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GENERALIZED APPROXIMATE SOLUTIONS FOR
MULTIOBJECTIVE OPTIMIZATION WITH INFINITELY MANY
CRITERIA

TATIANA SHITKOVSKAYA, JEUK HAN, AND DO SANG KIM*

ABSTRACT. This paper is dedicated to generalized approximate solutions for mul-
tiobjective optimization problems (MP) with infinitely many criteria, i.e. (o, ¢€)-
quasi-efficient (-properly efficient) solutions. For better understanding of the
mentioned solution concept, an illustrative example is given. Relationships be-
tween the mentioned solution and generalized approximate solutions to weighted-
sum minimization problem (Py) associated to (MP) are established. e-Optimality
conditions of Karush-Kuhn-Tucker (KKT) type for (Py) and then for (MP) are
derived.

1. INTRODUCTION

Multiobjective optimization along with decision-making has been applied in
such fields of science as engineering, economics, logistics and etc., where optimal
decisions need to be taken in the presence of trade-offs. These disciplines aim to
identify a single or all the best solutions within a set of feasible points. However,
by a computation point of view, sometimes it is more meaningful to find not exact
solutions but approximate ones. First, such solutions were introduced by Kutate-
ladze [9] and independently defined for multiobjective programming by Loridan [11].
In 1986 White [17] analyzed six different concepts of e-solution. Approximate solu-
tions have got a keen interest by many researches; see, for example, [10, 13,16, 18]
and references therein. In 2008 Beldiman et al. [1] suggested a unitary concept of
approximate quasi efficient solutions which is the main issue of this research.

One of important solution concepts is marked to be a properly efficient solution
which was suggested by Kuhn and Tucker [8] in 1951. Later, a notion of proper
efficiency was refined by Geoffrion [5] and very recently was extended to infinitely
many criteria case by Engau [4]. Motivated by Engau’s idea, we discuss about
generalized approximate solutions for (MP) with infinitely many criteria with the
help of a special linear space used in semi-infinite programming; see for example
[6,13].

However, it is meaningful not only to find approximate solutions but establish
necessary and sufficient optimality conditions. Following Strodiot et al. [15] and
Liu [10], we extend e-optimality conditions of KK T type for generalized approximate
solutions to multiobjective optimization problems with infinitely many criteria by
using well-known weighted-sum scalarization method described, for example, in
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Chankong and Haimes [2]. Since one of the main tools for establishing e-optimality
conditions is e-subdifferential concept, we would like to refer the reader to Hiriart-
Urruty [7] and Dhara and Dutta [3] for better understanding.

This paper is organized as follows. In Section 2, problem statement and main no-
tions are described. Section 3 describes relationships between quasi-(«, €)-efficient (-
properly efficient) solution of (MP) and («, €)-quasi-optimal solution of correspond-
ing scalar problem. Section 4 deduces e-optimality conditions to the multiobjective
optimization problem, which is our main result. Finally, we provide conclusions in

brief.

2. PRELIMINARIES

Let us consider the following multiobjective optimization problem:

(MP) Minimize f(x):= (fl(w))zel
subject to gi(x) £0,t € T :={1,...,m},

xz e C,
where f;(x) : R" — RU {400}, i € I (possibly countable infinite) and g;(z) : R" —
RU {400}, t € T := {1,...,m} are proper lower semicontinuous (l.s.c.) convex

functions, and C' is a closed convex subset of R™. The feasible set of (MP) is
denoted by Fpy :={z € C | gs(x) =0, t € T}.

Engau [4] gave definition for efficient and properly efficient solutions for multi-
objective optimization with infinitely many criteria. We extend it to approximate
solutions for multiobjective constrained optimization problem.

Definition 2.1. Let ¢, 20, a; 20,7 € I. A point T € F)y is said to be
(1) an e-efficient solution for (MP), if there is no other x € Fj; such that
fi(z) = fi(z) — €, foralli€l,

with at least one strict inequality.

(2) an a-quasi-efficient solution for (MP), if there is no other x € F; such
that

fi(x) = fi(2) — ail|lx — Z||, foralliel,

with at least one strict inequality.

(3) an a-quasi-properly efficient solution for (MP), if
(a) T is a-quasi-efficient
(b) there exists a scalar M; > 0 for each ¢ € I such that

#(@ ~ e —adlo =7l _
fi(w) = £3(Z) + ajllz — z|
for some j such that f;(z) < fj(z) + «oj|lz — Z||, whenever z € Fj; and
fi(@) > fi(z) + aillz — z|.
(4) an a-quasi-improperly efficient solution for (MP), if for every scalar
M; > 0 there is a point z € Fy; such that f;(z) > fi(z) + ay]|z — Z|| and

fi(@) — fi(z) — aillz — 2|
fi(@) = fi(2) + ajflz — z]
for all j such that f;(z) < fj(x) + ojl|z — Z|

> M,
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According to Beldiman et al. [1] the notions of generalized solutions are as follows:

Definition 2.2. Let ¢, 20, o; =0, ¢ € I. A point T € F) is said to be

(1) an («, €)-quasi-efficient solution for (MP), if there is no other z € Fys
such that

fi(z) = fi(T) —aillz — 2| — &, forallicl,
with at least one strict inequality.
(2) an (o, €)-quasi-properly efficient solution for (MP), if
(a) T is (a, €)-quasi-efficient
(b) there exists a scalar M; > 0, for each i € I, such that

fi@) = filz) —aillz — 2| — e _

fi(z) = fi(@) + ajllz — 2| + ¢ =
for some j such that f;(Z) < fj(z) + aj|lz — Z|| + €;, whenever x € Fj; and
fi(@) > fi(z) + ai||z — Z|| + €.

Remark 2.3. If ¢; = 0, Def. 2.2 decribes an a-quasi-efficient (-properly efficient)
solution. If a; = 0, the above definition reduces to an e-efficient (e-properly efficient)
solution. If ¢; = a; = 0 for alli € I, we get the concept of efficient (properly efficient)
solution for (MP).

7

Further on, we will consider ¢ > 0 and o > 0 case to deal with the concept
of generalized solutions. However, all theorems can be reduced to corresponding
approximate solutions by putting € or a equal to zero and still hold true.

Later, we consider an infinite summation of the following form: ) ., i fi(z). If
this sum is a converging infinite series, then one can follow Engau [4] approach. In
case if the above sum does not converge, we suggest another method.

The following linear space is used for semi-infinite programming [6].

RO .= {A=(Ni)ier | Xi =0 for all i € I but only finitely many X\; # 0}.
With A € R(U), its supporting set, I(\) = {i € I | A\; # 0}, is a finite subset of I.
We define

Al = Il
iel(\)

The norm || - ||; was proposed in [14].
The nonnegative cone of R) is denoted by:

RY) = (A= M)ier eRD | X\ 20,0 e 1},
With A € RU) and f;, i € I, we understand that
2 Nifi = 0 if 1) =0
icl ’ o
We associate to (MP) the following scalar minimization problem (Py)

(P)) Minimize AT f(x),
subject to  gi(x) £0,t € T :={1,...,m},
x el
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where A € Vo = (A e RO | X\; >0 for all i € I(N), >icr(yAi = 1} is a non-
negative parameter vector and A\’ f(z) = 3. 1y Aifi- The feasible set of (Py) is
also denoted by Fyy :={zx € C | gi(x) £0, t € T}.

Take into consideration that A € RY) and €;, i € I (or oy, i € I)

Similarly, the concept of unitary solutions for scalar minimization problem are as
follows:

Let ¢, 2 0and o; = 0,7 € I. A point T € Fyy is said to be a (AT a, AT €)-quasi-
optimal solution for (P)), if

> Nfiz Z Nifilz Z Nillz = Z|| = ) Aieg, for all x € Fyy.

i€l(N) i€l (A i€l i€l(N)

Remark 2.4. If ¢ = 0, the above notion reduces to a AT a-quasi-optimal solution.
If & = 0, it describes a A\Te-optimal solution. If € = o = 0 we get the concept of
optimal solution for (Py).

Now we give an example to illustrate the concept of generalized approximate
solution.
Example 2.5. Let us consider (MP) as follows:
(MP) Minimize f(x) = (fl)l = (
subject to g(z) =22 -1 20,
x € R.

||)ier

By using weighted-sum scalarization method we have

(Py) Minimize > ,o; Aifi(z)
subject to g(z) =22 -1 20,
z € R.

Let Aj = o5, then Y, Aila| = Y7° 5¢|@| = |a|. The feasible set is [—1,1]. So, we
have the approximate solution sets are as follows:

(i) e-solution set is [—¢, €] N [—1,1] = [max{—e, —1}, min{e, 1}],
{0}, if O0<a<l,
~1,1), if a>1.
[max{—e, —1},min{e, 1}], if 0<a<l1,
[—1,1], if a>1.
It is not difficult to notice that (a, €)-quasi-solution set is different from reg-
ular e-solution set, which is an intersection of sets in (i) and (ii) in case o = e.

(ii) a-quasi-solution set is { [

(iii) (e, €)-quasi-solution set is {

To establish e-optimality conditions of KKT-type we need some notions related
to e-subdifferential concept.

Let h : R™ — R|J{+o0} be a proper l.s.c convex function. The e-subdifferential
of h at & € dom h is the set Jch(z) defined by

Och(z) ={2* e R" | h(y) =2 h(Z) — e + (=™, y — T), Vy € dom h}.
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Consider a function h : R” — R|(J{+oco}. The conjugate of h, h* : R" —
R (J{+o0} is defined as

h*(z%) = xfggn{@*,w) — h(x)}.

The e-subdifferential definition in terms of conjugate function h* of h is as follows:

Oeh(Z) = {z* € R™ | h*(2*) + h(Z) < (2*, ) + €.

The indicator function dx of a subset K C R™ is the function defined as
follows:
5o { 0, if v €K,
K= 400, if 2 € R"\K.
Note that if K is convex, then dx is also convex.
Let C be a nonempty closed convex subset of R®. The e-normal set of C at
T is the set

N (C;z)={z" e R" | (z*,y —x) S ¢, Vy € C},

where € > 0 and z € C.
If e = 0, the e-normal set reduces to the normal cone N(C;Z) to C at = that is

N(C;z)={2" e R" | (",y —T) £ 0, Yy € C}.
It is easy to check that
000 (Z) = Ne(C; ) = {z* e R" | §5(x*) < (¥, T) + €}

For e-subdifferential calculus the following propositions (see Theorem 2.115 and

Theorem 2.117 in [3]) are very useful.

Proposition 2.6 (Sum Rule). Consider two proper convex functions ¢; : R" —
R,i = 1,2 such that ri dom ¢y Nri dom ¢o # (), where ri denotes the relative
interior [see Def. 2.1.13 in [3]]). Then for e >0,

Oe(P1 + d2)(Z) = U (0e, 91(T) + O $2(T))
€120,6220,61+ea=¢€
for every & € dom ¢1 N dom ¢o.

Proposition 2.7 (Scalar Product Rule). For a proper convex function ¢ : R™ — R
and any € > 0,

0:(AD)(Z) = ADe/r(Z), VA > 0.

3. RELATIONSHIP BETWEEN SOLUTIONS OF (MP) AND (P))

In this section, we study the relationships of the solutions between (MP) and
(Py)-

Theorem 3.1. Lete; >0, a; > 0, i € I and A € V< be a given weight parameter. If
7 is a (AT a, AT €)-quasi-optimal solution for (Py), then T is an («, € )-quasi-efficient
solution for (MP).
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Proof. Assume that T is not («,€)-quasi-efficient solution for (MP). Then there
exists a x € I such that

fi(x) = fi(2) — aillz — 2| — e, i€,
with at least one strict inequality.
Multiplying by A € V5, we have

Do Mifile) < Y0 M@ = Y Naille =zl = Y N,

iel(\) iel(\) iel(\) iel(\)
which contradicts that z is a (AT, AT¢)-quasi-optimal solution for (Py). O

Remark 3.2. Liu [10] provided a counterexample to show that the converse of the
above Theorem for finite case is not true. One can extend it to (A, AT¢)-quasi
solution case by modifying slightly.

Theorem 3.3. Lete; >0, a; > 0,7 € I and XA € V< be a given weight parameter. If
7 is a (AN o, AT'€)-quasi-optimal solution for (Py), then T is an (o, €)-quasi-properly
efficient solution for (MP).

Proof. First, from Theorem 3.1 we have that Z is an («, €)-quasi-efficient solution
for (MP). To prove («, €)-quasi-properly efficiency, assume that Z is an («, €)-quasi-
improperly efficient point for problem (MP) and choose M; as follows [Theorem 3.1.
in [4]]:
Z £ )\j 1— M\
3.1 M; === = :
(3-1) ' Ai i
which is strictly positive for each ¢ € I. Then there exists an index ig € I and
x € Fyr such that fi (Z) > fi,(z) + oy, ||z — Z|| + €, and
Jio (@) — fio(®) — aiplle — || — €5y
fiw) = f;(Z) + ajllz — Z[| + ¢

for all j € I with f;(z) < fj(z) + aj|lz — Z|| + ¢;. It follows that

fio(@) = fio(2) = il — Z|| = €5y > Mio (fi () = f;(2) + ajllz — 2| + ¢5)

Because the left-hand side and M;, are positive, we can multiply each of these
inequalities by its corresponding A; (with j € I()),j # ip) and add them together:

> MZ'O,

SN (fz'o(:v) ~ o) — aulle — 7| - ) >
JEI(N)
Jj#io

(32) My 5 (W50 - 5@+ ajlls ol +6) ).
JEI(N)
J#i0
By definition of M; with i = iy in (3.1), we have
)\A
>

jer(xy)
J#io
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and rearranging of (3.2) yields

Z)\fz Zx\al|]:ﬁ—x||—2)\el>2)\fl

ISTION 1€l (A i€I(N) iel(X
which contradicts that z is a ()\Ta, M'€)-quasi-optimal solution for (Py). O

It is worth mentioning that unlike with the following theorem, Theorem 3.1 and
Theorem 3.2 also hold without convexity of objective functions and feasible set.
Using a variant of Gordan’s Theorem of Alternative which was extented to infinite
number of convex functions by Engau [Lemma 1 in [4]], we establish “if and only if”
condition for an (e, €)-quasi-properly efficient solution of (MP) to be a (AT, \T¢)-
quasi-optimal solution of (Py).

Theorem 3.4. Let¢; >0, a; >0, i € I. Then T € Fyy is an («, €)-quasi-properly
efficient solution for (MP) if and only if there exists A\ € V5 such that T is a
(AT, \T€)-quasi-optimal solution for (Py).

Proof. The statement “if Z is a (AT o, AT ¢)-quasi-optimal solution for (Py), then it
is an (a, €)-quasi-properly efficient solution for (MP)” follows from Theorem 3.3.
To prove the necessary part one can slightly modify Engau’s proof [4] by adding
a-quasi part and make summation according to the supporting set I(\). O

4. OPTIMALITY CONDITIONS
Let us define the following set:
Si={reR" | g(z) S0}, teT.

To establish e-complementary slackness condition we need the following Lemma
(see Proposition 2.2. in Strodiot et al. [15]):

Lemma 4.1. Let € 2 0. Letz € S = {z € R" | g(x) < 0} and the following
constraint qualification of the Slater type holds true:

(CQ) drg e C: g(xp) <O.
Then x* € N(S; ), iff there exist v = 0 and € = 0 such that
z* € 0:(vg)(Z) and e—e= (vg)(x) £0.
Up to now we are ready to establish the e-optimality conditions for (Py).

Theorem 4.2. Letz € C, ¢, > 0 and o; > 0 for i € I and the constraint qualifi-
cation (CQ) hold. T is a (N a, A\T€)-quasi-optimal solution for (Py) if and only if
there exist A € V5., €0 2 0,6 2 0,6, =2 0, 2 0 and v, 2 0, t € T such that

(4.1) 0€dz Y. Nfi®)+05 ) (0g)(®) + Y \aiB+ N (C;2),
ieI(X) teT i€I(N)
42) B+ Bi+B+B,—BED wig(®) 0,
teT teT

2 Yy = Yy - 2 Nigy, _
where ﬂg = ZieI(A) /\iéoi, t = ZiGI(A) Aiﬁti; l e T, /Bb = %: ﬁq = €qg
B Zzg[ )\ i€ -
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Proof. f T is a (/\Ta, A€)-quasi-optimal solution, then
SONA@E D Nfilw) = D Nailla =z = D Niey, Vo € Fiy.
ieI(\) ieI(\) ieI(\) ieI(\)

We can rewrite it as follows:

Z/\fz Z/\Oész_xH<Z>\fz

i€l(X iel(X 1€I(N)
- Z Al — z|| — Z Ni€i, Vo € Fyy.
el i€l(N)

Hence, 7 is a AT e-optimal solution of the following problem
Minimize 37,700 Aifi() + 2Xieron Aol - =2l
x e Fy

By using indicator functions we can obtain the following unconstrained problem
which obviously has the same AT e-optimal solution:

Minimize > Zcron A () + Xier 0s.() + Xierny Aicall - =2 + dc(-)-
zeR"”

So, Z is a ATe-optimal solution of the above problem if and only if
0€ ZzEI(A))‘€1< Z Aifi +265t + Z A - = || +5C>(
iel(X teT iel(X

For convenience, set Zze I )\ i€ = B. Since there is at least one point x¢ €

int S¢(int C and constramt qualification (CQ) holds, by using the Proposition
2.6 we have

s ( Dicro Aifi + 2 ier 05, + Die oy Ml - =zl + 50) () =

Usoe20,6:20,8,20,5,20, {% Dicrn Aifi(@) + 08, >y 05, (T) +
B0+ZteT /Bt+6b+6q:5

Ty, 2oier(ny Aol - =Z([(Z) + %50@)}-

By using Proposition 2.7 we can move « outside the J,, and then it is not difficult
to check that ad,, .|| - —7||(Z) = aB, where B denotes a unit ball. There exist

ANeEVL, 1, 20,8020,6,=20, teT, B, =0, ﬂqZOSuChthat
0 € 93, Z j\ifi(:i’)—kagtz:(vtgt Z )\azB-i-NB (C; ).
i€l(N) terT i€l (N)
We can get condition
ﬁo+25t+5b+5q B<th9t )=0
teT teT

by applying Lemma 4.1 and summing over ¢ € T'. Il
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By using Theorem 3.3 we can derive e-optimality condition for (MP), which is
our main result.

Theorem 4.3. Let z € C, ¢, > 0 and o; > 0 for i € I and the constraint qualifi-
cation (CQ) hold. Then T is an (o, €)-quasi-properly efficient solution for (MP) if
and only if there exist A € V=, Boi 20,5 20,8, 2 0,8, = 0 and v 2 0, t € T such
that

(43)  0€ Y 95, (Nf)(@) + 8, D (0ug) (@) + Y MieiB + Np, (C: 1),

i€I(N) teT i€I(N)

(4.4) ZBMZ&WW@ B nig()

i€l (A teT teT

Proof. If T is an («, €)-quasi-properly efficient solution for (MP) then, by Theorem
3.3,  is a (AT a, AT ¢)-quasi-optimal solution for (Py) for some A € V5. Thus, by the
necessary condition of Theorem 4.2, there exist A € V5,6 = 0,6 = 0,t € T,& =
0,6, 2 0 and vy =2 0, t € T such that (4.1) and (4.2) hold. According to [[7],
Theorem 2.1]

8—0( T A¢f¢>(w) - U { T agm.wfi)(x)}.
Z'EIO‘) Ziej(,\) BOi:Bm iEI()\)
Boi20,i€1(N)

Thus, we have (4.3) and (4.4). Conversely, if there exist scalars A € V5, By 2
0,86 20,6, 20,68, 20 and vy 2 0,t € T such that (4.3) and (4.4) hold, then from
[[7], Theorem 2.1]

0€ > 05, (Nfi)(@) +05, Y (tig)(@) + Y NaiB+ N (C; )

i€I(N) teT i€I(N)

UZze[()\) Boi=Po, { Zze I(N) 6/301(5\1]”@)(@)} + aﬁt ZteT(@tQt)(i‘)
+

Boi=0,i€I(N)

i€l(N)
= Z OgoNifi(@) + 05, Y (00g0)() + Y NiaiB + Nj (C; ).
el(A teT i€I(N)

From the sufficient condition of Theorem 4.2, T is a ()\Ta, )\Te)—quasi—optimal solu-
tion for (Py). Thus, by Theorem 3.3, T is an («, €)-quasi-properly efficient solution
for (MP). O

CONCLUSIONS

In this paper we discussed about generalized approximate solutions for multi-
objective optimization problem with infinite number of objective functions. Rela-
tionships between («, €)-quasi-properly efficient solution for (MP) and (A, ATe)-
quasi-optimal solution for corresponding weighted-sum scalar problem (P)) were
established. Using this equivalence, e-optimality conditions for (MP) were derived
under Slater’s type constraint qualification.



410 T. SHITKOVSKAYA, J.. HAN, AND D. S. KIM

il
2
3
[4
5
6
[7

8

[15

REFERENCES

] M. Beldiman, E. Panaitescu and L. Dogaru, Approzimate quasi efficient solutions in multiob-
Jjective optimization, Bull. Math. Soc. Sci. Math. Roumanie 51 (99) (2008), 109-121.

] V. Chankong and Y. Y. Haimes, Multiobjective Decision Making: Theory and Methodology,
Amsterdam: North-Holland, 1983.

] A.Dhara and J. Dutta, Optimality Conditions in Convex Optimization: A Finite-Dimensional
View, CRC Press, 2011.

] A. Engau, Definition and characterization of Geoffrion proper efficiency for real vector opti-
mization with infinitely many criteria, J. Optim. Theory Appl. 165 (2015), 439-457.

] A. M.Geoffrion, Proper efficiency and the theory of vector mazimization, J. Math. Anal. Appl.
22 (1968), 618-630.

] M. A. Goberna and M. A. Lépez, Linear Semi-Infinite Optimization, John Wileys, Chichester,
1998.

] J.-B. Hiriart-Urruty, e-Subdifferential calculus,in: Convex Analysis and Optimization (Re-
search Notes in Mathematics Series), vol. 57, Pitman, New York, 1982, pp. 43-92.

] H. W. Kuhn and A. W. Tucker, Nonlinear programming, in: Proceedings of the Second Berke-
ley Symposium on Mathematical Statistics and Probability, University of California Press,
Berkley, California, 1951, pp. 481-492.

] S. S. Kutateladze, Convex e-programming, Soviet Math. Doklady, 20 (1979), 391-393.

| J. C. Liu, e-Properly efficient solutions to nondifferentiable multiobjective programming prob-
lems, Appl. Math. Lett. 12 (1999), 109-111.

] P. Loridan, e-Solutions in vector minimization problems, J. Optim. Theory Appl. 43 (1984),
265-276.

] O.L. Mangasarian, Nonlinear Proramming, McGraw-Hill Book Co., New York, 1969.

] T. Q. Son and D. S. Kim, e-Mized type duality for nonconver multiobjective programs with an
infinite number of constraints, J. Global Optim. 57 (2013), 447-465.

] T. Q. Son, J. J. Strodiot and V. H. Nguyen, e-Optimality and e-Lagrangian duality for a
nonconvex programming problem with an infinite number of constraints, J. Optim. Theory
Appl. 141 (2009), 389-409.

] J. J. Strodiot, V. H. Nguyen and N. Heukemes, e-Optimal solutions in nondifferentiable convex
programming and some related questions, Math. Program. 25 (1983), 307-327.

[16] T. Tanaka, A new approach to approzimation of solutions in vector optimization problems, in:

Proceedings of APORS 1994, World Scientific, Singapore, 1995, pp. 497-504.

[17] D. J. White Epsilon efficiency, J. Optim. Theory Appl. 49 (1986), 319-337.
[18] K. Yokoyama, Epsilon approzimate solutions for multiobjective programming problems, J.

T.

Math. Anal. Appl. 203 (1996), 142-149.

Manuscript received July 25 2017
revised October 10 2017

SHITKOVSKAYA

Department of Applied Mathematics, Pukyong National University, Busan, Korea

E-mail address: 1liatriel@gmail.com

J. HAN
Department of Applied Mathematics, Pukyong National University, Busan, Korea

D.

S. Kim

Department of Applied Mathematics, Pukyong National University, Busan, Korea

E-mail address: dskim@pknu.ac.kr



