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includes double fiberations given by left and right coset spaces of Lie groups, which
are the most interesting cases.

In §2 we explain basic properties of Hamilton systems defined by a submersion-
related Hamiltonians and treat the case of “co-norm functions” as Hamiltonians.

Then in §3 we show a correspondence of Hamilton curves with respect to two
pairs of double submersion-related Hamiltonians arising from a double submersion.
At the end of this section we summarize as a theorem of our method to construct
geodesics with respect to “Grushin metric” from known geodesics of the Riemannian
sense of one base manifold.

In §4 we show concrete examples, left and right coset spaces of the Heisenberg
group and SL(2,R) where in the first case one coset space is called the Grushin
plane, and for the second case Grushin upper half plane with a metric different
from the Poincaré metric.

In §5 as a final remark we shortly explain the case of an embedding-related
Hamiltonians, an opposite situation to the submersion cases (see [5] for the method
employed there).

2. Submersion and Hamilton flow

In this section we discuss some basic relations of Hamilton systems and their
solution curves with respect to the Hamiltonians defined on the total space and the
base space of a submersion under some relation. Here Hamiltonians are given as
the co-norm functions on the horizontal subbundle and the submersion metric on
the base manifold.

2.1. Submersion-related pair of Hamiltonians. Let φ : M → N be a surjective
submersion between orientable manifolds M and N (dimM = m, dimN = n and
d = m− n ≥ 0).

The dual of the differential dφ : T (M) → T (N) induces an injective bundle
map (dφ)∗ : φ∗(T ∗(N)) → T ∗(M) and it can be seen as a natural embedding of
the manifold φ∗(T ∗(N)) (= the induced bundle of T ∗(N) to M by the submersion
φ : M → N). So, we regard the induced bundle ΣN := φ∗(T ∗(N)) as a submanifold
in T ∗(M) through the map (dφ)∗. Then we have the following intrinsic relations
among their cotangent bundles, which can be expressed in the form of a commutative
diagram:

(2.1)

In the diagram the map πM and πN denote the natural projection maps to
the base manifolds M and N respectively. We denote the natural projection map

φ∗(T ∗(N))
χ−→ T ∗(N) by χ. The map χ is a submersion too.

Hereafter, we denote the Hamilton vector field corresponding to a function f ∈
C∞(T ∗(M)) (also to functions in C∞(T ∗(N))) by Hf .



SUBMERSION AND HAMILTON FLOWS 383

Now we assume that there exist a smooth function Φ on T ∗(M) and a smooth
function Ψ on T ∗(N) satisfying the condition that the restriction of Φ to the sub-
manifold φ∗(T ∗(N)) coincides with the function χ∗(Ψ), i.e.,

(2.2) Φ∣∣φ∗(T ∗(N))
= χ∗(Ψ).

We call such a pair of functions a “submersion-related pair of Hamiltonians” or
in the case that the submersion is specified with a map φ, then we call “φ-related
pair of Hamiltonians.”

Then

Theorem 2.1 (see [4, Proposition 2.8]). The Hamilton flow {exp tHΦ} of the
Hamiltonian Φ leaves the submanifold φ∗(T ∗(N)) invariant. Moreover the following
diagram is commutative:

(2.3)

Proof. By the implicit function theorem, it is enough to give the proof on a local
coordinate neighborhood of the form W = U × V ⊂ M with coordinates U × V ∋
q 7→ (x, y) = (x1, . . . , xn, y1, . . . , yd) ∈ Rn × Rd such that the submersion φ is given
as the projection map φ : (x, y) 7→ x. So U can be seen as a local coordinate
neighborhood in N with the local coordinate U ∋ φ(q) 7→ (x1, . . . , xn). Then we
also have local coordinates on T ∗(W ) = {πM}−1(W ) and T ∗(U) = {πN}−1(U) by
the correspondences defined as

T ∗(W ) ∋
∑

ξidxi + ηjdyj ←→ (x, y ; ξ, η) ∈ U × V × Rn × Rd,

T ∗(U) ∋
∑

ξidxi ←→ (x ; ξ) ∈ U × Rn.

Then we can express the map (dφ)∗ in this coordinates as

(dφ)∗ : φ∗(T ∗(U)) ∼= U×V ×Rn ∋ (x, y ; ξ) 7→ (x, y ; ξ, 0) ∈ U×V ×Rn×Rd ∼= T ∗(W )

and the assumption (2.2) is expressed on the submanifold T ∗(W ) in the form that

Φ(x, y ; ξ, 0) = Ψ(x ; ξ).

Since the Hamilton vector fields HΦ and HΨ are expressed as

HΦ =
∑(

∂Φ

∂ξi

∂

∂xi
+

∂Φ

∂ηj

∂

∂yj

)
−
∑(

∂Φ

∂xi

∂

∂ξi
+

∂Φ

∂yj

∂

∂ηj

)
,

HΨ =
∑(

∂Ψ

∂ξi

∂

∂xi
− ∂Ψ

∂xi

∂

∂ξi

)
,

the Hamilton vector field HΦ on φ∗(T ∗(U)) is of the form

HΦ =
∑(

∂Φ

∂ξi

∂

∂xi
+

∂Φ

∂ηj

∂

∂yj

)
−
∑(

∂Φ

∂xi

∂

∂ξi

)
= HΨ +

∑(
∂Φ

∂ηj

∂

∂yj

)
.
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Hence the solution of the equation

dηj
dt

= −∂Φ(x, y; ξ, 0)

∂yj
= −∂Ψ(x; ξ)

∂yj
≡ 0

with the initial condition η = 0 is identically zero, which says that the solution
curves of the Hamilton vector field HΦ starting from points in φ∗(T ∗(U)) stay in
this submanifold. Moreover after we solve the equations

(2.4)


dxi
dt

=
∂Φ

∂ξi
(x, y ; ξ, 0) =

∂Ψ

∂ξi
(x ; ξ),

dξi
dt

= − ∂Φ

∂xi
(x, y ; ξ, 0) = − ∂Ψ

∂xi
(x ; ξ),

with the initial point in φ∗(T ∗(U)), we can solve the equation

(2.5)
dyj
dt

=
∂Φ

∂ηj
(x(t), y ; ξ(t), 0)

independently. Here x(t) and ξ(t) are solutions of (2.4). Hence we have the com-
mutative diagram (2.3). �
Remark 2.2. Even if we delete the zero sections of the bundles in the diagram
(2.1), still holds the diagram:

(2.6)

since the natural map χ : φ∗(T ∗
0 (N))→ T ∗

0 (N) is isomorphic on each fiber and the
map (dφ)∗ is injective. Hence the assertions in Theorem 2.1 hold in such a case too.
In some cases the Hamiltonians might not be defined on the zero covectors.

2.2. Co-norm functions as Hamiltonians and submersion. Hamiltonians we
are concerning are those defined as the co-norm functions of the given subbun-
dles or Riemannian metrics, or in some case it will be understood as a principal
symbol of a (pseudo-)differential operator. In this section we define one of such a
submersion-related pair of Hamiltonians and remark the metric tensor in relation
to a submersion.

First we remark the following property as Proposition 2.3 (cf. [14]).
Let ıH : H ↪→ T (M) be a subbundle on which an inner product QH is installed.

Then there is a natural map defined by the equality

L : H∗ → H, ξ(Y ) = QH(L(ξ), Y ),

where ξ ∈ H∗
q and Y ∈ Hq and we can equip the dual bundle H∗ with the inner

product QH∗ through this relation. Then by composing the dual map ı∗H : T ∗(M)→
H∗ we have

g : T ∗(M)
ı ∗H−→ H∗ L−→ H, gq : T

∗
q (M)→ Hq

and define a positive bilinear form QT ∗(M) on T ∗(M) such that

QT ∗(M)(ξ, η) := QH∗
(
ı ∗H(ξ) , ı

∗
H(η)

)
.
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Now, we define a co-norm function ΦH∗ ∈ C∞(T ∗(M)) by

ΦH∗(ξ) :=
1

2
QT ∗(M)(ξ, ξ) =

1

2
⟨g(ξ), ξ⟩,

where ⟨Y, ξ⟩ denotes the natural pairing of Y ∈ Tq(M) and ξ ∈ T ∗
q (M). Let

x = (x1, . . . , xm) ↔ q ∈ M be a local coordinates around a point q ∈ M , and we
put

gq(dxi) =
∑

gi j(x)
∂

∂xj
.

Then

ΦH∗

(∑
ξidxi

)
=

1

2

∑
i

ξi

⟨
gq
(∑

k

ξkdxk
)
, dxi

⟩
=

1

2

∑
ξiξk g

k i(x).

The Hamilton vector field HΦH∗ is

HΦH∗ =
∑(

∂ΦH∗

∂ξℓ

∂

∂xℓ
− ∂ΦH∗

∂xℓ

∂

∂ξℓ

)
=
∑
i, ℓ

ξi g
i ℓ(x)

∂

∂xℓ
−
∑
i, k, ℓ

ξiξk
∂gk i(x)

∂xℓ

∂

∂ξℓ
.

So

(2.7)
∑ dxℓ

dt

∂

∂xℓ
=
∑
i, ℓ

ξig
i ℓ(x)

∂

∂xℓ
= gq

( ∑
ξidxi

)
∈ Hq.

As before we denote by πM : T ∗(M)→M the projection map to the base manifold.
Let {γ(t)} ∈ T ∗(M) be a solution curve of the Hamilton vector field HΦH∗ , then by
the expression (2.7) we have

Proposition 2.3. The curve
{
πM (γ(t))

}
on M is tangent to H, i.e., the tangent

vectors
{dπM (γ)(t)

dt

}
of the curve belong to the subbundle H.

We call the curve
{
πM (γ(t))

}
the space component of the solution curve of the

Hamilton vector field HΦH∗ .

Remark 2.4. Let {Xj} be a local orthonormal basis of the subbundle H. We put
D = −

∑
j Xj

2 a locally defined second order differential operator and L◦ ıH ∗(θ) =∑
aj(θ)Xj . Then aj(θ) = ⟨Xj , θ⟩ and

|| θ ||2 = θ(L ◦ ı ∗H(θ)) =
∑
j

⟨Xj , θ⟩ 2 = σD(q, θ), θ ∈ T ∗
q (M),

where the first equality is by definition of the norm and the last quantity is the
principal symbol of the differential operator D.

Now, let φ : M → N be a surjective submersion and we fix a decomposition

(2.8) T (M) = V ⊕H,

where V = Ker (dφ) is the vertical subbundle and H is a horizontal subbundle. Also
we assume that the horizontal subbundle H is equipped with an inner product QH
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which can be descended to the base manifold N by the submersion φ, that is we
assume that

(2.9)
If φ(x) = φ(x′), the map dφx

−1 ◦ dφx′ : Hx′ −→ Hx is isometric,
where dφx

−1 : Tφx(N)→ Hx is the inverse map of the restriction
dφx|Hx

.

Then it will be clear that the manifold N can be equipped with a Riemannian
metric by the obvious way. Such a Riemannian metric is called a submersion metric.

Under these assumptions we consider the commutative diagram:

(2.10)

In the commutative diagram above, the bundles φ∗(T (N)) and φ∗(T ∗(N)) denote
the induced bundles of the tangent and the cotangent bundle of the manifold N
to the total space M by the map φ, respectively. Also the map πM is the natural
projection maps to the base space M of the tangent bundle (also πN : T (N)→ N).
Other maps without notations are all natural maps.

The composition dφ ◦ ıH : H → φ∗(T (N)) is isomorphic (between vector bundles
on M) and we transfer the inner product on H to φ∗(T (N)). The condition (2.9)
allows us to descend the inner product on φ∗(T (N)) to T (N) and we consider the
manifold N is equipped with this Riemannian metric. We denote it by gN . Then we
consider the duals of these bundles, especially we denote the dual metric on T ∗(N)
by QT ∗(N).

The transferred metric of the dual metricQH∗ onH∗ to the dual bundle φ∗(T ∗(N))
through the dual isomorphism ıH

∗◦ıH∗◦(dφ)∗ of dφ◦ıH also can be descended to the
cotangent bundle T ∗(N), which coincides with the dual metric of the submersion
metric on T (N). Hence,

Theorem 2.5. The pair of functions

ΦH∗(θ) :=
1

2
QH∗(ıH

∗(θ), ıH
∗(θ)), θ ∈ T ∗(M),

Ψ(α) :=
1

2
QT ∗(N)(α, α), α ∈ T ∗(N)

is a φ-related pair of Hamiltonians.

Corollary 2.6. Let w = w(θ) be a smooth function on T ∗(M) such that it vanishes
on φ∗(T ∗(N)). Then ΦH∗ + w and Ψ is also a pair of φ-related Hamiltonians.

Especially if gV∗ is an inner product on the dual of the vertical subbundle V and

we put wV∗(η) := gV∗(η, η), η ∈ V∗. Since the bundle map V
ıV
↪→ T (M)

dφ→ φ∗(T (N))
is the zero map onto φ∗(T (N)), the function (dφ ◦ ıV)∗(wV∗) vanishes identically
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on the submanifold φ∗(T ∗(N)). Hence the pair ΦH∗ + (ıV)
∗(wV∗) and Ψ is φ-

related Hamiltonians. Moreover in this case the solution curves on φ∗(T ∗(N)) of
the Hamilton vector field HΦH∗+(ıV )∗(wV∗ ) coincide with those of the Hamilton vector
field HΦH∗ .

2.3. Horizontal lifts. Let φ : M → N be a surjective submersion between ori-
entable manifolds M to N .

We assume a decomposition T (M) = V ⊕ H by the vertical bundle V and a
horizontal subbundle H as in the last section.

Consider the diagram of vector bundles on M in which the low is exact.

(2.11)

The composition dφ ◦ ıH is an isomorphism between the vector bundles H and
φ∗(T (N)) on M .

The composition of the natural map Γ(T (N)) := X (N) → Γ(φ∗(T (N))) from
the space of vector fields on N and the inverse map of dφ ◦ ıH : H → φ∗(T (N))
defines a map λ : X (N) → Γ(H), which gives the horizontal lift λ(X) of a vector
field X ∈ X (N) as a vector field on M which takes values in H.

Now we assume that the manifold M is equipped with a Riemannian metric gM
such that the vertical subbundle V and the horizontal subbundle H are orthogo-
nal. So, let QV and QH be the inner product on V and H, the restrictions of the
Riemannian metric, then gM can be written as gM = QH +QV .

Moreover we assume as before the condition (2.9), that is the inner product QH
defines a submersion metric gN on N .

Let’s denote the metric tensor

GM = GM (x, y) =

{(
gi j si α
sα i vαβ

)}
:=

{(
gN S
tS V

)}
in terms of the local coordinates (x, y) (see the proof of Theorem 2.1 of the coordi-
nates), where we put

gij = gM

(( ∂

∂xi

)
,
( ∂

∂xj

))
= QH

(( ∂

∂xi

)
,
( ∂

∂xj

))
,

siα = gM

(( ∂

∂xi

)
,
( ∂

∂yα

))
,

vαβ = gM

(( ∂

∂yα

)
,
( ∂

∂yβ

))
= QV

(( ∂

∂yα

)
,
( ∂

∂yβ

))
.

For each X ∈ Tφ(q)(N) its horizontal lift λ(X)q ∈ Hq at the point q ∈ M satisfies
the condition that

for ∀γ, gM

(
λ(X),

( ∂

∂yγ

))
= 0,
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especially if we put L
((

∂
∂xi

))
=
(

∂
∂xi

)
+
∑

biα

(
∂

∂yα

)
, then

gM

(( ∂

∂xi

)
+
∑

biα

( ∂

∂yα

)
,
( ∂

∂yγ

))
= siγ +

∑
biαvαγ = 0.

Hence

B = −S · V −1.

The condition (2.9) and the property that the tensors gij(x, y) for 1 ≤ i, j ≤ n
do not depend on the variables y, are equivalent.

Now let’s assume the subbundle H is bracket generating. Space components of
solution curves of the Hamilton vector field HΦH∗ are called geodesics. In the sub-
Riemannian setting, it is not true that every geodesic is a locally length minimizing
curve in the sense of the Carnot-Carathéodory metric (cf. [12, 14]).

However from the above arguments we know that space components (= geodesics)

of solution curves of the Hamilton vector field HΦH∗ included in φ∗(T ∗(N))
(dφ)∗

↪→
T ∗(M) are locally length minimizing curves. Since if γ̃ is such a curve in M , then it
is a horizontal lift of a space component γ in N , which is a locally length minimizing
curve as a space component in a Riemannian manifold, so that γ̃ must be also a
(locally)length minimizing curve.

3. Double submersion and bi-characteristic curves

Let

(3.1)

be two surjective submersions between a total space M and two base manifolds NR

and NL. All manifolds are assumed to be orientable and M is equipped with a
Riemannian metric gM .

We call such a pair of submersions a double submersion.

Based on the properties proved on the Hamiltonian flows in the previous section
we discuss a relation of Hamiltonian curves of a φR-related pair of Hamiltonians
(Φ,ΨR) of a submersion φR : M → NR, and a φL-related pair of Hamiltonians
(Φ,ΨL) of a submersion φL : M → NL.

Let

VR = Ker (dφR) and VL = Ker (dφL)

be the vertical subbundles of the submersions φR and φL, respectively.
By Proposition 2.1, solution curves of the Hamilton vector field HΦ passing

through

Σ :=φR
∗(T ∗(NR)) ∩ φL

∗(T ∗(NL)) = ΣNR

∩
ΣNL

=
{
θ ∈ T ∗(M) | θ = 0 on VR + VL

}
(3.2)
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are descended to both of solution curves of the Hamilton vector fields HΨR
and

HΨL
. In a certain case, it gives us a length minimizing curve on one base manifold

from geodesics on another base manifold.
We restrict ourselves to a special case of those Hamiltonians defined as a co-

norm function or a principal symbol of an operator. So, we consider the orthogonal
decomposition

T (M) = VR ⊕HR

with respect to the metric gM , where HR is the horizontal subbundle. We assume
the following 3 conditions:

(1) The inner product QHR
on HR, the restriction of the Riemannian metric gM ,

is descended to the base manifold NR. We denote the resulting submersion metric
on NR by gNR

.

(2) We assume the horizontal subbundle H := HR is bracket generating of 2 step,
that is the naturally induced bundle map

ρ := ρH⊗H
T (M)/H : H⊗H → T (M)/H

from the the bracket operation

Γ(H) × Γ(H) ∋ (X , Y ) 7→ [X , Y ] ∈ Γ(T (M)) := X (M)

is surjective.

The tensor product H⊗H is equipped with a natural inner product and by the
assumption (2) that the map

ρ := ρH⊗H
T (M)/H : H ⊗H → T (M)/H

is surjective, so that we can install an inner product on the quotient bundle T (M)/H
by assuming that it is isometric with the orthogonal complement of the kernel Ker(ρ)
of the map ρ. Hence we transfer this inner product to the subbundle VR through
the isomorphism T (M)/H ∼= VR.

(3) We assume that the inner product on VR installed above coincides with the
restriction of the Riemannian metric gM on VR.

Then under the assumptions (1), (2) and (3) the Popp’s measure coincides with
the Riemannian volume form (cf. [1, 2, 12]), so that we denote them by dgM .

Let gradH(f) be the gradient vector field of a function f ∈ C∞(M) along the
subbundle H = HR, which is defined by the relation

df(X) = QH(gradH(f) , X), X ∈ H.

Also we denote by grad(f) the gradient vector field of the function f in the usual
Riemannian sense, that is it is defined by the relation

df(X) = gM (grad(f), X), X ∈ T (M).

We denote by LX the Lie derivative with respect to a vector field X ∈ X (M).
Then the divergence divdµ(X) ∈ C∞(M) of a vector field X ∈ X (M) with respect
to a smooth measure dµ on M is defined by the equation

LX(dµ) = divdµ(X)dµ = (d ◦ iX + iX ◦ d)(dµ) = d ◦ iX(dµ),
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where iX is the interior product by the vector field X. One way to define the
Laplacian ∆ is given in terms of grad and divdgM operations in the following way
that

∆(f) = divdgM ◦ grad(f), f ∈ C∞(M).

We can also define an operator ∆sub, called a sub-Laplacian by a similar way as the
Laplacian that

∆sub(f) = divdgM ◦ gradH(f), f ∈ C∞(M).

This is a second order differential operator defined by an intrinsic way in a sense
that it is defined solely based on the assumptions (1), (2) and (3). It is sub-elliptic
and not elliptic unless H = T (M).

The principal symbol σ∆sub
∈ C∞(T ∗(M)) coincides with the co-norm function

2ΦH∗ . Let ∆NR
be the Laplacian on NR with respect to the submersion metric.

Then the principal symbol σ∆NR
coincides with the co-norm function 2ΨT ∗(NR).

Proposition 3.1. The pair of functions σ∆sub
and σ∆NR

is φR-related Hamiltoni-
ans. Also the pair of functions σ∆ and σ∆NR

is φR-related too.

Now in addition to the above three assumptions (1), (2) and (3), we assume
(4) there exists a second order (differential or pseudo-differential) operator G :

C∞
0 (NL)→ C∞(NL) such that

∆sub ◦ φL
∗(f) = φL

∗ ◦G(f), f ∈ C∞
0 (NL).

Then

Proposition 3.2. The functions ΦH∗ = 1
2σ∆sub

and ΨL := 1
2σG are a φL-related

pair of Hamiltonians.

This is a special case and we show a general property for the case of the differential
operators.

Proposition 3.3. Let φ : M → N be a submersion. If we are given two differential
operator DM on M and DN on N of the same order, say second order and these
satisfy the condition that φ∗◦DN = DM ◦φ∗ on C∞

0 (N). Then the principal symbols
σDM

and σDN
are a φ-related pair of Hamiltonians.

Proof. Let (x, y) be a local coordinates around a point q ∈ M appearing in the
proof of Theorem 2.1, so that the submersion φ is expressed as the projection:
φ : (x, y) 7→ x. Then the operators DM and DN are expressed as

DM =
∑
i, j

ai j(x, y)
∂2

∂xi∂xj
+
∑
i

bi(x, y)
∂

∂xi
+ c(x, y)

+
∑
k, ℓ

ãk,ℓ(x, y)
∂2

∂yk∂yℓ
+
∑
i, k

b̃i k(x, y)
∂2

∂xi∂yk
+
∑
k

c̃k(x, y)
∂

∂yk
,

DN =
∑
i, j

αi j(x)
∂2

∂xi∂xj
+
∑
i

βi(x)
∂

∂xi
+ γ(x).
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Let f be a smooth function defined around a point φ(q) having the properties that
f(φ(q)) = 0 and df φ(q) =

∑
ξidxi ̸= 0. Then by the assumption

(3.3) DM (φ ∗(f2))(q) = 2
∑
i, j

ai j(x, y)ξiξj = φ ∗ ◦DN (f2)(q) = 2
∑
i, j

αi j(x)ξiξj .

Hence ai j(x, y) = αi j(x) and the equality can be understood as the coincidence

σDM
(q, d(φ∗(f))q) = σDN

(φ(q), df φ(q)),

that is the pair of principal symbols satisfy the condition (2.2). �

Under these assumptions (1), (2), (3) and (4), bi-characteristic curves of the
sub-Laplacian on M passing through

(3.4) Σ = φR
∗(T ∗(NR))

∩
φL

∗(T ∗(NL)) ̸= {0}

correspond to the both of the bi-characteristic curves of the operator G and
the Laplacian on NR according to the diagram (2.3) (note that the embedding
φ∗
R(T

∗(NR)) ⊂ T ∗(M) and φ∗
L(T

∗(NL)) ⊂ T ∗(M) are given by the map (dφR)
∗ or

(dφL)
∗).

In the Riemannian case, (locally) length minimizing curves and the space com-
ponents of bi-characteristic curves of the Laplacian coincide.

However in the sub-Riemannian case, even for our cases of the assumption (2)
above, geodesics (= space components of the solution curves of the Hamilton vector
field HΦH∗ ) will not be always (local) length minimizing curves (cf. [14]).

One of our purpose is to obtain a special curve of bi-characteristic curves of a
Grushin type operator on NL from known geodesics on NR.

All the examples in the next section satisfy an additional property to (2) that
the principal symbol of the operator G defines a Riemannian metric at least on an
open dense subset in NL(see the expression (3.3) in the proof of Proposition 3.3).
Then such a special curve, that is coming from geodesics on NR gives a singular
geodesics on NL. These are given as examples in the next section.

Finally, under assumptions (1) ∼ (3) and an additional assumption on the oper-
ator G explained in (4), we sum up a method to obtain a length minimizing curve
as a

Theorem 3.4. We assume that a double submersion (3.1) satisfies the assumptions
(1) to (4). Let {c(t)} be a geodesic in NR, then there is a bi-characteristic curve
{c̃(t)} in T ∗(NR) whose space component {πN (c̃(t))} = {c(t)} and also there are
bi-characteristic curves {ã(t)} of the operator ∆sub satisfying the relation given in
the diagram (2.3). Moreover the space components {πM (ã(t))} are horizontal lifts
of {c(t)} according to an arbitrary given initial point in M . If this curve {ã(t)} is
included in Σ ̸= {0} (see (3.4)), then the space component {φL(ã(t))} gives a local
length minimizing curve on the non-singular part of the metric in NL.

4. Examples

In this section we deal with two examples for which we determine the bi-
characteristic curves of the Grushin (type) operator based on the known geodesics
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with respect to the submersion metric following the procedure explained in Theorem
3.4.

Total space of our examples are
(1) the Heisenberg group H2n+1 and
(2) the group SL(2,R).
The first example is rather elementary, but shows the typical procedure to ex-

press certain bi-characteristic curves and geodesics with respect to a singular metric
by solving the Hamilton system explicitly. Here by singular Riemannian metric, we
mean that it is defined only on an open dense subset. For this example it is some-
times called Grushin plane with such a metric.

We treated in the previous papers [4, 7] on the completely integrability of bi-
characteristic flows of the several sub-Laplcians on SL(2,R). In this note we can
only give a special geodesic curve on the Grushin upper half plane based on Theorem
3.4.

4.1. Heisenberg group case. Let H2n+1
∼= R2n+1 be the 2n + 1 dimensional

Heisenberg group with the group law given by

H2n+1 ×H2n+1 ∋(x, y, z)× (x′, y′, z′) 7→(
x+ x′, y + y′, z + z′ +

⟨x, y′⟩ − ⟨y, x′⟩
2

)
∈ H2n+1,

where x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , yn) ∈ Rn, z ∈ R and ⟨x, y⟩ =
∑

xiyi and
so on.

Let Xi and Yi (i = 1, . . . , n) be left invariant vector fields defined by

Xi =
∂

∂xi
− yi

2

∂

∂z
,

Yi =
∂

∂yi
+

xi
2

∂

∂z
.

The group H2n+1 is equipped with the left invariant Riemannian metric defined by
assuming that the left invariant vector fields

{
Xi, Yi, Z = ∂

∂z

}
are orthonormal at

each point.
We consider a left invariant subbundle H ⊂ T (H2n+1) spanned by the vector

fields {Xi, Yi}ni=1. Since [Xi, Yi] = Z, it is bracket generating and defines a sub-
Riemannian structure. Also it gives a connection of the principal bundle φR :
H2n+1 → H2n+1/Z ∼= R2n, where Z = {tZ | t ∈ R} is the center.

Let Y be a subgroup generated by {Yi}ni=1. We consider the double fiberation

(4.1)

where φL(x, y, z) =
(
x, z + ⟨x,y⟩

2

)
=: (u, v) and φR(x, y, z) = (x, y).

The vector fields dφL(Xi) and dφL(Yi) are given by

dφL(Xi) =
∂

∂ui
, φL(Yi) = ui

∂

∂v
.
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In this case the Grushin operator G is defined by

−G =:
∑ ∂ 2

∂u 2
i

+
∑

u2i ·
∂ 2

∂v 2
.

Let’s denote the Euclidean Laplacian on R2n by −∆R2n =
∑ ∂2

∂x 2
i
+ ∂2

∂y 2
i
and the sub-

Laplacian ∆sub on H2n+1 by −∆sub =
∑

X 2
i + Y 2

i . Then their principal symbols
are given by

σ∆sub
(x, y, z; ξ, η, τ) =

∑(
ξi −

yiτ

2

)2
+
(
ηi +

xiτ

2

)2
,

(x, y, z; ξ, η, τ) ∈ T ∗(H2n+1) ∼= R2n+1 × R2n+1,

σG(u, v;α, β) =
(∑

α 2
i + |u|2β2

)
,

(u, v;α, β) ∈ T ∗(Y)\H2n+1
∼= Rn+1 × Rn+1.

So we have a φL-related pair of Hamiltonians
{
σ∆sub

, σG
}
and φR-related pair of

Hamiltonians
{
σ∆sub

, σ∆R2n

}
.

The horizontal lift of the line (x(s), y(s)) = (ξ0s+x0, η0s+y0) in H2n+1/Z ∼= R2n

with respect to the connection H is given as lines {γ̃(s) = (x(s), y(s), z(s))} with

z(s) =
1

2

(
⟨η, x0⟩ − ⟨ξ, y0⟩

)
s+ z0.

Then there is a bi-characteristic curve of the Grushin operator {g(s) =
(u(s), v(s);α(s), β(s))} such that the curve {φL(γ̃)} coincides with the projection
{πY\H2+1

(g(s))}, that is
du

ds
= α,

dα

ds
= −uiβ2,

dv

ds
= |u|2β, dβ

ds
= 0.

.

Here the map πY\H2n+1
: T (Y\H2n+1) → Y\H2n+1 is the natural projection map

to the base space. Hence we have the possible line in H2n+1/Z which corresponds
to a projection to the base manifold of the bi-characteristic curve of the Grushin
operator. These are given by

u(s) = α0s+ u0, v(s) = constant.

4.2. SL(2, R) case. Let M = SL(2,R) and K = SO(2) a compact subgroup. We
consider the double fiberation (4.2) with the left and right coset spaces by the
subgroup K with the projection maps φL : SL(2,R) → G+ = K\SL(2,R) and
φR : SL(2,R)→ H+ = SL(2,R)/K:

(4.2)
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For the realizations of the maps φR and φL, we consider the decompositions of

g =

(
x y
w z

)
∈ SL(2,R) as

g =

(
a 0
0 a−1

)(
1 b
0 1

)(
cos θ − sin θ
sin θ cos θ

)
∈ ANK

=

(
cos ζ − sin ζ
sin ζ cos ζ

)(
p 0
0 p−1

)(
1 q
0 1

)
∈ KAN,

where A =

{(
a 0
0 a−1

) ∣∣∣ a > 0

}
and N =

{(
1 b
0 1

) ∣∣∣ b ∈ R
}
.

Then the map φR defined by

φR : g 7−→ (a, b) ∈ H+ ∼= R+ × R

and the map φL defined by

φL : g 7−→ (p, q) ∈ G+ ∼= R+ × R.

give the realizations of the quotient spaces.
The right coset space SL(2,R)/K is also given by the well-known action of

SL(2,R) on the upper half plane H+ ∼= {u+
√
−1v | v > 0}:

g ·
√
−1 = u+

√
−1v =

x
√
−1 + y

w
√
−1 + z

=
xw + yz +

√
−1

w2 + z2
.

Then the correspondence

g 7−→ (u, v) =

(
xw + yz

w2 + z2
,

1

w2 + z2

)
= (a2b, a2)←→ (a, b)

also gives a realization of the map φR.
We identify the tangent bundle T (SL(2,R)) with the product bundle SL(2,R)×

sl(2,R) by left invariant vector fields and consider a left invariant subbundle H

spanned by X =

(
1 0
0 −1

)
and Y =

(
0 1
1 0

)
,

H = SL(2,R)× [{X,Y }] ↪→ T (SL(2,R)).

We denote the left invariant vector fields defined by X and Y by X̃ and Ỹ respec-
tively and define a left invariant inner product on H by assuming that the vector
fields X̃ and Ỹ are orthonormal at each point.

Then for k(θ) =

(
cos θ − sin θ
sin θ cos θ

)
,

(4.3)

{
Adk(θ)(X) = (cos θ2 − sin θ2)X + 2 sin θ cos θ · Y,

Adk(θ)(Y ) = −2 cos θ sin θ ·X + (cos θ2 − sin θ2)Y.

Hence the action by K leaves H invariant and the action is orthogonal so that the
submersion φR defines the submersion metric g+ on H+. Also this subbundle H
defines a connection on the principal bundle SL(2,R) φR→ H+.
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In terms of the coordinates (u, v) the metric tensor are given by(
g+( ∂

∂u ,
∂
∂u) g+( ∂

∂u ,
∂
∂v )

g+( ∂
∂v ,

∂
∂u) g+( ∂

∂v ,
∂
∂v )

)
=

( 1
4v2

0

0 1
4v2

)
and is the well-known as the Poincaré metric. In the following we consider the

metric as g+ := du2+dv2

v2
(constant is omitted).

Let ∆sub = −
(
X̃2+Ỹ 2

)
be the sub-Laplacian on SL(2,R) with respect to the sub-

Riemannian structureH, ∆H+ the Laplacian onH+ with respect to the Riemannian
metric g+.

Proposition 4.1. The functions σ∆sub
and σ∆H+ , the principal symbols of the

operators ∆sub and ∆H+, are a pair of φR-related Hamiltonians.

The left invariant vector fields X̃ and Ỹ are descended to the left coset space
G+ and they are linearly independent on the whole space G+, since the vectors
X,Y,Adg(K) ∈ sl(2,R) are linearly independent for any g ∈ SL(2,R). So we

can introduce a metric on G+ by assuming that the two vector fields dφL(X̃) and

dφL(Ỹ ) are orthonormal everywhere. We callG+ equipped with this metricGrushin
upper half plane(cf. [3]).

Then the operator

G = −
(
dφL(X̃)2 + dφL(Ỹ )2

)
is a Grushin type operator and satisfies the condition in Proposition 3.3:

φ∗
L ◦ G = ∆sub ◦ φ∗

L.

Hence,

Proposition 4.2. The functions σ∆sub
∈ C∞(T ∗(SL(2,R))) and σG ∈ C∞(T ∗(G+))

are a φL-related pair of Hamiltonians.

Using the relations

a−2 = w2 + z2 =
1

2
(p−2 − p2 − p2q2) cos 2ζ + q sin 2ζ +

1

2
(p−2 + p2 + p2q2),

b = xw + yz =
1

2
(p2 + p2q2 − p−2) sin 2ζ + q cos 2ζ,

the intersection

Σ = φ∗
L(T

∗(G+))
∩

φ∗
R(T

∗(H+)) := ΣL

∩
ΣR

is characterized as follows:

Lemma 4.3.

ΣL ∩ ΣR ∋ ξ1da+ ξ2db

⇔ ξ1
∂a

∂ζ
+ ξ2

∂b

∂ζ
= 0

⇔ −1

2
ξ1(w

2 + z2)−
3
2 {(p2 + p2q2 − p−2) sin 2ζ + 2q cos 2ζ}

+ ξ2{(p2 + p2q2 − p−2) cos 2ζ − 2q sin 2ζ} = 0.
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The geodesics in H+ are well-known and they are described in the following way
in terms of the coordinates (u, v):

Since all the geodesics are given as space components of solution curves of the
Hamilton vector field Hσ∆

H+
, we consider a solution curve {γ̃} of Hσ∆

H+
with the

initial condition ϖ0 = (u0, v0;α0, β0) ∈ T ∗(H+). Then the space component {γ} of
{γ̃} is expressed as

(4.4)


ℓϖ0 = {(u0, v0etβ0v0)}, or

Cϖ0 = {(u− ũ0, v) | (u− ũ0)
2 + v2 = r20, v > 0},

where α0 ̸= 0 and ũ0 = u0 +
β0

α0
v0, r20 =

(
α2
0+β2

0

α2
0

)
v20.

First, we deal with the second case. The upper semi-circle is parameterized as

u = ũ0 + r0 tanh(t+ t0), v(t) = r0 cosh(t+ t0), t ∈ R,

and the value t0 is uniquely determined by the equations

cosh t0 =
α2
0 + β2

0

α0
, and sinh t0 =

β0
α0

.

The horizontal lift λ(Cϖ0) of the upper semi-circle Cϖ0 to SL(2,R) along the
subbundle H with the initial point

g0 =

(√
v0 0
0 1/

√
v0

)(
1 u0/v0
0 1

)(
cos θ0 − sin θ0
sin θ0 cos θ0

)
:=
(√

v0,
u0
v0

, θ0
)

is given by(√
r0

cosh(t+ t0)
, sinh(t+ t0)−

α0u0 + β0v0

v0
√

α2
0 + β2

0

· cosh(t+ t0), θ(t)

)
.

The horizontality condition requires that θ̇(t) = u̇(t)
2v(t) . Hence with a suitable t0 ∈ R

(4.5) θ(t) =

∫ t

t0

u̇(s)

2v(s)
ds =

∫ t

t0

1

2 cosh s
ds = arctan et − arctan et0 .

Moreover there is a solution curve λ̃(Cϖ0) of the Hamilton vector field Hσ∆sub
on

T ∗(SL(2,R)) such that χ(λ̃(Cϖ0)) = γ̃. It is given by the curve:

λ̃(Cϖ0) =
{
(a(t), b(t), θ(t); ξ1(t), ξ2(t), ξ3(t))

}
=

(√
r0

cosh(t+ t0)
, sinh(t+ t0)−

α0u0 + β0v0

v0
√

α2 + β2
· cosh(t+ t0), θ(t+ t0);

−sinh(t+ t0) + 2ũ0r
−2
0 cosh(t+ t0)

4
√

r0 cosh(t+ t0)
, − 1

4 cosh(t+ t0)
, 0

)
.

Among these curves, curves with the condition ũ20+1 = r20 are included in ΣL∩ΣR.
It will be hard to describe all the geodesic curves on the Grushin upper half plane

explicitly. Here by the above argument the projection {(p(t), q(t))} of the curve
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{(a(t), b(t), θ(t))} to G+ is a geodesic curve with respect to the Grushin metric and
are given as (we put t0 = 0 for simplicity)

p(t)2 = a2 cos2 θ + 2a2b cos θ sin θ + a2b2 sin2 θ + a−2 sin2 θ

= (1 + sinh(t)2)−1×[
r0

cosh(t)
+

2r0 sinh(t)

cosh(t)

(
sinh(t) +

ũ0
r0

cosh(t)

)
+

{
r0

cosh(t)

(
sinh(t) +

ũ0
r0

cosh(t)

)2

+
cosh(t)

r0

}
sinh(t)2

]
2q(t)p(t)2 = (a2b2 − a2 + a−2) sin 2θ + 2a2b cos 2θ

= (1 + sinh(t)2)−1×[{
r0

cosh(t)

(
sinh(t) +

ũ0
r0

cosh(t)

)2

− r0
cosh(t)

+
cosh(t)

r0

}
(2 sinh(t))

+
2r0(1− sinh(t)2)

cosh(t)

(
sinh(t) +

ũ0
r0

cosh(t)

)]
.

As for the line ℓϖ0 , the line with u0 = 0 is only the geodesic whose horizontal lift
to SL(2,R) is the space component of a curve of the Hamilton vector field HΦH∗

and as a geodesic in G+ it is given by

(p, q) = (
√
v0e

tβ0
2v0 , 0).

5. Embedding and final remarks

So far, our main interest was a relation between Hamilton flows in the framework
of a submersion. In this last section we discuss a relation between Hamilton flows
and embeddings.

Let ε : M → L be an embedding or we assume M is a closed submanifold in
L, then we may consider that the natural projection ε∗(T ∗(L)) → T ∗(L), where
ε∗(T ∗(L)) is the induced bundle by the map ε, is also an embedding so that we
regard it as a submanifold of T ∗(L). The bundle map (dε)∗ : ε∗(T ∗(L)) → T ∗(M)
on M , the dual map of the differential dε, is a submersion.

We assume that there exist functions Ξ ∈ C∞(T ∗(L)) and Φ ∈ C∞(T ∗(M)) such
that

Ξ|ε∗(T ∗(L)) = Φ ◦ (dε)∗.

Then

Proposition 5.1. The Hamilton flow {etHΞ} leaves the submanifold ε∗(T ∗(L)) in-
variant and the following diagram is commutative:

(5.1)
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The proof is similar to the case of Theorem 2.1(cf. [5]).
We also call such a pair of Hamiltonians an embedding-related pair of Hamil-

tonians, or in case the embedding is specified by a map ε, then ε-related pair of
Hamiltonians.

Then we assume an extension of a submersion, that is let ε : M → L be an
embedding, φ : M → N and π : L → N submersions satisfying the condition that
π ◦ ε = φ. The functions Ξ and Φ are as above and assume there is a function
Ψ ∈ C∞(T ∗(N)) such that the pair {Φ,Ψ} is φ-related Hamiltonians, then

Proposition 5.2. the pair {Ξ, Ψ} is π-related Hamiltonians.

Let Vπ be the vertical subbundle of the submersion π : L→ N and H a horizontal
subbundle in T (L):

T (L) = Vπ ⊕H,
then the induced bundle ε∗(H) is a horizontal subbundle of T (M). If H is equipped
with an inner product QH such that it defines a submersion metric on T (N), then
the induced inner product on ε∗(H) defines the same submersion metric on T (N).
Hence the co-norm functions

{
ΞH∗ , Φε∗(H∗)

}
are a ε-related pair of Hamiltonians,

and
{
ΞH∗ , ΨT ∗(N)

}
is a π-related pair of Hamiltonians.

Now we treat the case SL(2,R) again as a simple example. We consider the
inclusion SL(2,R) ⊂ GL+(2,R) and the map

πR : GL+(2,R) ∋
(
x y
w z

)
7−→ (u, v) ∈ H+,

where

(5.2) u =
xw + yz

w2 + z2
, v =

xz − yw

w2 + z2
.

This map is the natural extension of the map φR and gives the realization of the
right coset space of GL+(2,R) by the subgroup SO(2) × R+. The group R+ is
identified with the diagonal matrix in GL+(2,R).

The left invariant vector fields X̃ and Ỹ are tangent to the each hypersurface

defined by the equation det

(
x y
w z

)
= xz − yw = constant.

As before let H be the left invariant subbundle in T (GL+(2,R)) spanned by X̃

and Ỹ . In this case the subbundle H is not bracket generating on GL+(2,R) and so
does not define a sub-Riemannian structure, but we define an inner product on H as
before. Then the right action by the subgroup R+ leaves these vector fields(in fact
all left or right invariant vector fields), the submersion metric on H+ can be defined
with the same metric g+ given by the submersion φR : SL(2,R)→ SL(2,R)/SO(2).

Let G+ be the left coset space of GL+(2,R) by the subgroup SO(2)×R+. Then
the map πL : GL+(2,R)→ R× R+ ∼= G+ given by

(5.3) πL ∋ g =

(
x y
w z

)
7−→ (µ, ν), µ = −xw + yz

x2 + w2
, ν =

xz − yw

x2 + w2
,

is the realization of the left coset space G+ and the natural extension of the map
φL. We can install the metric on G+ by assuming that the descended vector fields
dπL(X̃) and dπL(Ỹ ) are orthonormal. The resulting metric is same with the metric
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defined in the SL(2,R) case (=Grushin metric). We denote its co-norm function by
ΨG+ .

(5.4)

Proposition 5.3. The pair of the Hamiltonians {ΞH∗ , ΨH+ } is πR-related and the
pair of Hamiltonians {ΞH∗ ,ΨG+ } is πL-related.

Finally we remark that the Hamilton system HΞH∗ can be expressed in a symmet-
ric way on T ∗(GL+(2,R)) ∼= GL+(2,R)×R4 by using the coordinates (x, y, w, z) =

g =

(
x y
w z

)
∈ GL+(2,R) and it gives invariants of the system rather easily, but

we do not enter the details.
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