satisfying Theorem 5.1. By definition its *j*-th column $\tilde{S}_j(\cdot, q) \in H^2(\mathcal{U}_n)$ for any fixed $q \in \mathcal{U}_n$. Choose an arbitrary $p \in \mathcal{U}_n$ and apply the reproducing formula (5.1) of $S(\cdot, \cdot)$ and $\tilde{S}(\cdot, \cdot)$ to get

(5.6)
$$\tilde{S}(p,q) = \int_{\partial \mathcal{U}_n} S_b(p,Q) \tilde{S}^b(Q,q) d\beta(Q) = \int_{\partial \mathcal{U}_n} \overline{S^b(Q,p)}^t \overline{\tilde{S}_b(q,Q)}^t d\beta(Q) = \overline{\int_{\partial \mathcal{U}_n} \tilde{S}_b(q,Q) S^b(Q,p) d\beta(Q)}^t = \overline{S(q,p)}^t = S(p,q).$$

by using (5.5) for $S(\cdot, \cdot)$ and $\tilde{S}(\cdot, \cdot)$. The theorem is proved.

Since the Siegel upper half-space possesses some invariance properties, it is expected that the Cauchy-Szegö kernel also inherits them. We have the following proposition (see Proposition 5.1 in [2] for the Cauchy-Fueter case). In terms of multi-indices, we write the kernel S as $\left(S_{A'_1...A'_k}^{B'_1...B'_k}\right)$, i.e. (5.1) is written as

$$F_{A'_1\dots A'_k}(q) = \int_{\partial \mathcal{U}_n} \sum_{B'_1,\dots,B'_k = 0',1'} S^{B'_1\dots B'_k}_{A'_1\dots A'_k}(q,Q) F^b_{B'_1\dots B'_k}(Q) \mathrm{d}\beta(Q).$$

Proposition 5.2. The Cauchy-Szegö kernel has following invariance properties.

$$S(q,Q) = S(\tau_p(q), \tau_p(Q)),$$

$$S(q,Q) = S(R_a(q), R_a(Q)),$$

$$(5.7) \qquad S(q,Q) = S(\delta_r(q), \delta_r(Q))r^{4n+2},$$

$$S(q,Q) = \left(\sum_{C',D'=0',1'} \left(\sigma^{\mathbb{C}}\right)_{A'_1}^{C'} (S_b)_{C'A'_2...A'_k}^{D'B'_2...B'_k} (R_{\sigma}(q), R_{\sigma}(Q)) \left(\bar{\sigma}^{\mathbb{C}}\right)_{D'}^{B'_1}\right),$$

for $q, Q \in \mathcal{U}_n$, where $p \in \partial \mathcal{U}_n$, $\boldsymbol{a} \in \operatorname{Sp}(n-1)$, r > 0 and $|\sigma| = 1$.

Proof. The proof of first three identities are just like the 1-regular case in [2]. We omit details. We only prove the last identity.

Since $\sum_{D'=0',1'} \left(\sigma^{\mathbb{C}} \right)_{A'_1}^{D'} f_{D'A'_2...A'_k}(R_{\sigma}(q))$ is k-regular in q by Corollary 3.4, the function

$$\sum_{D'=0',1'} \left(\bar{\sigma}^{\mathbb{C}}\right)_{A'_1}^{D'} F_{D'A'_2\dots A'_k}(R_{\sigma^{-1}}(q))$$

is also k-regular in q. As $R_{\sigma}: (q_1, q') \longrightarrow (\bar{\sigma}q_1\sigma, q'\sigma)$ is orthogonal map (cf. P. 1639 in [2]), it follows that for fixed $A'_1 \dots A'_k$,

$$\begin{split} &\sum_{D'=0',1'} \left(\bar{\sigma}^{\mathbb{C}}\right)_{A_{1}'}^{D'} F_{D'A_{2}'\ldots A_{k}'}(R_{\sigma^{-1}}(q)) \\ &= \int_{\partial\mathcal{U}_{n}} \sum_{B_{1}',\ldots,B_{k}',D'=0',1'} \left(S_{b}\right)_{A_{1}'\ldots A_{k}'}^{B_{1}'\ldots B_{k}'}(q,Q) \left(\bar{\sigma}^{\mathbb{C}}\right)_{B_{1}'}^{D'} F^{b}{}_{D'B_{2}'\ldots B_{k}'}(R_{\sigma^{-1}}(Q)) \mathrm{d}\beta(Q) \\ &= \int_{\partial\mathcal{U}_{n}} \sum_{B_{1}',\ldots,B_{k}',D'=0',1'} \left(S_{b}\right)_{A_{1}'\ldots A_{k}'}^{B_{1}'\ldots B_{k}'}(q,R_{\sigma}(Q)) \left(\bar{\sigma}^{\mathbb{C}}\right)_{B_{1}'}^{D'} F^{b}{}_{D'B_{2}'\ldots B_{k}'}(Q) \mathrm{d}\beta(Q). \end{split}$$

Since $d\beta$ is invariant under the orthogonal transformation R_{σ} . Substituting $R_{\sigma^{-1}}(q) \mapsto q$, we get

$$F_{A'_{1}...A'_{k}} = \int_{\partial \mathcal{U}_{n}} \sum_{B'_{1},...,B'_{k},C',D'=0',1'} \left(\sigma^{\mathbb{C}}\right)^{C'}_{A'_{1}} (S_{b})^{B'_{1}...B'_{k}}_{C'A'_{2}...A'_{k}} (R_{\sigma}(q),R_{\sigma}(Q)) \left(\bar{\sigma}^{\mathbb{C}}\right)^{D'}_{B'_{1}} \cdot F^{b}_{D'B'_{2}...B'_{k}}(Q) \mathrm{d}\beta(Q),$$

by

$$\sigma^{\mathbb{C}}\bar{\sigma}^{\mathbb{C}} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

The function

$$\left(\sum_{C'=0',1'} \left(\sigma^{\mathbb{C}}\right)^{C'}_{A'_1} \left(S_b\right)^{D'B'_2\dots B'_k}_{C'A'_2\dots A'_k} \left(R_{\sigma}(q), R_{\sigma}(Q)\right)\right)$$

is also k-regular in q for fixed $D', B'_2 \dots B'_k$ by Corollary 3.4, belongs to $H^2(\mathcal{U}_n)$ and symmetric. The last identity in (5.7) follows by the uniqueness of the reproducing kernel S(q, p) in Theorem 5.1.

References

- [1] D.-C. Chang and I. Markina, Quaternion H-type group and differential operator Δ_{λ} , Science in China (Ser. A) **51** (2008), 523–540.
- [2] D.-C. Chang, I. Markina and W. Wang, On the Cauchy-Szegö kernel for quaternion Siegel upper half-space, Comp. Anal. Oper. Theory 7 (2013), 1623–1654.
- [3] Y. Shi and W. Wang, The Szegö kernel for k-CF functions on the quaternionic Heisenberg group, Appl. Anal. 96 (2017), 2474–2492.
- [4] E. M. Stein, Boundary behavior of holomorphic functions of several complex variables, Princeton mathematical notes, vol. 11. Princeton University Press, Princeton, 1993
- [5] D.-R. Wan and W. Wang, On the quaternionic Monge-Ampère operator, closed positive currents and Lelong-Jensen type formula on the quaternionic space, Bull. Sci. Math. 141 (2017), 267–311.
- [6] H.-Y. Wang and G.-B. Ren, Bochner-Martinelli formula for k-Cauchy-Fueter operator, J. Geom. Phys. 84 (2014), 43–54.
- [7] W. Wang, On the weighted L² estimate for the k-Cauchy-Fueter operator and the weighted k-Bergman kernel, J. Math. Anal. Appl. 452(1) (2017), 685–707.

Manuscript received October 1 2017 revised December 15 2017

Y. Shi

Department of Mathematics, Zhejiang University of Science and Technology, Hangzhou 310023, China

E-mail address: hzxjhs1987@163.com

W. WANG

Department of Mathematics, Zhejiang University, Hangzhou 310027, China *E-mail address:* wwang@zju.edu.cn