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DOUBLE SUBMERSIONS AND HAMILTON FLOWS

KENRO FURUTANI AND MITSUJI TAMURA

ABSTRACT. We discuss solution curves of Hamilton systems in a framework of a
double submersion. Typical examples of double submersions are those defined by
right and left coset spaces of closed subgroups of a Lie group, where Hamiltonians
are homogeneous functions defined as a “co-norm” function of a subbundle in the
tangent bundle, a principal symbol of a (sub)-Laplacian or a Grushin type opera-
tor. As examples we show that some geodesics on one base space are constructed
from the known geodesics on another base space of a double submersion.

1. INTRODUCTION

In this short note we explain a relation between Hamilton flows defined on the
cotangent bundles of the total space and the base space of a submersion and a
double submersion together with an interpretation to geodesics (cf. [2,4,7,13]).

We are interested in Hamilton flows whose Hamiltonians are given by principal
symbols of a Laplacian, a sub-Laplacian or a Grushin type operator. The last one
is defined through a submersion (cf. [3,15]). These Hamiltonians are also thought
as norm functions of covectors with respect to dual inner products (we call one half
of it a co-norm function of a subbundle) and such Hamilton flows are sometimes
called bi-characteristic flows. There are many study on the bi-characteristic flows
or geodesics defined by Grushin or Grushin-type operators and geodesics on the
sub-Riemannian manifolds, like [8-11] and so on. In the theory, one of the main
topics is to solve the Hamilton system in relation to the explicit construction of
the heat kernel, where the Hamiltonians are co-norm functions including the cases
that they might be singular metrics (here it means that the metric is defined only
on an open dense subset or is defined on a subbundle in the tangent bundle). In
particular, the paper [14] proves basic properties on the relation (or equivalence)
of geodesics (= space components of solution curves of a Hamilton system by a
co-norm function) and length minimizing curves in a sub-Riemannian setting under
a somewhat strong condition on the bracket generating property.

In general, it is not possible to solve the Hamilton system explicitly and then one
of the next problems will be to prove the complete integrability.

Our main concern in this note is to find their relations through a submersion and
a double submersion, when two Hamilton systems are given on the total space and
the base space of a submersion. Especially, the second case is our main concern and

2010 Mathematics Subject Classification. TOH05, 53C17.

Key words and phrases. Submersion, Hamilton system, geodesics, Popp’s measure, non-
holonomic subbundle, bi-characteristic flow, Heisenberg group, SL(2,R), Grushin type operator,
sub-Laplacian, Laplacian.

The first author was supported by the Grant-in-aid for Scientific Research (C) No. 17K04826,
JSPS and China Medical University, Taichung, Taiwan.



382 K. FURUTANI AND M. TAMURA

includes double fiberations given by left and right coset spaces of Lie groups, which
are the most interesting cases.

In §2 we explain basic properties of Hamilton systems defined by a submersion-
related Hamiltonians and treat the case of “co-norm functions” as Hamiltonians.

Then in §3 we show a correspondence of Hamilton curves with respect to two
pairs of double submersion-related Hamiltonians arising from a double submersion.
At the end of this section we summarize as a theorem of our method to construct
geodesics with respect to “Grushin metric” from known geodesics of the Riemannian
sense of one base manifold.

In §4 we show concrete examples, left and right coset spaces of the Heisenberg
group and SL(2,R) where in the first case one coset space is called the Grushin
plane, and for the second case Grushin upper half plane with a metric different
from the Poincaré metric.

In §5 as a final remark we shortly explain the case of an embedding-related
Hamiltonians, an opposite situation to the submersion cases (see [5] for the method
employed there).

2. SUBMERSION AND HAMILTON FLOW

In this section we discuss some basic relations of Hamilton systems and their
solution curves with respect to the Hamiltonians defined on the total space and the
base space of a submersion under some relation. Here Hamiltonians are given as
the co-norm functions on the horizontal subbundle and the submersion metric on
the base manifold.

2.1. Submersion-related pair of Hamiltonians. Let ¢ : M — N be a surjective
submersion between orientable manifolds M and N (dim M = m, dim N = n and
d=m—mn>0).

The dual of the differential dy : T(M) — T(N) induces an injective bundle
map (de)* : ¢*(T*(N)) — T*(M) and it can be seen as a natural embedding of
the manifold ¢*(7T*(N)) (= the induced bundle of T*(NN) to M by the submersion
¢ : M — N). So, we regard the induced bundle ¥y := ¢*(T*(N)) as a submanifold
in T7%(M) through the map (dy)*. Then we have the following intrinsic relations
among their cotangent bundles, which can be expressed in the form of a commutative
diagram:

(V) < o (1 (V)2 e ()

21) | |

In the diagram the map 7 and 7V denote the natural projection maps to
the base manifolds M and N respectively. We denote the natural projection map
©*(T*(N)) =5 T*(N) by x. The map y is a submersion too.

Hereafter, we denote the Hamilton vector field corresponding to a function f €
C>®(T*(M)) (also to functions in C*°(T*(N))) by Hy.
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Now we assume that there exist a smooth function ® on 7% (M) and a smooth
function ¥ on T*(N) satisfying the condition that the restriction of ® to the sub-
manifold *(T*(N)) coincides with the function x*(¥), i.e.,

(2.2) — (D).

® @*(T*(N))

We call such a pair of functions a “submersion-related pair of Hamiltonians” or
in the case that the submersion is specified with a map ¢, then we call “p-related
pair of Hamiltonians.”

Then

Theorem 2.1 (see [4, Proposition 2.8]). The Hamilton flow {exptHs} of the
Hamiltonian ® leaves the submanifold o*(T*(N)) invariant. Moreover the following
diagram is commutative:

exptHe

@ (T*(N)) —= ¢"(T"(N))

o | i
T*(N) T*(N).

exptHy

Proof. By the implicit function theorem, it is enough to give the proof on a local
coordinate neighborhood of the form W = U x V C M with coordinates U x V 3
g (z,y) = (T1,..., Zn, Y1, .., ya) € R" x R? such that the submersion ¢ is given
as the projection map ¢ : (z,y) — x. So U can be seen as a local coordinate
neighborhood in N with the local coordinate U > ¢(q) — (x1,...,2,). Then we
also have local coordinates on T*(W) = {7}~ (W) and T*(U) = {zV}~1(U) by
the correspondences defined as

(W) > Z&dmi +nidy; «— (x,y;&,n) € U xV xR" x RY,
T*(U) 3 Y &idwi +— (2;8) € U x R™.
Then we can express the map (dy)* in this coordinates as
(dg) : " (T*(U)) 2 UXV R 5 (1,5€) = (1,93€,0) € UxV xR xRE = T*(W)
and the assumption (2.2) is expressed on the submanifold 7%(W) in the form that
O(r,y;€,0) = ¥(z;§).

Since the Hamilton vector fields Hg and Hy are expressed as
o0d 0 o0d 0 o0d 0 o0d 9
Hg = - = 2 ) - - —
0=2 <a@ oz om, ayj> 2 <axi o6 " oy, 5%’) ’

v &  OU
Hy = ac.v _ 79
v=2 <agi or; Oz 0&) ’

the Hamilton vector field Hg on ¢*(T*(U)) is of the form

o® 0 oo 9 o0 0 o® 0
Hp = — — ] - — | =H — ).
¢ Z (85, 8%,‘ + anj 8yj) Z (axl 85,) \II+Z ((97]]‘ 8yj>
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Hence the solution of the equation

dnj _ 0®(z,y:£,0) _ 9¥(x6) _
dt dy; dyj
with the initial condition 7 = 0 is identically zero, which says that the solution
curves of the Hamilton vector field Hg starting from points in ¢*(T*(U)) stay in
this submanifold. Moreover after we solve the equations
dr; 0P ov
dt agz (x)y7£7 ) 851 (x7£)7

g~ 0P ] __57‘1’ .
%__8xl(x7ya€70)_ 8.73‘2(1.7{)’

with the initial point in ¢*(7T7*(U)), we can solve the equation

dyj 0P

== 2 (x(t),y: £(1), 0

o= G a(0).5:€0).0)

independently. Here x(t) and £(t) are solutions of (2.4). Hence we have the com-
mutative diagram (2.3). O

(2.4)

(2.5)

Remark 2.2. Even if we delete the zero sections of the bundles in the diagram
(2.1), still holds the diagram:

T (N) < o* (T (N)) 2 Ty (M)

(
(2.6) WNl WML :

since the natural map x : ¢* (T (N)) — T (N) is isomorphic on each fiber and the
map (dp)* is injective. Hence the assertions in Theorem 2.1 hold in such a case too.
In some cases the Hamiltonians might not be defined on the zero covectors.

2.2. Co-norm functions as Hamiltonians and submersion. Hamiltonians we
are concerning are those defined as the co-norm functions of the given subbun-
dles or Riemannian metrics, or in some case it will be understood as a principal
symbol of a (pseudo-)differential operator. In this section we define one of such a
submersion-related pair of Hamiltonians and remark the metric tensor in relation
to a submersion.

First we remark the following property as Proposition 2.3 (cf. [14]).

Let 23y : H < T(M) be a subbundle on which an inner product Q3 is installed.
Then there is a natural map defined by the equality

L H* — 7‘[, f(Y) = QH(E(g)’ Y)’

where § € H, and Y € H, and we can equip the dual bundle H* with the inner
product Q3 through this relation. Then by composing the dual map o3, : T (M) —
‘H* we have

g: T (M) 2 H 55 H, g, THM) — H,
and define a positive bilinear form Q7«5 on T*(M) such that

Qr+an)(&,m) = Qu=(14,(€) , 14 (n) ).
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Now, we define a co-norm function &y« € C°(T*(M)) by

Dy (€) 1= 5 Qr-aa) (&) = 2(9(6), ),

where (Y, ) denotes the natural pairing of Y € Ty(M) and § € T;(M). Let
x = (21,...,Tm) <> ¢ € M be a local coordinates around a point ¢ € M, and we
put

q(d ‘ ]
(dai) Z g 3%
Then

Py (Z&idx@-) = %Z& <94(Z Erday), d$i> = %Z&Ek 9" (x)
i k

The Hamilton vector field Hg,,. is
Hyp = 0Dy O 0Dy 9
P T 9 61’g Dy agg

_ g (z) 0
—;&g l;e& TR

So
(27) Z dc'lftf Dy Zgl Zé Zgzdxz

As before we denote by 7 : T*(M ) — M the projection map to the base manifold.
Let {y(t)} € T*(M) be a solution curve of the Hamilton vector field Hg, ., then by
the expression (2.7) we have

Proposition 2.3. The curve {7r } on M is tangent to H, i.e., the tangent

vectors {7@)} of the curve belong to the subbundle H.

We call the curve {7r (y(t) } the space component of the solution curve of the
Hamilton vector field Hg,,. .

Remark 2.4. Let {X;} be a local orthonormal basis of the subbundle H. We put
=-—2,X; 2 a locally defined second order differential operator and £ oy *(6) =
Y- a;j(0)X;. Then a;(#) = (X;, 0) and
10112 = 0(L 013(0)) = Y (X, 0)* = op(q,0), 0 € T; (M),
J
where the first equality is by definition of the norm and the last quantity is the
principal symbol of the differential operator D.

Now, let ¢ : M — N be a surjective submersion and we fix a decomposition
(2.8) T(M)=V®H,

where V = Ker (dyp) is the vertical subbundle and H is a horizontal subbundle. Also
we assume that the horizontal subbundle H is equipped with an inner product Q
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which can be descended to the base manifold N by the submersion ¢, that is we
assume that

If o(z) = p(z'), the map dp, ' odp, : Hy — H, is isometric,
(2.9) where dp, ' : T, (N) — H, is the inverse map of the restriction
Then it will be clear that the manifold N can be equipped with a Riemannian

metric by the obvious way. Such a Riemannian metric is called a submersion metric.
Under these assumptions we consider the commutative diagram:

7-[—>T ]V[ —>go

//

H* < T* (M) <= ¢"(T*(N)) —=T*(N

(2.10)

In the commutative diagram above, the bundles ¢*(T(N)) and ¢*(T*(N)) denote
the induced bundles of the tangent and the cotangent bundle of the manifold N
to the total space M by the map ¢, respectively. Also the map mys is the natural
projection maps to the base space M of the tangent bundle (also 7w : T(N) — N).
Other maps without notations are all natural maps.

The composition dp o1y : H — ¢*(T'(N)) is isomorphic (between vector bundles
on M) and we transfer the inner product on H to ¢*(T'(N)). The condition (2.9)
allows us to descend the inner product on ¢*(T'(IN)) to T(N) and we consider the
manifold N is equipped with this Riemannian metric. We denote it by gx. Then we
consider the duals of these bundles, especially we denote the dual metric on T*(N)
by Q1+ (n)-

The transferred metric of the dual metric Q3+ on H* to the dual bundle *(T™*(N))
through the dual isomorphism 13 * 013, o (dp)* of dpory also can be descended to the
cotangent bundle T%(N), which coincides with the dual metric of the submersion
metric on T'(N). Hence,

Theorem 2.5. The pair of functions

1 * * *
Cy1+(0) = 5@ (7(0), w7 (9)), 0 € T™(M),
1 ,

¥(0) = 5 Qr-()( ), 0 € TH(N)
is a @-related pair of Hamiltonians.
Corollary 2.6. Let w = w(#) be a smooth function on T*(M) such that it vanishes
on *(T*(N)). Then @y~ +w and V¥ is also a pair of p-related Hamiltonians.

Especially if gy~ is an inner product on the dual of the vertical subbundle V and

we put wy=(n) = gy=(n,n), n € V*. Since the bundle map V S T(M) d ©*(T(N))
is the zero map onto ©*(T(N)), the function (dy o wy)*(wy+) vanishes identically
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on the submanifold ©*(T*(N)). Hence the pair ®y- + (1p)*(wy+) and ¥ is p-
related Hamiltonians. Moreover in this case the solution curves on ¢*(T*(N)) of

the Hamilton vector field He, . | (1,,)* y coincide with those of the Hamilton vector
field He,,. .

(wy=

2.3. Horizontal lifts. Let ¢ : M — N be a surjective submersion between ori-
entable manifolds M to N.

We assume a decomposition T (M) = V & H by the vertical bundle V and a
horizontal subbundle H as in the last section.

Consider the diagram of vector bundles on M in which the low is exact.

{0} — Ve T(M) —% (T
(211) 194 1inclusion
=

The composition dp o 13y is an isomorphism between the vector bundles H and
©*(T(N)) on M.

The composition of the natural map I'(T'(N)) := X(IN) — I(¢*(T(N))) from
the space of vector fields on N and the inverse map of dp o1y : H — ¢*(T(N))
defines a map A : X(N) — I'(H), which gives the horizontal lift \(X) of a vector
field X € X(N) as a vector field on M which takes values in H.

Now we assume that the manifold M is equipped with a Riemannian metric gps
such that the vertical subbundle V and the horizontal subbundle H are orthogo-
nal. So, let @y and @y be the inner product on V and H, the restrictions of the
Riemannian metric, then gjs can be written as gy = Qu + Qy.

Moreover we assume as before the condition (2.9), that is the inner product Qyx
defines a submersion metric gy on N.

Let’s denote the metric tensor

au=anten={(2 )b ={(% )}

in terms of the local coordinates (z,y) (see the proof of Theorem 2.1 of the coordi-
nates), where we put

ij = M <(aii> (zf)) =@ ((aii)’ (ai))
o () (G))
Vap = M < <8ya> <8y5)> ((aia) (ai)) '

For each X € T, (V) its horizontal lift A(X), € H, at the point ¢ € M satisfies

the condition that
0
for ¥ MX), (=) ) =0
o (300 () =o.

N)) — {0}
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especially if we put L ( (8%1_) ) :(8%1) +> bm<%), then
gM <<8(Z:Z> + Z bm((,;za), (a(;)) = Siy + Z biaVay = 0.

B=-5.v L

The condition (2.9) and the property that the tensors g;;(z,y) for 1 <i,j < n
do not depend on the variables y, are equivalent.

Now let’s assume the subbundle H is bracket generating. Space components of
solution curves of the Hamilton vector field Hg, . are called geodesics. In the sub-
Riemannian setting, it is not true that every geodesic is a locally length minimizing
curve in the sense of the Carnot-Carathéodory metric (cf. [12,14]).

However from the above arguments we know that space components (= geodesics)
(de)*

(%

Hence

of solution curves of the Hamilton vector field Hg, . included in o*(T™(V))
T*(M) are locally length minimizing curves. Since if 4 is such a curve in M, then it
is a horizontal lift of a space component v in N, which is a locally length minimizing
curve as a space component in a Riemannian manifold, so that 4 must be also a
(locally)length minimizing curve.

3. DOUBLE SUBMERSION AND BI-CHARACTERISTIC CURVES
Let

5.) N

Ny, Ng

be two surjective submersions between a total space M and two base manifolds Ng
and Ny. All manifolds are assumed to be orientable and M is equipped with a
Riemannian metric gj;.

We call such a pair of submersions a double submersion.

Based on the properties proved on the Hamiltonian flows in the previous section
we discuss a relation of Hamiltonian curves of a ppg-related pair of Hamiltonians
(®,VR) of a submersion pr : M — Ng, and a pp-related pair of Hamiltonians
(®,Vr) of a submersion ¢y, : M — Ni.

Let

Vr = Ker (dpgr) and V;, = Ker (dey)

be the vertical subbundles of the submersions ¢ and ¢y, respectively.
By Proposition 2.1, solution curves of the Hamilton vector field Hg passing
through

S =pr"(T*(NR)) N @L*(T*(N1)) = Sng [ S,
(3.2) ={0eT*(M)|0=0o0nVr+V}
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are descended to both of solution curves of the Hamilton vector fields Hy, and
Hy, . In a certain case, it gives us a length minimizing curve on one base manifold
from geodesics on another base manifold.

We restrict ourselves to a special case of those Hamiltonians defined as a co-
norm function or a principal symbol of an operator. So, we consider the orthogonal
decomposition

T(M)=Vr®Hg
with respect to the metric gps, where Hpg is the horizontal subbundle. We assume
the following 3 conditions:

(1) The inner product Qy, on Hg, the restriction of the Riemannian metric g,
is descended to the base manifold Ngr. We denote the resulting submersion metric
on Nr by gng-

(2) We assume the horizontal subbundle H := Hp is bracket generating of 2 step,
that is the naturally induced bundle map

pi= p?%/?{ THOH —-T(M)/H
from the the bracket operation
I'H) x T(H)> (X,Y)—[X,Y] e(T(M)) :=X(M)
1S surjective.
The tensor product H ® H is equipped with a natural inner product and by the
assumption (2) that the map
pi= pg%/ﬂ THQH—->T(M)/H

is surjective, so that we can install an inner product on the quotient bundle T'(M) /H
by assuming that it is isometric with the orthogonal complement of the kernel Ker(p)
of the map p. Hence we transfer this inner product to the subbundle Vg through
the isomorphism 7'(M)/H = V.

(3) We assume that the inner product on Vg installed above coincides with the
restriction of the Riemannian metric gy on Vgy.

Then under the assumptions (1), (2) and (3) the Popp’s measure coincides with
the Riemannian volume form (cf. [1,2,12]), so that we denote them by dgys.

Let grady(f) be the gradient vector field of a function f € C°°(M) along the
subbundle H = Hp, which is defined by the relation

df (X) = Qu(grady(f), X), X € H.

Also we denote by grad(f) the gradient vector field of the function f in the usual
Riemannian sense, that is it is defined by the relation

df (X) = gu(grad(f), X), X € T(M).

We denote by Lx the Lie derivative with respect to a vector field X € X (M).
Then the divergence divg,(X) € C*(M) of a vector field X € X (M) with respect
to a smooth measure dy on M is defined by the equation

Lx(dp) = divg,(X)dp = (doix +ix od)(du) = doix(du),
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where ix is the interior product by the vector field X. One way to define the
Laplacian A is given in terms of grad and divg,,, operations in the following way
that

A(f) = divgg,, o grad(f), f e C®(M).
We can also define an operator Ay, called a sub-Laplacian by a similar way as the
Laplacian that
Asub(f) = divdgM o grad?—[(f)v f € COO(M)

This is a second order differential operator defined by an intrinsic way in a sense
that it is defined solely based on the assumptions (1), (2) and (3). It is sub-elliptic
and not elliptic unless H = T'(M).

The principal symbol oa_,, € C*(T*(M)) coincides with the co-norm function
2®4+. Let Ay, be the Laplacian on Nr with respect to the submersion metric.
Then the principal symbol oa Np coincides with the co-norm function 2W7«(y).

Proposition 3.1. The pair of functions o, and OAy, S pr-related Hamiltons-
ans. Also the pair of functions oa and TAN, s pr-related too.

Now in addition to the above three assumptions (1), (2) and (3), we assume
(4) there exists a second order (differential or pseudo-differential) operator G :

C3°(NL) — C*°(N1) such that
Asubo(PL*(f) =" OG(f)a fE C(())O(NL)

Then

Proposition 3.2. The functions @y = %JA
pair of Hamiltonians.

and ¥y = %JG are a pr-related

sub

This is a special case and we show a general property for the case of the differential
operators.

Proposition 3.3. Let ¢ : M — N be a submersion. If we are given two differential
operator Dy on M and Dy on N of the same order, say second order and these
satisfy the condition that ¢* oDy = Dypop* on C§°(N). Then the principal symbols
op, ond op, are a p-related pair of Hamiltonians.

Proof. Let (x,y) be a local coordinates around a point ¢ € M appearing in the
proof of Theorem 2.1, so that the submersion ¢ is expressed as the projection:
¢ : (x,y) — x. Then the operators D); and Dy are expressed as

0? (9

%] %

+Za o +3 bir(a,y) o +) e )i
k[ ik i k\T,Y 3$@8yk - T, Y )

AypOys Oyx

N = Zaij( 8561833] Zﬁz
2y

(2

)

+7(2).
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Let f be a smooth function defined around a point ¢(q) having the properties that

fle(q)) =0 and df ,g) = > &dx; # 0. Then by the assumption
(3'3) ( (f2 —QZCLM T y{zé] p* oDy f2 —2Zaz] fzgj
ij

Hence a; j(z,y) = o j(x) and the equality can be understood as the coincidence

o0 (4 d(¢™(f))g) = oDy (2(0), df 4(q)),
that is the pair of principal symbols satisfy the condition (2.2). O

Under these assumptions (1), (2), (3) and (4), bi-characteristic curves of the
sub-Laplacian on M passing through

(3-4) S = or"(T*(Nr)) () 2" (T*(N1)) # {0}

correspond to the both of the bi-characteristic curves of the operator G and
the Laplacian on Np according to the diagram (2.3) (note that the embedding
©R(T*(NR)) C T*(M) and ¢} (T*(Nr)) C T*(M) are given by the map (dyr)* or
(der)®).

In the Riemannian case, (locally) length minimizing curves and the space com-
ponents of bi-characteristic curves of the Laplacian coincide.

However in the sub-Riemannian case, even for our cases of the assumption (2)
above, geodesics (= space components of the solution curves of the Hamilton vector
field Hg, .) will not be always (local) length minimizing curves (cf. [14]).

One of our purpose is to obtain a special curve of bi-characteristic curves of a
Grushin type operator on Ny, from known geodesics on Npg.

All the examples in the next section satisfy an additional property to (2) that
the principal symbol of the operator G defines a Riemannian metric at least on an
open dense subset in Ny (see the expression (3.3) in the proof of Proposition 3.3).
Then such a special curve, that is coming from geodesics on Ng gives a singular
geodesics on Np. These are given as examples in the next section.

Finally, under assumptions (1) ~ (3) and an additional assumption on the oper-
ator G explained in (4), we sum up a method to obtain a length minimizing curve
as a

Theorem 3.4. We assume that a double submersion (3.1) satisfies the assumptions
(1) to (4). Let {c(t)} be a geodesic in Ng, then there is a bi-characteristic curve
{&(t)} in T*(Ng) whose space component {m™N(&(t))} = {c(t)} and also there are
bi-characteristic curves {a(t)} of the operator Agy satzsfymg the relation given in
the diagram (2.3). Moreover the space components {m™ (a(t))} are horizontal lifts
of {c(t)} according to an arbitrary given initial point in M. If this curve {a(t)} is
included in ¥ # {0} (see (3.4)), then the space component {¢r(a(t))} gives a local
length minimizing curve on the non-singular part of the metric in Np.

4. EXAMPLES

In this section we deal with two examples for which we determine the bi-
characteristic curves of the Grushin (type) operator based on the known geodesics
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with respect to the submersion metric following the procedure explained in Theorem
3.4.

Total space of our examples are

(1) the Heisenberg group Ha,1 and

(2) the group SL(2,R).

The first example is rather elementary, but shows the typical procedure to ex-
press certain bi-characteristic curves and geodesics with respect to a singular metric
by solving the Hamilton system explicitly. Here by singular Riemannian metric, we
mean that it is defined only on an open dense subset. For this example it is some-
times called Grushin plane with such a metric.

We treated in the previous papers [4,7] on the completely integrability of bi-
characteristic flows of the several sub-Laplcians on SL(2,R). In this note we can
only give a special geodesic curve on the Grushin upper half plane based on Theorem
3.4.

4.1. Heisenberg group case. Let Ho,y 1 = R?*! be the 2n + 1 dimensional
Heisenberg group with the group law given by

Hopi1 X Hopgq 3(z,y,2) x (2,4, 2) —

N /
<w+x’,y+y’,z+z’+ (x,y) 5 <y7x>>

S H2n+17
where x = (x1,...,2,) €R", y= (y1,...,yn) € R", z€ Rand (z,y) = > x;y; and
S0 on.

Let X; and Y; (i = 1,...,n) be left invariant vector fields defined by

. 0 yia
Xi=5n " 202
0 15,
Yi= o, + 58

The group Hoy 1 is equipped with the left invariant Riemannian metric defined by
assuming that the left invariant vector fields {XZ-,Y;, Z = %} are orthonormal at
each point.

We consider a left invariant subbundle % C T'(Hap41) spanned by the vector
fields {X;, Y;} ;. Since [X;, Y;] = Z, it is bracket generating and defines a sub-
Riemannian structure. Also it gives a connection of the principal bundle ¢g :
Hopy1 — Hopi1/Z = R?" where Z = {tZ | t € R} is the center.

Let Y be a subgroup generated by {Y;}I" ;. We consider the double fiberation

Hopp1
@ ©
R 2 Y\ Hypyq Hypi1)Z & R

whete p1(2,3,2) = (2, 2+ &) == (u,0) and pr(z,,2) = (2,3).
The vector fields dpr(X;) and dpr(Y;) are given by

0 0
dpr(Xi) = 5, er(Yy) =uig .
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In this case the Grushin operator G is defined by

0? , 072
—g = Z ou? + Zuz " ov?
Let’s denote the Euclidean Laplacian on R?" by —Agan = 86722 + %22 and the sub-

Laplacian Agy, on Hopy1 by —Agyp = X:Xi2 + Yi2. Then their principal symbols
are given by

T\ 2 T\ 2
OA (@, Y, 26,1, T) :Z<fi_%> + (WH ; ) ’
(5371/725577777) € T*(H2n+1) = R2n+1 X R2n+17

og(uvia, B) = (3 af +[ul*8?).
(u,v; 0, ) € T*(Y)\Hzpy1 = R x R™

So we have a (pp-related pair of Hamiltonians { OA s ag} and @p-related pair of
Hamiltonians {aAsub, TAgan }

The horizontal lift of the line (z(s),y(s)) = (&os+2°,mos+y°) in Hopy1/Z =2 R?™
with respect to the connection H is given as lines {7(s) = (z(s),y(s), z(s))} with

1
2(s) = 5 (00.4) — (€.") s+ 2

Then there is a bi-characteristic curve of the Grushin operator {g(s) =
(u(s),v(s);a(s),5(s))} such that the curve {¢r(5)} coincides with the projection
{WY\H2+1 (g(s))}, that is

du da

ds «, ds u; 3%,
dv | o ag
dS - |u| 5) dS - O

Here the map my\p,, ., : T(Y\Ha2nt1) — Y \H2p 1 is the natural projection map
to the base space. Hence we have the possible line in Ha,11/Z which corresponds
to a projection to the base manifold of the bi-characteristic curve of the Grushin
operator. These are given by

u(s) = aps +u’,v(s) = constant.
4.2. SL(2, R) case. Let M = SL(2,R) and K = SO(2) a compact subgroup. We
consider the double fiberation (4.2) with the left and right coset spaces by the

subgroup K with the projection maps ¢, : SL(2,R) - GT = K\SL(2,R) and
or : SL(2,R) — H* = SL(2,R)/K:

SL(2,R)

(4.2) / K

K\SL(2,R) = G+ Ht = SL(2,R)/K.
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For the realizations of the maps ¢r and ¢, we consider the decompositions of

_ (T Y
g—<w Z)ESL(Q,R) as
a 0 1 0 cosf —sinb
gZ(O a_l> <0 1> <sin9 cosH)EANK
__(cos¢ —sinC) (p O 1 ¢q
_(sinC cos{)(O p_1> (0 1)€KAN’

a 0 1 b
whereAz{(O a_1>’a>0}andN:{<O 1>’bER}.

Then the map ¢pr defined by
or:g— (a,b) e HT 2Rt xR
and the map ¢y, defined by
pr:g— (p,q) € GT =R" xR

give the realizations of the quotient spaces.
The right coset space SL(2,R)/K is also given by the well-known action of
SL(2,R) on the upper half plane H" = {u + /—1v | v > 0}:

g VT =ut v/ —Iv= xv—-1l+y awtyz+v-1
wy/—1+ 2 w? 4 22 )

Then the correspondence

g>—>(u,v)—<

TW + Yz 1
w2 + 227 w2 4 22

> = (a®b,a®) < (a, b)

also gives a realization of the map ¢pg.
We identify the tangent bundle T'(SL(2,R)) with the product bundle SL(2,R) x
s[(2,R) by left invariant vector fields and consider a left invariant subbundle H

1 0 0 1
spanned by X = (0 _1> and Y = <1 0>,

M = SL(2,R) x [{X,Y}] < T(SL(2,R)).

We denote the left invariant vector fields defined by X and Y by X and Y respec-
tively and define a left invariant inner product on H by assuming that the vector
fields X and Y are orthonormal at each point.

cosf) —sind
Then for k(0) = (sin9 cos 0 ),

(43) Adyg)(X) = (cos 62 —sin#?) X + 2sinfcosf - Y,
4.3
Adyp)(Y) = —2cosfsin6 - X + (cos 62 —sin6?) Y.

Hence the action by K leaves H invariant and the action is orthogonal so that the
submersion ¢r defines the submersion metric gt on H*. Also this subbundle H

defines a connection on the principal bundle SL(2,R) 25 H.
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In terms of the coordinates ( ) he metric tensor are given by

a 9 9 ay/] 1
g+(%7%) g (811781)) 0 402

and is the well-known as the Poincaré metric. In the following we consider the
metric as g+ = 2 +d” (constant is omitted).

Let Ay = (X2—|—Y2) be the sub-Laplacian on SL(2, R) with respect to the sub-
Riemannian structure 4, Ag+ the Laplacian on HT with respect to the Riemannian
metric g 7.

Proposition 4.1. The functions oa,,, and oa,. , the principal symbols of the
operators Agyp and Ag+, are a pair of pr-related Hamiltonians.

The left invariant vector fields X and Y are descended to the left coset space
G™ and they are linearly independent on the whole space GT, since the vectors
X,Y,Ady(K) € sl(2,R) are linearly independent for any g € SL(2,R). So we
can introduce a metric on G™ by assuming that the two vector fields dyy, (X' ) and
do L( ) are orthonormal everywhere. We call G equipped with this metric Grushin
upper half plane(cf. [3]).

Then the operator

G =~ (dpr(X)? + dpr(V)?)
is a Grushin type operator and satisfies the condition in Proposition 3.3:
SOE oG = Asub © QP*L
Hence,

Proposition 4.2. The functions o, € C*(T*(SL(2,R))) and og € C=(T*(G™1))

are a pr-related pair of Hamiltonians.
Using the relations
1 . 1,
al=wt+22= i(pf2 —p? = p?¢%) cos 2¢ + qsin 2¢ + i(p 240+ 0%,
1

b=zxw+yz = §(p2 + p?¢® — p?)sin 2¢ + g cos 2¢,

the intersection
2 =1 (T*(GM) [ ¢r(T*(HY)) := L[| Sk
is characterized as follows:

Lemma 4.3.
XN ER 5 &1da + Exdb
ab
€1 ac ac
A —551(111 + z )_5{(172 + p?¢? —p_2) sin 2¢ + 2q cos 2C}

+ Eg{(p2 4—]92(]2 — p_2) cos2¢ — 2¢sin2¢} = 0.

+52
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The geodesics in HT are well-known and they are described in the following way
in terms of the coordinates (u,v):

Since all the geodesics are given as space components of solution curves of the
Hamilton vector field HUAH+, we consider a solution curve {4} of HUAH+ with the

initial condition wg = (ug, vo; g, Bo) € T*(HT). Then the space component {y} of
{7} is expressed as

Uy = {(uo, voetﬁovo)}, or
(4.4) Coy = {(u— 10, v) | (u—10)* +v* =1, v >0},

2 2
where ag # 0 and @y = ug + a—gvo, r3 = (%TJ;%) v3.
0

First, we deal with the second case. The upper semi-circle is parameterized as
u = Uy + ro tanh(t + tg), v(t) = rocosh(t +tp), t € R,
and the value ¢y is uniquely determined by the equations
2 2
af + .
0 60, and sinhty = @.
(o)) @

The horizontal lift \(Cs,) of the upper semi-circle Cp, to SL(2,R) along the
subbundle H with the initial point

_ (Vv 0 1 wp/vg\ [cosby —sinfy) up
gO_( 0 1/y/v) \O 1 sinfy cosfy ) (\%a UO,GO)

coshty =

is given by
T . aouo + Bovo
—————— sinh(t + tg) — ———=— - cosh(t + to), 6(¢) | .

( cosh(t + to) VoA /a% + /Bg

The horizontality condition requires that 6(t) = 21; ((t t)). Hence with a suitable ¢ty € R
t - t 1
(4.5) o(t) = / i(s) ds = / ds = arctan e’ — arctan e.
1o 20(s) to 2cosh s

—_—~—

Moreover there is a solution curve A\(Cy,) of the Hamilton vector field H, A,,, O

T*(SL(2,R)) such that X(/\(Cx’w/o)) = 4. It is given by the curve:

v
)‘(Cwo) :{ (a(t)v b(t)7 H(t)§ §1 (t)7 fg(t), 53(&)}
B 7o . aoup + Bovo '
= ( m, sinh(t + o) — UO\/TTW -cosh(t + to), O(t + to);
_ sinh(t + 1) + 2iigry 2 cosh(t + to) 1 )

y ) 0
4./1g cosh(t + tp) 4 cosh(t + tp)

Among these curves, curves with the condition &(2) +1= r% are included in X7 NXp.
It will be hard to describe all the geodesic curves on the Grushin upper half plane
explicitly. Here by the above argument the projection {(p(t),q(t))} of the curve
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{(a(t),b(t),0(t))} to GT is a geodesic curve with respect to the Grushin metric and
are given as (we put to = 0 for simplicity)
2 _ 2 2 2 . 212 2 -2 2
p(t)* = a” cos” 0 + 2a*bcos §sin § 4+ a“b* sin” 0 + a~ “ sin“ 0
= (1 + sinh(¢)?)~tx

70 2rgsinh(t) [ . o
Losh(tﬁ cosh(?) (Smh(thcosh(t))

70 . o 2 cosh(t) ]| .
+ {cosh(t) (Slnh(t) + o cosh(t)> + - } smh(t)2]

2q(t)p(t)* = (a®b* — a* + a~?)sin 20 + 2a°b cos 20
= (1 +sinh(t)*) "'

ro ) g 2 o cosh(t) .
[{ cosh () (smh(t) + . cosh(t)) ~ cosh(D) + o } (2sinh(t))

2ro(1 — sinh(¢)?) [ o
h(t — cosh(t .
+ cosh (1) sinh(t) + o cosh(t)

As for the line ¢, the line with uy = 0 is only the geodesic whose horizontal lift
to SL(2,R) is the space component of a curve of the Hamilton vector field Hg.,.
and as a geodesic in G™ it is given by

tBo

(p,q) = (v/voe?0,0).
5. EMBEDDING AND FINAL REMARKS

So far, our main interest was a relation between Hamilton flows in the framework
of a submersion. In this last section we discuss a relation between Hamilton flows
and embeddings.

Let € : M — L be an embedding or we assume M is a closed submanifold in
L, then we may consider that the natural projection ¢*(7%(L)) — T™(L), where
e*(T*(L)) is the induced bundle by the map e, is also an embedding so that we
regard it as a submanifold of 7*(L). The bundle map (de)* : e*(T*(L)) — T*(M)
on M, the dual map of the differential de, is a submersion.

We assume that there exist functions = € C°(T*(L)) and ® € C*°(T*(M)) such
that

E|5*(T*(L)) = (I) e} (de’;‘)*

Then

Proposition 5.1. The Hamilton flow {=} leaves the submanifold *(T*(L)) in-
variant and the following diagram is commutative:

e (T*(L)) 25541 (L)

(5.1) <ds>*l l(de)*
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The proof is similar to the case of Theorem 2.1(cf. [5]).

We also call such a pair of Hamiltonians an embedding-related pair of Hamil-
tonians, or in case the embedding is specified by a map e, then e-related pair of
Hamiltonians.

Then we assume an extension of a submersion, that is let € : M — L be an
embedding, ¢ : M — N and 7 : L. — N submersions satisfying the condition that
moe = . The functions = and ® are as above and assume there is a function
U € C°(T*(N)) such that the pair {®, U} is p-related Hamiltonians, then

Proposition 5.2. the pair {Z, U} is w-related Hamiltonians.

Let V, be the vertical subbundle of the submersion 7 : L — N and H a horizontal

subbundle in T'(L):
T(L)=V: ®H,

then the induced bundle ¢*(#H) is a horizontal subbundle of T'(M). If H is equipped
with an inner product @y such that it defines a submersion metric on 7'(/V), then
the induced inner product on £*(#) defines the same submersion metric on T'(N).
Hence the co-norm functions {EH*, (I)E*(H*)} are a e-related pair of Hamiltonians,
and {EH*, W N)} is a m-related pair of Hamiltonians.

Now we treat the case SL(2,R) again as a simple example. We consider the
inclusion SL(2,R) C GL"(2,R) and the map

7R GLT(2,R) > <f; Z) — (u,v) € HT,

where
TW + Yz TZ — Yyw
(52) SRy VT Ry
This map is the natural extension of the map ¢gr and gives the realization of the
right coset space of GLT(2,R) by the subgroup SO(2) x RT. The group R* is
identified with the diagonal matrix in GL*(2,R).

The left invariant vector fields X and Y are tangent to the each hypersurface

defined by the equation det (i 'Z) = xz — yw = constant.

As before let H be the left invariant subbundle in T(GL*(2,R)) spanned by X
and Y. In this case the subbundle # is not bracket generating on GL"(2,R) and so
does not define a sub-Riemannian structure, but we define an inner product on H as
before. Then the right action by the subgroup R* leaves these vector fields(in fact
all left or right invariant vector fields), the submersion metric on H* can be defined
with the same metric g given by the submersion ¢g : SL(2,R) — SL(2,R)/SO(2).

Let G be the left coset space of GLT(2,R) by the subgroup SO(2) x R*. Then
the map 77 : GLT(2,R) — R x RT = G+ given by

TW + Yz Tz — Yyw

— T y — — e
(53) WLBQ—(U) Z)'—></’L7I/)7/'L_ :Z}2+’w27V x2+w27

is the realization of the left coset space G and the natural extension of the map
1. We can install the metric on G by assuming that the descended vector fields

drr(X) and drp(Y') are orthonormal. The resulting metric is same with the metric
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defined in the SL(2,R) case (=Grushin metric). We denote its co-norm function by
W

GLT(2,R)

5.0 / lq\

R xRt =Gt <— SL(2,R) ——= H* 2R x Rt
PL PR

Proposition 5.3. The pair of the Hamiltonians { Ey+, U+ } is mr-related and the
pair of Hamiltonians { Zy, Vg+ } is mp-related.

Finally we remark that the Hamilton system Hz, , can be expressed in a symmet-
ric way on T*(GL"(2,R)) = GLT(2,R) x R* by using the coordinates (z,y,w, z) =

g = Z) Z € GL"(2,R) and it gives invariants of the system rather easily, but

we do not enter the details.
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