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of solutions guarantees that approximate solutions converge to the original solutions
of perturbed problems (see for instance [21]).

The study of solution stability for optimal control problems governed by partial
differential equations has been interested several authors recently. For papers which
have a close connection to the present work, we refer the readers to [2,3,10,12,18,22]
and the references given therein. Let us give briefly some comments on the consid-
ered problems and the obtained results of those papers. In [2] and [10], the authors
considered problems where the objective functions are quadratic and convex, the
state equations are linear and with mixed and pure state poinwise constraints. Un-
der certain conditions, they showed that the solution maps are Lipschitz continuous
w.r.t. parameters. In [22], Malanowski considered a family of parameter dependent
elliptic optimal control problems with nonlinear boundary control and with point-
wise control constraints. He showed that under standard coercivity conditions, the
solutions to the problems are Bouligand differentiable functions of the parameter.
Particularly, in [12], Hinze and Mayer studied a family of parametric optimal control
problems where the objective function likes (1.1), the state equation is a semilinear
elliptic equation with Neumann boundary condition and with pure state and con-
trol poinwise constraints. This class of perturbed problems comes from the finite
element discretization. Hinze and Mayer proved that if the objective function and
constraint mapping are Lipschitz continuous in parameters and the optimal solu-
tion of the unperturbed problem is a locally strict solution, then the solution map
is continuous at the reference parameter and converges to the original solution of
the unperturbed problem.

In this paper we study the local stability of solutions for problem (1.1)–(1.3),
where the state equations are semilinear elliptic equations with Dirichlet boundary
condition, and with mixed pointwise constraints. We show that if the unperturbed
problem is good enough, then the solution map is continuous with respect to param-
eters at the reference point. Namely, we prove that if z̄ is a locally strong solution
of P (w̄) and the objective function is Lipschitz continuous, then the solution map
is locally upper Hölder continuous at w̄. In order to obtain such a result, we follow
the method of [1] and [15], and use techniques as well as recent results on optimality
conditions in [19] and [23]. However, in our approach, the critical cone for problem
P (w̄) is smaller than the critical cone used in [1] and [15]. Here the critical cone is
a common cone under which the second-order necessary optimality conditions and
second-order sufficiently optimality conditions for unperturbed problem P (w̄) are
valid. Besides, the assumptions imposing on the unperturbed problem are easy to
verify. It is worth pointing out that our method can apply not only for optimal con-
trol problems governed by semilinear elliptic equations but also for optimal control
problems governed by parabolic equations.

The paper is organized as follows. In Section 2 we set up notation and assump-
tions. We then state our main result. Section 3 is devoted to some auxiliary results.
Section 4 contains the proof of the main result.

2. Assumptions and statement of the main result

Hereafter given a Banach space X, v ∈ X and r > 0, we denote by BX(v, r) and
B̄X(v, r) the open ball and the closed ball with center v and radius r, respectively.
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In some cases, if no confusion, we can write B(v, r) and B̄(v, r). Also, we denote
by BX , B̄X the open unit ball and the closed unit ball, respectively.

Let z̄ = (ȳ, ū) ∈
(
W 2,2(Ω) ∩W 1,2

0 (Ω)
)
× L2(Ω). For a number R > 0, we define

ΣR(w) = Σ(w) ∩B(z̄, R),

SR(w) = {(yw, uw) ∈ ΣR(w) | J(yw, uw, w) = inf
(y,u)∈ΣR(w)

J(y, u, w)}.

In this section, L : Ω×R×R → R is a function which stands for ϕ, g and h. Given an
admissible couple (y, u) ∈ Σ(w), symbols L[x], Ly[x], L[·], etc., stand respectively for
L(x, y(x), w(x)), Ly(x, y(x), w(x)), L(·, y(·), w(·)), etc. Also, given a couple (ȳ, ū) ∈
Σ(w̄) L̄[x], L̄y[x], L̄[·], etc., stand respectively for L(x, ȳ(x), w̄(x)), Ly(x, ȳ(x), w̄(x)),
L(·, ȳ(·), w̄(·)), etc.

We now impose the following assumptions on L, φ and ψ.
(H1) L : Ω × R × R → R is a Carathéodory function of class C2 with respect to
variable (y, w). There exists ϵ > 0 such that ϕ(·, y(·), w(·)) ∈ L1(Ω), g(·, y(·), w(·)) ∈
L2(Ω) and h(·, y(·), w(·)) ∈ L2(Ω) for all y ∈ W 2,2(Ω) ∩W 1,2

0 (Ω) and w ∈ L∞(Ω)
with ∥w − w̄∥∞ < ϵ. Furthermore, for each M > 0, there exists a positive number
kLM such that

|Ly(x, y1, w1)− Ly(x, y2, w2)| ≤ kLM (|y1 − y2|+ |w1 − w2|),
|Lw(x, y1, w1)− Lw(x, y2, w2)| ≤ kLM (|y1 − y2|+ |w1 − w2|)

for all y, yi, w, wi ∈ R satisfying |yi|, |wi| ≤ M with i = 1, 2. Also for each M > 0,
there is a number kLM > 0 such that∣∣Lyy(x, y1, w1)− Lyy(x, y2, w2)

∣∣ ≤ kLM (|y1 − y2|+ |w1 − w2|),∣∣Lyw(x, y1, w1)− Lyw(x, y2, w2)
∣∣ ≤ kLM (|y1 − y2|+ |w1 − w2|)

|Lww(x, y1, w1)− Lww(x, y2, w2)| ≤ kLM (|y1 − y2|+ |w1 − w2|)

for all yi, wi ∈ R satisfying |yi|, |wi| ≤M with i = 1, 2.
(H2) The functions φ and ψ are of class C2 and have a property that for each
M > 0, there exist numbers kφ, kψ > 0 such that

|φ′(w)|+ |φ′′(w)| ≤ kφ|w|
|φ′(w1)− φ′(w2)|+ |φ′′(w1)− φ′′(w2)| ≤ kφ(|w1 − w2|)
|ψ′(w)|+ |ψ′′(w)| ≤ kψ|w|,
|ψ′(w1)− ψ′(w2)|+ |ψ′′(w1)− ψ′′(w2)| ≤ kψ(|w1 − w2|)

for all w,wi ∈ R satisfying |w|, |wi| ≤M with i = 1, 2.
(H3) g(x, 0, w) = 0 for all x ∈ Ω, w ∈ R and gy(x, y, w(x)) ≥ 0 for a.e. x ∈ Ω and
for all y ∈ R and ∥w − w̄∥∞ < ϵ.

(H4) There exists γ > 0 such that ψ(w̄(x)) ≥ γ and
1

λ
h̄y[x] ≥ 0 for a.e. x ∈ Ω.

Let us take a look on assumptions (H1) − (H4). Assumptions (H1) and (H2)
guarantee that J , g and h are of class C2 around (z̄, w̄). Under assumption (H3),
we have from [7] that, for each u ∈ L2(Ω) and w ∈ L∞(Ω), equation (1.2) has a
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unique solution y ∈W 2,2(Ω)∩W 1,2
0 (Ω) and there exists an absolute constant c0 > 0

such that

∥y∥W 2,2(Ω) ≤ c0∥u+ w∥L2(Ω).(2.1)

Meanwhile, assumption (H4) makes sure that the Robinson constraint qualification
condition is valid. Note that from (H1), (H2), we see that for each fixed parameter
w ∈ B(w̄, ϵ) and for any (ŷ, û) ∈ Σ(w), we have

⟨∇zJ(ŷ, û, w), (y, u)⟩ =∫
Ω

(
ϕy(x, ŷ(x), w(x))y(x) + φ(w(x))u(x) + 2ψ(w(x))û(x)u(x)

)
dx.

In particular, we have

⟨∇zJ(ȳ, ū, w̄), (y, u)⟩ =∫
Ω

(
ϕy(x, ȳ(x), w̄(x))y(x) + φ(w̄(x))u(x) + 2ψ(w̄(x))ū(x)u(x)

)
dx.

Let us set

Ωa = {x ∈ Ω | h̄[x] + λū(x) = a(x)}, Ωb = {x ∈ Ω | h̄[x] + λū(x) = b(x)}.(2.2)

Definition 2.1. A couple d = (y, u) ∈ (W 2,2(Ω) ∩ W 1,2
0 (Ω)) × L2(Ω) is said to

be a critical direction at z̄ = (ȳ, ū) for problem P (w̄) if it satisfies the following
conditions:

(i) ⟨∇zJ(ȳ, ū, w̄), (y, u)⟩ ≤ 0;
(ii) −∆y + ḡy[·]y = u in Ω, y = 0 on ∂Ω;
(iii)

h̄y[x]y(x) + λu(x)

{
≥ 0 if x ∈ Ωa

≤ 0 if x ∈ Ωb.

We denote by C(z̄) the set of critical directions (y, u) at (ȳ, ū). It is easy to see
that C(z̄) is a closed and convex cone.

Problem P (w̄) is associated with the Lagrangian

L̄(z, ϑ∗, e∗) = J(z, w̄) + ⟨ϑ∗,−∆y + g(·, y, w̄)− u− w̄⟩+ ⟨e∗, h(·, y, w̄) + λu⟩

with ϑ∗, e∗ ∈ L2(Ω).

Definition 2.2. A couple (ϑ∗, e∗) ∈ L2(Ω) × L2(Ω) is said to be multipliers of
problem P (w̄) at (ȳ, ū) if

∇zL̄(z̄, ϑ∗, e∗) = 0, e∗ ∈ N
(
[a, b], h̄[·] + λū

)
,

where [a, b] := {v ∈ L2(Ω) | a(x) ≤ v(x) ≤ b(x) a.e. x ∈ Ω} and N(K, v0) denotes
the normal cone to a closed convex set K in L2(Ω) at v0 ∈ K.

We denote by Λ(z̄) the set of multipliers of P (w̄). In Section 4, we will show that

Λ(z̄) ̸= ∅ and Λ(z̄) consists of elements ϑ∗ ∈ W 2,2(Ω) ∩W 1,2
0 (Ω) and e∗ ∈ L2(Ω)



STABILITY OF SOLUTIONS TO ELLIPTIC OPTIMAL CONTROL PROBLEMS 365

such that

−∆ϑ∗ + ḡy[·]ϑ∗ = −ϕ̄y[·]− h̄y[·]∗e∗ in Ω, ϑ∗ = 0 on ∂Ω,(2.3)

φ(w̄) + 2ψ(w̄)ū− ϑ∗ + λe∗ = 0,(2.4)

e∗(x) ∈ N
(
[a(x), b(x)], h̄[x] + λū(x)

)
a.e. x ∈ Ω.(2.5)

We are ready to state the main result of the paper.

Theorem 2.3. Suppose that assumptions (H1) − (H4) are fulfilled and (ϑ∗, e∗) ∈
Λ(z̄) such that

L̄zz(z̄, ϑ∗, e∗)(y, u)2 =∫
Ω

(
ϕ̄yy[x]y

2(x) + 2ψ̄[x]u2(x) + ϑ∗(x)ḡyy[x]y
2(x) + e∗(x)h̄yy[x]y

2(x)
)
dx > 0

for all (y, u) ∈ C(z̄) \ {0}. Then (ȳ, ū) is a locally strong solution of P (w̄) and there
exist positive numbers R0, s0 and l0 such that for all w ∈ BL∞(Ω)(w̄, s0) and any
(yw, uw) ∈ SR0(w), (yw, uw) is a locally optimal solution of P (w) and

SR0(w) ⊂ (ȳ, ū) + l0∥w − w̄∥1/2∞ B̄
(W 2,2(Ω)∩W 1,2

0 (Ω))×L2(Ω)
.

As it is mentioned, the proof of Theorem 2.3 is provided in Section 4. For this we
need to establish some auxiliary results which are given in the third section below.

3. Some auxiliary results

3.1. Parametric programming problems. LetW and Z be Banach spaces. Let
f : Z ×W → R be a function and M : W ⇒ Z be a multifunction with closed
values. We consider the parametric programming problem

P1(w)

{
f(z, w) → min

z ∈ M(w).

Hereafter, we assume that z0 ∈ M(w0). For r > 0, the extremal value function
Vr :W → R̄ is defined by

Vr(w) = inf{f(z, w) | z ∈ M(w) ∩BZ(z0, r)}

and the local solution mapping Sr :W ⇒ Z defined by

Sr(w) = {z ∈ M(w) ∩BZ(z0, r) | f(z, w) = Vr(w)}.

Definition 3.1. A point z0 ∈ M(w0) is said to be locally strong solution of P1(w0)
if there exist numbers ᾱ > 0 and γ̄ > 0 such that

f(z, w0)− f(z0, w0) ≥ γ̄∥z − z0∥2(3.1)

for all z ∈ M(w0) ∩BZ(z0, ᾱ).

We now have the following important result.

Theorem 3.2. Suppose that z0 is a locally strong solution of P1(w0) and the fol-
lowing assumptions are satisfied:
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(a) f is Lipschitz continuous around (z0, w0), that is, there exist numbers α > 0,
β > 0 and kf > 0 such that

|f(z, w)− f(z′, w′)| ≤ kf (∥z − z′∥+ ∥w − w′∥) ∀z, z′ ∈ BZ(z0, α)

for all , w, w′ ∈ BW (w0, β);
(b) M(·) has the Aubin property around (z0, w0), that is, there exist number

α′ > 0, β′ > 0 and kM > 0 such that

M(w) ∩BZ(z0, α′) ⊂ M(w′) + kM∥w − w′∥B̄Z ∀w,w′ ∈ BW (w0, β
′).

Then there exist positive numbers k∗, β∗ and r such that for all w ∈ BW (w0, β∗) and
any zw ∈ Sr(w), zw is a locally optimal solution of P1(w) and

Sr(w) ⊂ z0 + k∗∥w − w0∥1/2B̄Z .

Proof. The proof follows the one in [15, Theorem 4.4]. Since z0 is a local strong
solution for P1(w0), there exist γ̄ > 0 and ᾱ > 0 such that (3.1) is fulfilled. We
choose α0 = min(α, α′) and β0 = min(β, β′). Then from (a) and (b), we have for
any w,w′ ∈ BW (w0, β0) and z, z

′ ∈ BZ(z0, α0) that

|f(z, w)− f(z′, w′)| ≤ kf (∥z − z′∥+ ∥w − w′∥),
M(w) ∩BZ(z0, α0) ⊂ M(w′) + kM∥w − w′∥B̄Z .

Choose r > 0, β1 > 0 and s1 > 0 such that r + 3kMβ1 < min(α0, β0, ᾱ), β1 < β0
and s1 = 2kMβ1 + r. Then we also have

M(w) ∩BZ(z0, r) ⊂ M(w′) ∩BZ(z0, s1) + kM∥w − w′∥(3.2)

for all w,w′ ∈ BW (w0, β1). Besides, from the proof of [15, Theorem 4.4]), there
exists a number 0 < β′1 < β1 such that

|Vr(w)− Vr(w0)| ≤ k1∥w − w0∥ ∀w ∈ BW (w0, β
′
1),(3.3)

where k1 = kf (1 + kM ).

Put k∗ = kM
√
β′1 + (2k1/γ̄)

1/2 and choose 0 < β∗ < min(β′1,
r2

4k2∗
). Fix any

w ∈ BW (w0, β∗) and take zw ∈ Sr(w). Inserting w′ = w0 into (3.2), we see that
there exists z ∈ M(w0) ∩BZ(z0, s1) such that ∥zw − z∥ ≤ kM∥w − w0∥. Hence,

∥zw − z0∥ ≤ ∥zw − z∥+ ∥z − z0∥ ≤ kM∥w − w0∥+ ∥z − z0∥.(3.4)

On the other hand from (3.3), we have

γ̄∥z − z0∥2 ≤ f(z, w0)− f(z0, w0)

= f(z, w0)− f(zw, w) + f(zw, w)− f(z0, w0)

= f(z, w0)− f(zw, w) + Vr(w)− Vr(w0)

≤ kf (∥z − zw∥+ ∥w − w0∥) + k1∥w − w0∥
≤ kf (kM∥w − w0∥+ ∥w − w0∥) + k1∥w − w0∥,
≤ 2k1∥w − w0∥

which implies that

∥z − z0∥ ≤ k2∥w − w0∥1/2,
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where k2 = (2k1/γ̄)
1/2. Combining this with (3.4) yields

∥zw − z0∥ ≤ kM∥w − w0∥+ k2∥w − w0∥1/2

≤ kM

√
β′1
√

∥w − w0∥+ k2
√
∥w − w0∥

≤ k∗
√

∥w − w0∥.
By the choice of β∗, we have ∥zw − z0∥ < r/2 for all w ∈ BW (w0, β∗). Hence
zw ∈ intBZ(z0, r). The proof of the theorem is complete. �

3.2. An abstract optimal control problem. Let E0, E, Y and U be reflexive
Banach spaces and W is a Banach space as in Subsection 3.1. Here, we suppose
that the imbedding Y ↪→ C(Ω̄) is compact, where Ω is an open bounded set in Rn
with n ≥ 1.

Define Z = Y ×U and assume that f : C(Ω̄)×U ×W → R, G : Y ×U ×W → E0

and H : C(Ω̄) × U ×W → E are given mappings, D a nonempty closed convex
set in E. For each w ∈ W , we consider the following parametric optimal control
problem of finding a control u ∈ U and the corresponding state y ∈ Y which

minimize f(y, u, w),(3.5)

s.t. G(y, u, w) = 0,(3.6)

H(y, u, w) ∈ D.(3.7)

We denote by P2(w) the problem (3.5)–(3.7) and by Sol(w) the solution set of P2(w).
For each w ∈W we put

A(w) = {z ∈ Z | G(z, w) = 0}(3.8)

and denote by Φ(w) the feasible set of problem (3.5)–(3.7), that is,

Φ(w) = A(w) ∩H−1
w (D).

Then problem P2(w) can be formulated in the form of P1(w):

P2(w)

{
f(z, w) → min

z ∈ Φ(w).

Fixing a parameter w0 ∈ W , we call P2(w0) the unperturbed problem and assume
z0 = (y0, u0) ∈ Φ(w0). For each r > 0, we define

Φr(w) = Φ(w) ∩BZ(z0, r),
Solr(w) := {zw ∈ Φr(w) | f(zw, w) = min

z∈Φr(w)
f(z, w)}.

Given a closed set C in Z and a point z ∈ C, the sets

T ♭(C, z) = {h ∈ Z | lim inf
t→0+

dist(h,
C − z

t
) = 0}

= {h ∈ Z|∀tn → 0+, ∃hn → h, z + tnhn ∈ C},

T (C, z) = {h ∈ Z | lim sup
t→0+

dist(h,
C − z

t
) = 0}

= {h ∈ Z|∃tn → 0+, ∃hn → h, z + tnhn ∈ C}
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are called the adjacent tangent cone and the contingent cone to C at z, respectively.
These cones are closed and T ♭(C, z) ⊆ T (C, z). It is well known that when C is
convex, then

T ♭(C, z) = T (C, z) = cone(C − z)

and the normal cone to C at z is given by

N(C, z) = {z∗ ∈ Z∗ | ⟨z∗, c− z⟩ ≤ 0 ∀c ∈ C}.

Definition 3.3. A point z0 ∈ Φ(w0) is said to be a regular point of P2(w0) if there
exist numbers η > 0 and ϱ > 0 such that

ηBE ⊂
{ ∩
z∈B(z0,ϱ)∩A(w0)

∇zH(z0, w0)(T (A(w0), z) ∩BZ)− (D −H(z0, w0)) ∩BE
}
.

(3.9)

It is known that this constraint qualification condition is an extension of the so-
called Robinson constraint qualification condition. By [17, Theorem 2.5], condition
(3.9) is equivalent to the following:

E =
∩

z∈B(z0,ϱ)∩A(w0)

∇zH(z0, w0)(T (A(w0), z))− cone(D −H(z0, w0)).(3.10)

The following assumptions will be needed throughout the paper.

(A1) There exist positive numbers r1, r
′
1, r

′′
1 such that for any w ∈ BW (w0, r

′′
1),

the mapping f(·, ·, w) and H(·, ·, w) are Fréchet differentiable on BY (y0, r1)×
BU (u0, r

′
1). The mapping G(·, ·, ·) is continuously Fréchet differentiable on

BY (y0, r1)×BU (u0, r
′
1)×BW (w0, r

′′
1).

(A2) The mappings f and H are Lipschitz continuous on BY (y0, r1)×BU (u0, r
′
1)×

BW (w0, r
′′
1) i.e., there exist constants Lf , LH > 0 such that

|f(z1, w1)− f(z1, w2)| ≤ Lf (∥z1 − z2∥+ ∥w1 − w2∥),
∥H(z1, w1)−H(z2, w2)∥ ≤ LH(∥z1 − z2∥+ ∥w1 − w2∥)

for all z1, z2 ∈ BY (y0, r1)×BU (u0, r
′
1) and w1, w2 ∈ BW (w0, r

′′
1).

(A3) The mapping Gy(z0, w0) is bijective.
(A4) The mappings f(·, ·, w0), G(·, ·, w0) and H(·, ·, w0) are twice continuously
Fréchet differentiable on BY (y0, r1)×BU (u0, r

′
1).

(A5) ∇zH(z0, w0)(T
♭(A(w0), z0)) = E.

From (A1) and (A3), we have that G(·, ·, ·) is continuously differentiable on
BY (y0, r1) × BU (u0, r

′
1) × BW (w0, r

′′
1) and Gy(z0, w0) is bijective. By the implicit

function theorem, there exist balls BY (y0, r2), BU (u0, r
′
2) and BW (w0, r

′′
2) with

r2 < r1, r
′
2 < r′1 and r′′2 < r′′1 such that for each (u,w) ∈ BU (u0, r

′
2) × BW (w0, r

′′
2),

the equation
G(y, u, w) = 0

has a unique solution y = ζ(u,w) ∈ BY (y0, r2). Moreover, the mapping

ζ : BU (u0, r
′
2)×BW (w0, r

′′
2) → BY (y0, r2)

is continuously Fréchet differentiable and ζ(u0, w0) = y0. Thus

G(ζ(u,w), u, w) = 0 ∀(u,w) ∈ BU (u0, r
′
2)×BW (w0, r

′′
2).
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Since ζu and ζw are continuous at (u0, w0), we can find positive numbers r′3 < r′2
and r′′3 < r′′2 such that

∥ζu(u,w)∥, ∥ζw(u,w)∥ ≤ γ, ∀(u,w) ∈ BU (u0, r
′
3)×BW (w0, r

′′
3),

where γ > 0 independent of (u,w). By the Taylor expansion, we have

ζ(u1, w1)− ζ(u2, w2) = ∇u,wζ(t(u1, w1) + (1− t)(u1, w2))(u1 − u2, w1 − w2)

for some 0 < t < 1 and for all u1, u2 ∈ BU (u0, r
′
3) and w1, w2 ∈ BW (w0, r

′′
3). By the

boundedness of ζu and ζw, we have

∥ζ(u1, w1)− ζ(u2, w2)∥ ≤ γ(∥u1 − u2∥+ ∥w1 − w2∥).(3.11)

Thus ζ is Lipschitz continuous on BU (u0, r
′
3)×BW (w0, r

′′
3).

We now have the following result.

Lemma 3.4. Suppose z0 ∈ Φ(w0) is a regular point and (A1) − (A3) are fulfilled.
Then Φ has the Aubin property around (z0, w0) ∈ Graph(Φ).

Proof. Let ζ : BU (u0, r
′
3)×BW (w0, r

′′
3) → BY (y0, r2) be such that

ζ(u0, w0) = y0,

G(ζ(u,w), u, w) = 0 ∀(u,w) ∈ BU (u0, r
′
3)×BW (w0, r

′′
3).

Then we have

Gy(y0, u0, w0)ζu(u0, w0) +Gu(y0, u0, w0) = 0

and so

Gy(y0, u0, w0)ζu(u0, w0)v +Gu(y0, u0, w0)v = 0(3.12)

for all v ∈ U . Since Gy(z0, w0) is bijective, ζu(u0, w0)v is the unique solution of
(3.12).

Also, since Gy(z0, w0) is bijective, the operator ∇zG(z0, w0) is surjective. By [17,
Lemma 2.2], we get

T (A(w0), z0) = {h = (y, v) | ∇zG(z0, w0)h = 0}
= {(y, v) | Gy(z0, w0)y +Gu(z0, w0)v = 0}
= {(ζu(u0, w0)v, v) | v ∈ U}.

From this and (3.9), we have

ηBE ⊂ ∇zH(z0, w0)(T (A(w0), z0))− (D −H(z0, w0))}

=
{
Hy(z0, w0)ζu(u0, w0)v +Hu(z0, w0)v − (D −H(z0, w0)) | v ∈ U

}
⊂

{
Fu(u0, w0)U + (F (u0, w0)−D)

}
,

where F (u,w) := H(ζ(u,w), u, w). It is clear that F (·, ·) is of class C1 on a neigh-
borhood of (u0, w0). By [4, Theorem 4.2], we see that the mapping Θ(u,w) :=
−F (u,w) + D is metrically regular at (u0, w0, 0) ∈ Graph(Θ), that is, there are
numbers a > 0 and r > 0 such that

dist(u,Θ−1
w (e)) ≤ adist(e,Θ(u,w))
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for all (u,w, e) satisfying ∥u − u0∥ ≤ r, ∥e − 0∥E ≤ r and ∥w,w0∥ ≤ r. In other
words, Θ(·, w) is metrically regular at (u0, 0) uniform in w.
• Claim 1. The multifunction Θ(u, ·) is Lipchitz continuous w.r.t. w uniformly in
u around (u0, w0).

In fact, fix any u ∈ B(u0, r
′
3) and take w,w′ ∈ B(w0, r

′′
3). Then for any e ∈

Θ(u,w), we have e = −F (u,w) + d for some d ∈ D. Choosing e′ = −F (u,w′) + d,
we have e′ ∈ Θ(u,w′). Since H and ζ are Lipschitz continuous, we have

∥e− e′∥ = ∥F (u,w)− F (u,w′)∥ = ∥H(ζ(u,w), u, w)−H(ζ(u,w′), u, w′)∥
≤ LH(∥ζ(u,w)− ζ(u,w′)∥+ ∥w − w′∥)
≤ LH(γ∥w − w′∥+ ∥w − w′∥)
= LH(1 + γ)∥w − w′∥.

This implies that

Θ(u,w) ⊂ Θ(u,w′) + LH(1 + γ)∥w − w′∥B̄E
for all u ∈ BU (u0, r

′
3) and w,w

′ ∈ BW (w0, r
′′
3). Hence Claim 1 is justified.

According to [9, Proposition 4.1], the multifunction Γ : W ⇒ U which is given
by

Γ(w) = {u ∈ U | 0 ∈ Θ(u,w)} = {u ∈ U | F (u,w) ∈ D}
has the Aubin property around (u0, w0). Hence, there are positive numbers r′4 < r′3,
r′′4 < r′′3 and a constant l > 0 such that

Γ(w) ∩BU (u0, r′4) ⊂ Γ(w′) + l∥w − w′∥B̄U(3.13)

for all w,w′ ∈ BW (w0, r
′′
4).

• Claim 2. The multifunction Φ has the Aubin property. Namely,

Φ(w) ∩ (B(y0, r2)×B(u0, r
′
4)) ⊂ Φ(w′) + (γl + γ + l)∥w − w′∥B̄Z

for all w,w′ ∈ BW (w0, r
′′
4).

Indeed, take any (y, u) ∈ Φ(w) ∩ ((B(y0, r2) × B(u0, r
′
4))). Then we have y =

ζ(u,w) and H(ζ(u,w), u, w) ∈ D. Hence u ∈ Γ(w) ∩ B(u0, r
′
4). By (3.13), there

exists u′ ∈ Γ(w′) such that ∥u − u′∥ ≤ l∥w − w′∥. Since u′ ∈ Γ(w′), we have
H(ζ(u′, w′), u′, w′) ∈ D. By putting y′ = ζ(u′, w′), we have (y′, u′) ∈ Φ(w′). It
follows that

∥(y, u)− (y′, u′)∥ = ∥ζ(u,w)− ζ(u′, w′)∥+ ∥u− u′∥
≤ γ(∥u− u′∥+ ∥w − w′∥) + ∥u− u′∥
≤ γ(l∥w − w′∥+ ∥w − w′∥) + l∥w − w′∥
= (γl + γ + l)∥w − w′∥.

Therefore, Claim 2 is justified and the proof is complete. �

Problem P2(w0) is associated with the following Lagrangian:

L(z, v∗, e∗) = f(z, w0) + ⟨v∗, G(z, w0)⟩+ ⟨e∗,H(z, w0)⟩ with v∗ ∈ E∗
0 , e

∗ ∈ E∗.

We denoted by Λ2(z0) the set of multipliers (v∗, e∗) ∈ E∗
0 × E∗ such that

∇zL(z, v∗, e∗) = 0, e∗ ∈ N(D,H(z, w0))
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and by

C2(z0) =
{
d ∈ Z|⟨∇zf(z0, w0), d⟩ ≤ 0,∇zG(z0, w0)d = 0,

∇zH(z0, w0)d ∈ T ♭(D,H(z0, w0))
}

the set of critical directions at z0 of P2(w0). It is clear that C2(z0) is a closed convex
cone.

In the sequel we need the so-called polyhedric property of D. This property
plays an important role in deriving second-order optimality conditions. According
to Bonnans and Shapiro [3, chapter 3], the set D is said to be polyhedric at u ∈ D
if for all q∗ ∈ N(D,u) then

T ♭(D,u) ∩ (q∗)⊥ = cl[cone(D − u) ∩ (q∗)⊥],

where (q∗)⊥ := {x ∈ E | ⟨q∗, x⟩ = 0}.
The following proposition provides second-order necessary optimality conditions

for P2(w0).

Proposition 3.5 ([23, Theorem 6]). Suppose that z0 is a regular point of P2(w0), as-
sumptions (A1), (A3), (A4) and (A5) are satisfied, and D is polyhedric at H(z0, w0).
Then if z0 is a locally optimal solution of P2(w0), then for each d ∈ C2(z0), there
exists (v∗, e∗) ∈ Λ2(z0) such that

Lzz(z0, e∗, v∗)(d, d) =
fzz(z0, w0)d

2 + ⟨v∗, Gzz(z0, w0)d
2⟩+ ⟨e∗,Hzz(z0, w0)d

2⟩ ≥ 0.

Remark 3.6. In the case where Λ2(z0) is singleton, the conclusion of Proposition
3.5 becomes:

fzz(z0, w0)d
2 + ⟨v∗, Gzz(z0, w0)d

2⟩+ ⟨e∗,Hzz(z0, w0)d
2⟩ ≥ 0.

for all d ∈ C2(z0).

The following lemma gives sufficient conditions under which z0 is a locally strong
solution of P2(w0).

Lemma 3.7. Suppose that Y and U are reflexive Banach space, z0 is a regular point
of P2(w0), assumptions (A1), (A3), A(4) and (A5) are satisfied and D is polyhedric
at H(z0, w0). Assume that (v∗, e∗) ∈ Λ2(z0) such that

Lzz(z0, v∗, e∗)(d, d) > 0 ∀d ∈ C2(z0) \ {0},
(3.14)

⟨v∗, Gzz(z0, w0)d
2
k⟩+ ⟨e∗,Hzz(z0, w0)d

2
k⟩ → ⟨v∗, Gzz(z0, w0)d

2⟩+ ⟨v∗, Hzz(z0, w0)d
2⟩

(3.15)

whenever dk ⇀ d, and there exists a number γ0 > 0 satisfying

fuu(y0, u0, w0)(u, u) ≥ γ0∥u∥2 ∀u ∈ U.(3.16)

Then z0 = (y0, u0) is a locally strong solution of P2(w0), that is, there exist numbers
γ0 > 0 and r > 0 such that

f(y, u, w0) ≥ f(y0, u0, w0) + γ0∥(y, u)− (y0, u0)∥2 ∀(y, u) ∈ Φ(w0) ∩BZ(z0, r).
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Proof. By contradiction, we assume that the conclusion of theorem is false. Then,
there exists a sequence {zk = (yk, uk)} ⊂ Φ(w0), zk → z0 = (y0, u0) such that

f(zk, w0) < f(z0, w0) +
1

k
∥zk − z0∥2Z = f(z0, w0) + o(t2k),(3.17)

where tk := ∥zk − z0∥Z → 0 as k → ∞. Let us put ẑk = (ŷk, ûk), ŷk = yk−y0
tk

, ûk =
uk−u0
tk

, then ∥ẑk∥Z = ∥ŷk∥Y + ∥ûk∥U = 1. Since Z is reflexive, we may assume that

ẑk ⇀ ẑ = (ŷ, û) in Z, that is, ŷk ⇀ ŷ in Y and ûk ⇀ û in U .
• Claim 1. ẑ ∈ C2(z0).

In what follows, we write f(·), G(·) and H(·) instead of f(·, w0), G(·, w0) and
H(·, w0), respectively. Writing zk = z0 + tkẑk and using the first-order Taylor
expansion, we get from (3.17) that

∇f(z0)ẑk +
o(tk)

tk
≤
o(t2k)

tk
.

By letting k → ∞, we get ∇f(z0)ẑ ≤ 0. Since zk ∈ Φ(w0), G(zk) = G(z0+ tkẑk) = 0
for all k ≥ 1. Using a first-order Taylor expansion, we have

∇G(z0)ẑk + α1(tk) = 0, ∀k ≥ 1

where α1(tk) → 0 as k → ∞. By Theorem 3.10 in [6], ∇G(z0) is weakly continuous.
Hence, ∇G(z0)(ẑk)⇀ ∇G(z0)(ẑ) as k → ∞ and so ∇G(z0)(ẑ) = 0.

Since H(zk) −H(z0) ∈ D −H(z0) for all k ≥ 1 and using the first order Taylor

expansion, we get ∇H(z0)ẑk +
o(tk)
tk

∈ T ♭(D,H(z0)). By similar arguments as the

above and noting that T ♭(D,H(z0)) is a weakly closed and convex subset, we have

∇H(z0)ẑ ∈ T ♭(D,H(z0)). Therefore, ẑ ∈ C2(z0) and Claim 1 is justified.
• Claim 2. ẑ = 0.

Since (v∗, e∗) ∈ Λ2(z0), we have

∇zL(z0, v∗, e∗) = ∇f(z0) +∇G(z0)∗v∗ +∇H(z0)
∗e∗ = 0, e∗ ∈ N(D,H(z0)).

By using the second-order Taylor expansion for L, we get

L(zk, v∗, e∗)− L(z0, v∗, e∗)

= tk∇zL(z0, v∗, e∗)ẑk +
t2k
2
∇2
zzL(z0, v∗, e∗)(ẑk, ẑk) + o(t2k)

= 0 +
t2k
2
∇2
zzL(z0, v∗, e∗)(ẑk, ẑk) + o(t2k).

On the other hand, we have

L(zk, v∗, e∗)− L(z0, v∗, e∗)
= f(zk)− f(z0) + ⟨v∗, G(zk)−G(z0)⟩+ ⟨e∗, H(zk)−H(z0)⟩
≤ f(zk)− f(z0) ≤ o(t2k).

Here we used the fact that e∗ ∈ N(D,H(z0)), G(zk) = G(z0) = 0 and (3.17).
Therefore, we have

t2k
2
∇2
zzL(z0, v∗, e∗)(ẑk, ẑk) + o(t2k) ≤ o(t2k).
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This is equivalent to

∇2
zzL(z0, v∗, e∗)(ẑk, ẑk) ≤

o(t2k)

t2k
.(3.18)

By letting k → ∞ and using the fact that ŷk → ŷ strongly in C(Ω̄) together with
(3.15), we obtain

∇2
zzL(z0, v∗, e∗)(ẑ, ẑ) ≤ 0.

Combining this with (3.14), we get ẑ = 0. Claim 2 is proved.
Since G(zk) = G(yk, uk) = 0 and zk → z0, we have yk = ζ(uk, w0) for k large

enough. From (3.11) and definition of (ŷk, ûk), we have

∥ŷk∥Y =
∥ζ(uk, w0)− ζ(u0, w0)∥Y

tk
≤ γ∥uk − u0∥U

tk
= γ∥ûk∥U .(3.19)

This implies that

1 = ∥ŷk∥Y + ∥ûk∥U ≤ (1 + γ)∥ûk∥U

or, equivalently, ∥ûk∥ ≥ 1

1 + γ
. Combining this with (3.16) and (3.18), we have

o(t2k)

t2k
≥ ∇2

zzL(z0, e∗, v∗)(ẑk, ẑk)

= ∇2f(z0)ẑ
2
k + ⟨v∗,∇2G(z0)ẑ

2
k⟩+ ⟨e∗,∇2H(z0)ẑ

2
k⟩

≥ fuu(z0)û
2
k + 2fyu(z0)ûkŷk + fyy(z0)ŷ

2
k + ⟨v∗,∇2G(z0)ẑ

2
k⟩+ ⟨e∗,∇2H(z0)ẑ

2
k⟩

≥ γ0
1

(1 + γ)2
+ 2fyu(z0)ûkŷk + fyy(z0)ŷ

2
k + ⟨v∗,∇2G(z0)ẑ

2
k⟩+ ⟨e∗,∇2H(z0)ẑ

2
k⟩.

Since the embedding Y ↪→ C(Ω̄) is compact, we have ŷk → ŷ strongly in C(Ω̄). By
letting k → ∞ and using Claim 2, we obtain 0 ≥ γ0

(1+γ)2
which is impossible. The

proof of the lemma is complete. �

The following theorem is a main result of this section

Theorem 3.8. Suppose that z0 is a regular point of P2(w0), assumptions (A1)-
(A5) are satisfied and D is polyhedric at H(z0, w0). Assume that (v∗, e∗) ∈ Λ2(z0)
such that conditions (3.14)–(3.16) are fulfilled. Then z0 is a locally strong solution
of P2(w0) and there exist numbers r0 > 0, s0 > 0 and l0 > 0 such that for all
w ∈ BW (w0, s0) and any zw ∈ Solr0(w), zw is a locally optimal solution of P2(w)
and

Solr0(w) ⊂ z0 + l0∥w − w0∥1/2B̄Z .

Proof. By Lemma 3.7, z0 is a locally strong solution of P2(w0). By (A2), f(·, ·) is
Lipschitz continuous around (z0, w0). From Lemma 3.4, we see that the feasible
set Φ(w) has the Aubin property around (z0, w0). Therefore, the conclusion of the
theorem follows directly from Theorem 3.2. The proof is complete. �
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4. Proof of the main result

Let us set

Y =W 2,2(Ω) ∩W 1,2
0 (Ω, ), U = L2(Ω), Z = Y × U, W = L∞(Ω).

Define mappings

G : Z ×W → U, G(z, w) = −∆y + g(·, y, w)− u− w,

H : Z ×W → U, H(z, w) = h(·, y, w) + λu

with z = (y, u), and define the set

D = [a, b] = {v ∈ L2(Ω) | a(x) ≤ v(x) ≤ b(x) a.e. x ∈ Ω}.

Then for each w ∈W , problem P (w) can be formulated in the form of P2(w):

P (w)


J(z, w) → min,

G(z, w) = 0,

H(z, w) ∈ D.

In what follows, we show that assumptions (A1)− (A5) are fulfilled and then apply
Theorem 3.8 for problem P (w). Here z0 and w0 are replaced by z̄ and w̄, respectively
and E = E0 = U = L2(Ω).
• Verification of (A1). By (H1) and (H2), we have J(·, ·), G(·, ·) and H(·, ·) are
continuously Fréchet differentiable in BZ(z̄, ϵ)×BW (w̄, ϵ).
• Verification of (A2). Since ∇J(·, ·) and ∇H(·, ·) are continuous at (z̄, w̄), J(·, ·)
and H(·, ·) are Lipschitz continuous in BZ(z̄, ϵ

′)×BW (w̄, ϵ′) for some ϵ′ < ϵ.
• Verification of (A3). For this we have

Gy(z̄, w̄) = −∆+ gy(·, ȳ, w̄), Gu(z̄, w̄) = −I,

where I is the identify mapping in L2(Ω). By (H3) we have gy(x, ȳ(x), w̄(x)) ≥ 0.
By [11, Theorem 2.4.2.5, p. 124], for each v ∈ L2(Ω), the linear elliptic equation

−∆y + ḡy[·]y = v in Ω, y = 0 on ∂Ω

has a unique solution y ∈W 2,2(Ω) ∩W 1,2
0 (Ω). Hence (A3) is valid.

• Verification of (A4). This follows from (H1) and (H2).
• Verification of (A5). It is based on the following lemma.

Lemma 4.1. z̄ ∈ Σ(w̄) is a regular point and (A5) is valid.

Proof. According to (3.10), we only need to show that

U = ∇zH(z̄, w̄)(T (Σ(w̄), ẑ))− cone(D −H(z̄, w̄)).(4.1)

for all ẑ ∈ Σ(w̄) with ∥ẑ − z̄∥ < ϵ′. In fact, we have G(ẑ, w̄) = 0 and Gy(ẑ, w̄) =
−∆+gy(·, ŷ, w̄). Since gy(x, ŷ(x), w̄(x)) ≥ 0 for a.e. x ∈ Ω, for each v ∈ U = L2(Ω),
the equation

−∆y + gy(·, ŷ, w̄)y = v
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has a unique solution y ∈ Y . Hence Gy(ẑ, w̄) is bijective. Consequently, ∇G(ẑ, w̄)
is surjective. It follows that

T (Σ(w̄), ẑ) = {(y, u) | Gy(ẑ, w̄)y +Gu(ẑ, w̄)u = 0}
= {(y, u) | Gy(ẑ, w̄)y = u}.

Since ∇zH(z̄, w̄) = (h̄y[·], λI), we have

∇zH(z̄, w̄)(T (Σ(w̄), ẑ)) = {h̄y[·]y + λu | Gy(ẑ, w̄)y = u, u ∈ U}.(4.2)

Take any v ∈ U and consider equation

−∆y +
(λgy(·, ŷ, w̄) + h̄y[·])y

λ
=
v

λ
.

By (H3) and (H4),
λgy(x, ŷ(x), w̄(x)) + h̄y[x]

λ
≥ 0 a.e. Hence, the above equation

has a unique solution y ∈ W 2,2(Ω) ∩W 1,2
0 (Ω). Putting u = −∆y + gy(·, ŷ, w̄)y, we

see that u ∈ U and (y, u) ∈ T (Σ(w̄), ẑ). This implies that v = h̄y[·]y + λu and so
v ∈ ∇zH(z̄, w̄)(T (Σ(w̄), ẑ)) because of (4.2). Hence U ⊆ ∇zH(z̄, w̄)(T (Σ(w̄), ẑ)).
In particular, for ẑ = z̄, we have U ⊆ ∇zH(z̄, w̄)(T (Σ(w̄), z̄)) and (A5) is valid.
Since 0 ∈ cone(D −H(z̄, w̄)), we have

U ⊆ ∇zH(z̄, w̄)(T (Σ(w̄), ẑ))− cone(D −H(z̄, w̄)).

The proof of the lemma is complete. �

Recall that problem P (w̄) is associated with the Lagrangian

L̄(z, ϑ∗, e∗) = J(z, w̄) + ⟨ϑ∗, G(z, w̄)⟩+ ⟨e∗,H(z, w̄)⟩, ϑ∗, e∗ ∈ L2(Ω)

and the critical directional set

C(z̄) =
{
d ∈ Z | ⟨∇zJ(z̄, w̄), d⟩ ≤ 0, ∇zG(z̄, w̄)d = 0,

∇zH(z̄, w̄)d ∈ T ♭(D,H(z̄, w̄))}
}
.

By a simple computation, we have

∇zJ(z̄, w̄) = (ϕ̄y[·], φ(w̄) + 2ψ(w̄)ū),

∇zG(z̄, w̄) = (−∆+ ḡy[·], I),
∇zH(z̄, w̄) = (h̄y[·], λI),

where I is the identify mapping on L2(Ω). By [19, Lemma 2.4], D is polyhedric at
H(z̄, w̄) ∈ D and

T ♭(D,H(z̄, w̄)) =
{
v ∈ L2(Ω) | v(x)

{
≥ 0 if x ∈ Ωa

≤ 0 if x ∈ Ωb

}
,

where Ωa and Ωb are defined by (2.2). Also we have

N(D,H(z̄, w̄)) =
{
e∗ ∈ L2(Ω) | e∗(x) ∈ N

(
[a(x), b(x)], h̄[x] + λū(x)

)
a.e.

}
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It follows that C(z̄) consists of critical directions as in Definition 2.1. According to
Proposition 3.5, if z̄ is a locally optimal solution, then for each d = (y, u) ∈ C(z̄),
there exists (ϑ∗, e∗) ∈ L2(Ω)× L2(Ω) such that

(4.3) DzL̄(z̄, v∗, e∗) = 0, e∗ ∈ N(D,H(z̄, w̄))

and

L̄zz(z̄, ϑ∗, e∗)(y, u)2 =∫
Ω

(
ϕ̄yy[x]y

2(x) + 2ψ(w̄(x))u2(x) + ϑ∗(x)ḡyy[x]y
2(x) + e∗(x)h̄yy[x]y

2(x)
)
dx ≥ 0.

Note that the first relation of (4.3) is equivalent to
(4.4){

DyL̄(z̄, v∗, e∗) = 0

DuL̄(z̄, v∗, e∗) = 0
⇔

{
⟨ϑ∗,−∆y + ḡy[·]y⟩ = ⟨−ϕ̄y[·]− h̄y[·]e∗, y⟩ ∀y ∈ Y,

φ(w̄) + 2ψ(w̄)ū− ϑ∗ + λe∗ = 0.

Here ⟨·, ·⟩ denotes the scalar product in L2(Ω). Let A : D(A) ⊂ L2(Ω) → L2(Ω) be
a linear operator defined by

Ay = −∆y + ḡy[·]y for y ∈ D(A) with D(A) =W 2,2(Ω) ∩W 1,2
0 (Ω).

We denote by A∗ is the adjoint operator of A and by D(A∗) the domain of A∗.

Lemma 4.2. ϑ∗ ∈W 2,2(Ω) ∩W 1,2
0 (Ω) and e∗ ∈ L2(Ω) which satisfy

−∆ϑ∗ + ḡy[·]ϑ∗ = −ϕ̄y[·]− h̄y[·]e∗ in Ω, ϑ∗ = 0 on ∂Ω,(4.5)

φ(w̄) + 2ψ(w̄)ū− ϑ∗ + λe∗ = 0.(4.6)

Moreover Λ(z̄) is singleton and Λ(z̄) = {(ϑ∗, e∗)} satisfies (2.3)–(2.5).

Proof. Relation (4.6) is the second condition of (4.4). It remains to prove (4.5).
Since −ϕ̄y[·] − h̄y[·]e∗ ∈ L2(Ω), we have from the first relation in (4.4) that ϑ∗ ∈
D(A∗). Let us claim that D(A) = D(A∗) = W 2,2(Ω) ∩W 1,2

0 (Ω). It is sufficient to
prove that D(A∗) ⊆ D(A).

By Green’s formula, we can show that A is symmetric, that is

⟨Ay, ỹ⟩ = ⟨y,Aỹ⟩ ∀y, ỹ ∈ D(A).(4.7)

We now take any ϑ ∈ D(A∗). By definition of D(A∗), there exists ξ1 ∈ L2(Ω) such
that ⟨Ay, ϑ⟩ = ⟨y, ξ1⟩ for all y ∈ D(A). Since ξ1 ∈ L2(Ω) and ḡy[x] ≥ 0, [11, Theorem
2.4.2.5, p. 124] implies that there exists y1 ∈ D(A) such that Ay1 = ξ1. Also, take
any ξ ∈ L2(Ω). Then there is y ∈ D(A) such that Ay = ξ. From this and (4.7) we
have

⟨ξ, ϑ− y1⟩ = ⟨Ay, ϑ⟩ − ⟨Ay, y1⟩ = ⟨y, ξ1⟩ − ⟨Ay, y1⟩
= ⟨y, ξ1⟩ − ⟨y,Ay1⟩ = ⟨y, ξ1⟩ − ⟨y, ξ1⟩ = 0.

Since ξ is arbitrary in L2(Ω), we have ϑ − y1 = 0 and so ϑ = y1 ∈ D(A). The
claim is justified. Since ϑ∗ ∈ D(A∗) and by definition of A∗, we have for any
ϑ ∈ C∞

0 (Ω) ⊂ D(A) that

⟨A∗ϑ∗, ϑ⟩ = ⟨ϑ∗, Aϑ⟩ = ⟨ϑ∗,−∆ϑ+ ḡy[·]ϑ⟩
= ⟨−∆ϑ∗ + ḡy[·]ϑ∗, ϑ⟩.
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It follows that A∗ϑ∗ = −∆ϑ∗+ ḡy[·]ϑ∗ and the first relation of (4.4) is equivalent to

−∆ϑ∗ + ḡy[·]ϑ∗ = −ϕ̄y[·]− h̄y[·]e∗.
It remains to show that Λ(z̄) = {ϑ∗, e∗)}. Assume that there is another couple
(ϑ∗1, e

∗
1) ∈ Λ(z̄) satisfying (4.5) and (4.6). Then we have

−∆(ϑ∗ − ϑ∗1) + ḡy[·](ϑ∗ − ϑ∗1) = −h̄y[·](e∗ − e∗1),

− (ϑ∗ − ϑ∗1) + λ(e∗ − e∗1) = 0.

This implies that

−∆(ϑ∗ − ϑ∗1) +
λḡy[·] + h̄y[·]

λ
(ϑ∗ − ϑ∗1) = 0.

By (H3) and (H4),
λḡy[·] + h̄y[·]

λ
≥ 0. By taking the scalar product both sides of

the above equation with ϑ∗ − ϑ∗1 in L2(Ω), we obtain ϑ∗ = ϑ∗1. Hence e∗ = e∗1 and
the proof of the lemma is complete. �
• Complete proof of Theorem 2.3.

So far, we have shown that assumptions (A1) − (A5) are fulfilled, z̄ is a regular
point of P (w̄) and Λ(z̄) consists of vectors (ϑ∗, e∗) satisfying (2.3)–(2.5). Besides,
we have

Juu(z̄, w̄)(u, u) =

∫
Ω
2ψ(w̄(x))u2(x)dx ≥ 2γ∥u∥2L2(Ω),

⟨ϑ∗,∇2
zG(z̄, w̄)d

2⟩ =
∫
Ω
ϑ∗(x)ḡyy[x]y

2(x)dx

⟨e∗,∇2
zH(z̄, w̄)d2⟩ =

∫
Ω
e∗(x)h̄yy[x]y

2(x)dx

with d = (y, u). Since Y ↪→ C(Ω̄) is compact, we see that

⟨ϑ∗,∇2
zG(z̄, w̄)d

2
k⟩ → ⟨ϑ∗,∇2

zG(z̄, w̄)d
2⟩,

⟨e∗,∇2
zH(z̄, w̄)d2k⟩ → ⟨e∗,∇2

zH(z̄, w̄)d2⟩
whenever dk = (yk, uk) ⇀ d = (y, u). Therefore, the conclusion of Theorem 2.3 is
obtained from Theorem 3.8. The proof of Theorem 2.3 is complete. �
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