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Chankong and Haimes [2]. Since one of the main tools for establishing ϵ-optimality
conditions is ϵ-subdifferential concept, we would like to refer the reader to Hiriart-
Urruty [7] and Dhara and Dutta [3] for better understanding.

This paper is organized as follows. In Section 2, problem statement and main no-
tions are described. Section 3 describes relationships between quasi-(α, ϵ)-efficient (-
properly efficient) solution of (MP) and (α, ϵ)-quasi-optimal solution of correspond-
ing scalar problem. Section 4 deduces ϵ-optimality conditions to the multiobjective
optimization problem, which is our main result. Finally, we provide conclusions in
brief.

2. Preliminaries

Let us consider the following multiobjective optimization problem:

(MP) Minimize f(x) :=
(
fi(x)

)
i∈I

subject to gt(x) 5 0, t ∈ T := {1, ...,m},
x ∈ C,

where fi(x) : Rn → R∪ {+∞}, i ∈ I (possibly countable infinite) and gt(x) : Rn →
R ∪ {+∞}, t ∈ T := {1, ...,m} are proper lower semicontinuous (l.s.c.) convex
functions, and C is a closed convex subset of Rn. The feasible set of (MP) is
denoted by FM := {x ∈ C | gt(x) 5 0, t ∈ T}.

Engau [4] gave definition for efficient and properly efficient solutions for multi-
objective optimization with infinitely many criteria. We extend it to approximate
solutions for multiobjective constrained optimization problem.

Definition 2.1. Let ϵi = 0, αi = 0, i ∈ I. A point x̄ ∈ FM is said to be

(1) an ϵ-efficient solution for (MP), if there is no other x ∈ FM such that

fi(x) 5 fi(x̄)− ϵi, for all i ∈ I,

with at least one strict inequality.
(2) an α-quasi-efficient solution for (MP), if there is no other x ∈ FM such

that
fi(x) 5 fi(x̄)− αi∥x− x̄∥, for all i ∈ I,

with at least one strict inequality.
(3) an α-quasi-properly efficient solution for (MP), if

(a) x̄ is α-quasi-efficient
(b) there exists a scalar Mi > 0 for each i ∈ I such that

fi(x̄)− fi(x)− αi∥x− x̄∥
fj(x)− fj(x̄) + αj∥x− x̄∥

5 Mi

for some j such that fj(x̄) < fj(x) + αj∥x − x̄∥, whenever x ∈ FM and
fi(x̄) > fi(x) + αi∥x− x̄∥.

(4) an α-quasi-improperly efficient solution for (MP), if for every scalar
Mi > 0 there is a point x ∈ FM such that fi(x̄) > fi(x) + αi∥x− x̄∥ and

fi(x̄)− fi(x)− αi∥x− x̄∥
fj(x)− fj(x̄) + αj∥x− x̄∥

> Mi,

for all j such that fj(x̄) < fj(x) + αj∥x− x̄∥
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According to Beldiman et al. [1] the notions of generalized solutions are as follows:

Definition 2.2. Let ϵi = 0, αi = 0, i ∈ I. A point x̄ ∈ FM is said to be

(1) an (α, ϵ)-quasi-efficient solution for (MP), if there is no other x ∈ FM

such that

fi(x) 5 fi(x̄)− αi∥x− x̄∥ − ϵi, for all i ∈ I,

with at least one strict inequality.
(2) an (α, ϵ)-quasi-properly efficient solution for (MP), if

(a) x̄ is (α, ϵ)-quasi-efficient
(b) there exists a scalar Mi > 0, for each i ∈ I, such that

fi(x̄)− fi(x)− αi∥x− x̄∥ − ϵi
fj(x)− fj(x̄) + αj∥x− x̄∥+ ϵj

5 Mi

for some j such that fj(x̄) < fj(x) + αj∥x− x̄∥+ ϵj , whenever x ∈ FM and
fi(x̄) > fi(x) + αi∥x− x̄∥+ ϵi.

Remark 2.3. If ϵi = 0, Def. 2.2 decribes an α-quasi-efficient (-properly efficient)
solution. If αi = 0, the above definition reduces to an ϵ-efficient (ϵ-properly efficient)
solution. If ϵi = αi = 0 for all i ∈ I, we get the concept of efficient (properly efficient)
solution for (MP).

Further on, we will consider ϵ > 0 and α > 0 case to deal with the concept
of generalized solutions. However, all theorems can be reduced to corresponding
approximate solutions by putting ϵ or α equal to zero and still hold true.

Later, we consider an infinite summation of the following form:
∑

i∈I λifi(x). If
this sum is a converging infinite series, then one can follow Engau [4] approach. In
case if the above sum does not converge, we suggest another method.

The following linear space is used for semi-infinite programming [6].

R(I) := {λ = (λi)i∈I | λi = 0 for all i ∈ I but only finitely many λi ̸= 0}.
With λ ∈ R(I), its supporting set, I(λ) = {i ∈ I | λi ̸= 0}, is a finite subset of I.
We define

∥λ∥1 =
∑

i∈I(λ)

|λi|.

The norm ∥ · ∥1 was proposed in [14].

The nonnegative cone of R(I) is denoted by:

R(I)
+ = {λ = (λi)i∈I ∈ R(I) | λi = 0, i ∈ I}.

With λ ∈ R(I) and fi, i ∈ I, we understand that∑
i∈I

λifi =

{ ∑
i∈I(λ) λifi, if I(λ) ̸= ∅,

0, if I(λ) = ∅.

We associate to (MP) the following scalar minimization problem (Pλ)

(Pλ) Minimize λT f(x),
subject to gt(x) 5 0, t ∈ T := {1, ...,m},

x ∈ C,
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where λ ∈ V> = {λ ∈ R(I) | λi > 0 for all i ∈ I(λ),
∑

i∈I(λ) λi = 1} is a non-

negative parameter vector and λT f(x) =
∑

i∈I(λ) λifi. The feasible set of (Pλ) is

also denoted by FM := {x ∈ C | gt(x) 5 0, t ∈ T}.
Take into consideration that λ ∈ R(I) and ϵi, i ∈ I (or αi, i ∈ I)∑

i∈I
λiϵi =

{ ∑
i∈I(λ) λiϵi, if I(λ) ̸= ∅,

0, if I(λ) = ∅.

Similarly, the concept of unitary solutions for scalar minimization problem are as
follows:

Let ϵi = 0 and αi = 0, i ∈ I. A point x̄ ∈ FM is said to be a (λTα, λT ϵ)-quasi-
optimal solution for (Pλ), if∑

i∈I(λ)

λifi(x̄) 5
∑

i∈I(λ)

λifi(x)−
∑

i∈I(λ)

λiαi∥x− x̄∥ −
∑

i∈I(λ)

λiϵi, for all x ∈ FM .

Remark 2.4. If ϵ = 0, the above notion reduces to a λTα-quasi-optimal solution.
If α = 0, it describes a λT ϵ-optimal solution. If ϵ = α = 0 we get the concept of
optimal solution for (Pλ).

Now we give an example to illustrate the concept of generalized approximate
solution.

Example 2.5. Let us consider (MP) as follows:

(MP) Minimize f(x) = (fi)i∈I = (|x|)i∈I ,
subject to g(x) = x2 − 1 5 0,

x ∈ R.
By using weighted-sum scalarization method we have

(Pλ) Minimize
∑

i∈I λifi(x)
subject to g(x) = x2 − 1 5 0,

x ∈ R.
Let λi =

1
2i
, then

∑
i∈I λi|x| =

∑∞
1

1
2i
|x| = |x|. The feasible set is [−1, 1]. So, we

have the approximate solution sets are as follows:

(i) ϵ-solution set is [−ϵ, ϵ] ∩ [−1, 1] = [max{−ϵ,−1},min{ϵ, 1}],

(ii) α-quasi-solution set is

{
{0}, if 0 < α < 1,

[−1, 1], if α ≥ 1.

(iii) (α, ϵ)-quasi-solution set is

{
[max{−ϵ,−1},min{ϵ, 1}], if 0 < α < 1,

[−1, 1], if α ≥ 1.

It is not difficult to notice that (α, ϵ)-quasi-solution set is different from reg-
ular ϵ-solution set, which is an intersection of sets in (i) and (ii) in case α = ϵ.

To establish ϵ-optimality conditions of KKT-type we need some notions related
to ϵ-subdifferential concept.

Let h : Rn → R
∪
{+∞} be a proper l.s.c convex function. The ϵ-subdifferential

of h at x̄ ∈ dom h is the set ∂ϵh(x̄) defined by

∂ϵh(x̄) = {x∗ ∈ Rn | h(y) = h(x̄)− ϵ+ ⟨x∗, y − x̄⟩, ∀y ∈ dom h}.
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Consider a function h : Rn → R
∪
{+∞}. The conjugate of h, h∗ : Rn →

R
∪
{+∞} is defined as

h∗(x∗) = sup
x∗∈Rn

{⟨x∗, x⟩ − h(x)}.

The ϵ-subdifferential definition in terms of conjugate function h∗ of h is as follows:

∂ϵh(x̄) = {x∗ ∈ Rn | h∗(x∗) + h(x̄) 5 ⟨x∗, x̄⟩+ ϵ}.

The indicator function δK of a subset K ⊂ Rn is the function defined as
follows:

δK =

{
0, if x ∈ K,

+∞, if x ∈ Rn\K.

Note that if K is convex, then δK is also convex.
Let C be a nonempty closed convex subset of Rn. The ϵ-normal set of C at

x̄ is the set

Nϵ(C; x̄) = {x∗ ∈ Rn | ⟨x∗, y − x̄⟩ 5 ϵ, ∀y ∈ C},
where ϵ > 0 and x̄ ∈ C.

If ϵ = 0, the ϵ-normal set reduces to the normal cone N(C; x̄) to C at x̄ that is

N(C; x̄) = {x∗ ∈ Rn | ⟨x∗, y − x̄⟩ 5 0, ∀y ∈ C}.

It is easy to check that

∂ϵδC(x̄) = Nϵ(C; x̄) = {x∗ ∈ Rn | δ∗C(x∗) 5 ⟨x∗, x̄⟩+ ϵ}.

For ϵ-subdifferential calculus the following propositions (see Theorem 2.115 and
Theorem 2.117 in [3]) are very useful.

Proposition 2.6 (Sum Rule). Consider two proper convex functions ϕi : Rn →
R̄, i = 1, 2 such that ri dom ϕ1 ∩ ri dom ϕ2 ̸= ∅, where ri denotes the relative
interior [see Def. 2.1.13 in [3]]). Then for ϵ > 0,

∂ϵ(ϕ1 + ϕ2)(x̄) =
∪

ϵ1=0,ϵ2=0,ϵ1+ϵ2=ϵ

(
∂ϵ1ϕ1(x̄) + ∂ϵ2ϕ2(x̄)

)
for every x̄ ∈ dom ϕ1 ∩ dom ϕ2.

Proposition 2.7 (Scalar Product Rule). For a proper convex function ϕ : Rn → R̄
and any ϵ ≥ 0,

∂ϵ(λϕ)(x̄) = λ∂ϵ/λϕ(x̄), ∀λ > 0.

3. Relationship between solutions of (MP) and (Pλ)

In this section, we study the relationships of the solutions between (MP) and
(Pλ).

Theorem 3.1. Let ϵi > 0, αi > 0, i ∈ I and λ ∈ V> be a given weight parameter. If
x̄ is a (λTα, λT ϵ)-quasi-optimal solution for (Pλ), then x̄ is an (α, ϵ)-quasi-efficient
solution for (MP).
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Proof. Assume that x̄ is not (α, ϵ)-quasi-efficient solution for (MP). Then there
exists a x ∈ FM such that

fi(x) 5 fi(x̄)− αi∥x− x̄∥ − ϵi, i ∈ I,

with at least one strict inequality.
Multiplying by λ ∈ V>, we have∑

i∈I(λ)

λifi(x) <
∑

i∈I(λ)

λifi(x̄)−
∑

i∈I(λ)

λiαi∥x− x̄∥ −
∑

i∈I(λ)

λiϵi,

which contradicts that x̄ is a (λTα, λT ϵ)-quasi-optimal solution for (Pλ). �
Remark 3.2. Liu [10] provided a counterexample to show that the converse of the
above Theorem for finite case is not true. One can extend it to (λTα, λT ϵ)-quasi
solution case by modifying slightly.

Theorem 3.3. Let ϵi > 0, αi > 0, i ∈ I and λ ∈ V> be a given weight parameter. If
x̄ is a (λTα, λT ϵ)-quasi-optimal solution for (Pλ), then x̄ is an (α, ϵ)-quasi-properly
efficient solution for (MP).

Proof. First, from Theorem 3.1 we have that x̄ is an (α, ϵ)-quasi-efficient solution
for (MP). To prove (α, ϵ)-quasi-properly efficiency, assume that x̄ is an (α, ϵ)-quasi-
improperly efficient point for problem (MP) and choose Mi as follows [Theorem 3.1.
in [4]]:

(3.1) Mi =

∑
j ̸=i λj

λi
=

1− λi

λi
,

which is strictly positive for each i ∈ I. Then there exists an index i0 ∈ I and
x ∈ FM such that fi0(x̄) > fi0(x) + αi0∥x− x̄∥+ ϵi0 and

fi0(x̄)− fi0(x)− αi0∥x− x̄∥ − ϵi0
fj(x)− fj(x̄) + αj∥x− x̄∥+ ϵj

> Mi0 ,

for all j ∈ I with fj(x̄) < fj(x) + αj∥x− x̄∥+ ϵj . It follows that

fi0(x̄)− fi0(x)− αi0∥x− x̄∥ − ϵi0 > Mi0

(
fj(x)− fj(x̄) + αj∥x− x̄∥+ ϵj

)
Because the left-hand side and Mi0 are positive, we can multiply each of these
inequalities by its corresponding λj (with j ∈ I(λ), j ̸= i0) and add them together:

∑
j∈I(λ)
j ̸=i0

λj

(
fi0(x̄)− fi0(x)− αi0∥x− x̄∥ − ϵi0

)
>

Mi0

∑
j∈I(λ)
j ̸=i0

(
λj

(
fj(x)− fj(x̄) + αj∥x− x̄∥+ ϵj

))
.(3.2)

By definition of Mi with i = i0 in (3.1), we have∑
j∈I(λ)
j ̸=i0

λj

Mi0

= λi0
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and rearranging of (3.2) yields∑
i∈I(λ)

λifi(x̄)−
∑

i∈I(λ)

λiαi∥x− x̄∥ −
∑

i∈I(λ)

λiϵi >
∑

i∈I(λ)

λifi(x),

which contradicts that x̄ is a (λTα, λT ϵ)-quasi-optimal solution for (Pλ). �
It is worth mentioning that unlike with the following theorem, Theorem 3.1 and

Theorem 3.2 also hold without convexity of objective functions and feasible set.
Using a variant of Gordan’s Theorem of Alternative which was extented to infinite
number of convex functions by Engau [Lemma 1 in [4]], we establish “if and only if”
condition for an (α, ϵ)-quasi-properly efficient solution of (MP) to be a (λTα, λT ϵ)-
quasi-optimal solution of (Pλ).

Theorem 3.4. Let ϵi > 0, αi > 0, i ∈ I. Then x̄ ∈ FM is an (α, ϵ)-quasi-properly
efficient solution for (MP) if and only if there exists λ ∈ V> such that x̄ is a
(λTα, λT ϵ)-quasi-optimal solution for (Pλ).

Proof. The statement “if x̄ is a (λTα, λT ϵ)-quasi-optimal solution for (Pλ), then it
is an (α, ϵ)-quasi-properly efficient solution for (MP)” follows from Theorem 3.3.
To prove the necessary part one can slightly modify Engau’s proof [4] by adding
α-quasi part and make summation according to the supporting set I(λ). �

4. Optimality conditions

Let us define the following set:

St = {x ∈ Rn | gt(x) 5 0}, t ∈ T.

To establish ϵ-complementary slackness condition we need the following Lemma
(see Proposition 2.2. in Strodiot et al. [15]):

Lemma 4.1. Let ϵ = 0. Let x̄ ∈ S = {x ∈ Rn | g(x) 5 0} and the following
constraint qualification of the Slater type holds true:

(CQ) ∃x0 ∈ C : g(x0) < 0.

Then x∗ ∈ Nϵ(S; x̄), iff there exist v = 0 and ϵ̄ = 0 such that

x∗ ∈ ∂ϵ̄(vg)(x̄) and ϵ̄− ϵ 5 (vg)(x̄) 5 0.

Up to now we are ready to establish the ϵ-optimality conditions for (Pλ).

Theorem 4.2. Let x̄ ∈ C, ϵi > 0 and αi > 0 for i ∈ I and the constraint qualifi-
cation (CQ) hold. x̄ is a (λTα, λT ϵ)-quasi-optimal solution for (Pλ) if and only if
there exist λ̄ ∈ V>, ϵ̄0 = 0, ϵ̄t = 0, ϵ̄b = 0, ϵ̄q = 0 and v̄t = 0, t ∈ T such that

0 ∈ ∂β̄0

∑
i∈I(λ)

λ̄ifi(x̄) + ∂β̄t

∑
t∈T

(v̄tgt)(x̄) +
∑

i∈I(λ)

λ̄iαiB +Nβ̄q
(C; x̄),(4.1)

β̄0 +
∑
t∈T

β̄t + β̄b + β̄q − β 5
∑
t∈T

v̄tgt(x̄) 5 0,(4.2)

where β̄0 =
∑

i∈I(λ) λ̄iϵ̄0i, β̄t =
∑

i∈I(λ) λ̄iϵ̄ti, t ∈ T , βb =
∑

i∈I(λ) λ̄iϵ̄bi∑
i∈I(λ) λ̄iαi

, β̄q = ϵ̄q,

β =
∑

i∈I(λ) λ̄iϵi.
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Proof. If x̄ is a (λTα, λT ϵ)-quasi-optimal solution, then∑
i∈I(λ)

λifi(x̄) 5
∑

i∈I(λ)

λifi(x)−
∑

i∈I(λ)

λiαi∥x− x̄∥ −
∑

i∈I(λ)

λiϵi, ∀x ∈ FM .

We can rewrite it as follows:∑
i∈I(λ)

λifi(x̄) +
∑

i∈I(λ)

λiαi∥x̄− x̄∥ 5
∑

i∈I(λ)

λifi(x)

−
∑

i∈I(λ)

λiαi∥x− x̄∥ −
∑

i∈I(λ)

λiϵi, ∀x ∈ FM .

Hence, x̄ is a λT ϵ-optimal solution of the following problem

Minimize
∑

i∈I(λ) λifi(·) +
∑

i∈I(λ) λiαi∥ · −x̄∥.
x ∈ FM

By using indicator functions we can obtain the following unconstrained problem
which obviously has the same λT ϵ-optimal solution:

Minimize
∑

i∈I(λ) λif(·) +
∑

t∈T δSt(·) +
∑

i∈I(λ) λiαi∥ · −x̄∥+ δC(·).
x ∈ Rn

So, x̄ is a λT ϵ-optimal solution of the above problem if and only if

0 ∈ ∂∑
i∈I(λ) λiϵi

( ∑
i∈I(λ)

λifi +
∑
t∈T

δSt +
∑

i∈I(λ)

λiαi∥ · −x̄∥+ δC

)
(x̄).

For convenience, set
∑

i∈I(λ) λiϵi = β. Since there is at least one point x0 ∈
int St

∩
int C and constraint qualification (CQ) holds, by using the Proposition

2.6 we have

∂β

(∑
i∈I(λ) λifi +

∑
t∈T δSt +

∑
i∈I(λ) λiαi∥ · −x̄∥+ δC

)
(x̄) =

∪
β0=0,βt=0,βb=0,βq=0,
β0+

∑
t∈T βt+βb+βq=β

{
∂β0

∑
i∈I(λ) λifi(x) + ∂βt

∑
t∈T δSt(x̄) +

∂βb

∑
i∈I(λ) λiαi∥ · −x̄∥(x̄) + ∂βqδC(x̄)

}
.

By using Proposition 2.7 we can move α outside the ∂ϵb and then it is not difficult
to check that α∂ϵb/α∥ · −x̄∥(x̄) = αB, where B denotes a unit ball. There exist

λ̄ ∈ V>, v̄t = 0, β̄0 = 0, β̄t = 0, t ∈ T, β̄b = 0, β̄q = 0 such that

0 ∈ ∂β̄0

∑
i∈I(λ)

λ̄ifi(x̄) + ∂β̄t

∑
t∈T

(v̄tgt)(x̄) +
∑

i∈I(λ)

λ̄iαiB +Nβ̄q
(C; x̄).

We can get condition

β̄0 +
∑
t∈T

β̄t + β̄b + β̄q − β 5
∑
t∈T

v̄tgt(x̄) 5 0

by applying Lemma 4.1 and summing over t ∈ T . �
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By using Theorem 3.3 we can derive ϵ-optimality condition for (MP), which is
our main result.

Theorem 4.3. Let x̄ ∈ C, ϵi > 0 and αi > 0 for i ∈ I and the constraint qualifi-
cation (CQ) hold. Then x̄ is an (α, ϵ)-quasi-properly efficient solution for (MP) if
and only if there exist λ̄ ∈ V>, β̄0i = 0, β̄t = 0, β̄b = 0, β̄q = 0 and v̄t = 0, t ∈ T such
that

0 ∈
∑

i∈I(λ)

∂β̄0i
(λ̄ifi)(x̄) + ∂β̄t

∑
t∈T

(v̄tgt)(x̄) +
∑

i∈I(λ)

λ̄iαiB +Nβ̄q
(C; x̄),(4.3)

∑
i∈I(λ)

β̄0i +
∑
t∈T

β̄t + β̄b + β̄q − β 5
∑
t∈T

v̄tgt(x̄) 5 0.(4.4)

Proof. If x̄ is an (α, ϵ)-quasi-properly efficient solution for (MP) then, by Theorem
3.3, x̄ is a (λTα, λT ϵ)-quasi-optimal solution for (Pλ) for some λ ∈ V>. Thus, by the
necessary condition of Theorem 4.2, there exist λ̄ ∈ V>, ϵ̄0 = 0, ϵ̄t = 0, t ∈ T, ϵ̄b =
0, ϵ̄q = 0 and v̄t = 0, t ∈ T such that (4.1) and (4.2) hold. According to [ [7],
Theorem 2.1]

∂β̄0

( ∑
i∈I(λ)

λ̄ifi

)
(x̄) =

∪
∑

i∈I(λ) β̄0i=β̄0,

β̄0i=0,i∈I(λ)

{ ∑
i∈I(λ)

∂β̄0i
(λ̄ifi)(x̄)

}
.

Thus, we have (4.3) and (4.4). Conversely, if there exist scalars λ̄ ∈ V>, β̄0i =
0, β̄t = 0, β̄b = 0, β̄q = 0 and v̄t = 0, t ∈ T such that (4.3) and (4.4) hold, then from
[ [7], Theorem 2.1]

0 ∈
∑

i∈I(λ)

∂β̄0i
(λ̄ifi)(x̄) + ∂β̄t

∑
t∈T

(v̄tgt)(x̄) +
∑

i∈I(λ)

λ̄iαiB +Nβ̄q
(C; x̄)

⊂
∪∑

i∈I(λ) β̄0i=β̄0,

β̄0i=0,i∈I(λ)

{∑
i∈I(λ) ∂β̄0i

(λ̄ifi)(x̄)

}
+ ∂β̄t

∑
t∈T (v̄tgt)(x̄)

+
∑

i∈I(λ)

λ̄iαiB +Nβ̄q
(C; x̄)

=
∑

i∈I(λ)

∂β̄0
λ̄ifi(x̄) + ∂β̄t

∑
t∈T

(v̄tgt)(x̄) +
∑

i∈I(λ)

λ̄iαiB +Nβ̄q
(C; x̄).

From the sufficient condition of Theorem 4.2, x̄ is a (λTα, λT ϵ)-quasi-optimal solu-
tion for (Pλ). Thus, by Theorem 3.3, x̄ is an (α, ϵ)-quasi-properly efficient solution
for (MP). �

Conclusions

In this paper we discussed about generalized approximate solutions for multi-
objective optimization problem with infinite number of objective functions. Rela-
tionships between (α, ϵ)-quasi-properly efficient solution for (MP) and (λTα, λT ϵ)-
quasi-optimal solution for corresponding weighted-sum scalar problem (Pλ) were
established. Using this equivalence, ϵ-optimality conditions for (MP) were derived
under Slater’s type constraint qualification.
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