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A NEW SCALARIZING FUNCTIONAL IN SET OPTIMIZATION
WITH RESPECT TO VARIABLE DOMINATION STRUCTURES

ELISABETH KOBIS, THANH TAM LE, CHRISTIANE TAMMER, AND JEN-CHIH YAO*

ABSTRACT. We introduce a new nonlinear scalarizing functional in set optimiza-
tion with respect to variable domination structures. By means of this functional,
we characterize solutions of set optimization problems, where the solution concept
is given by the set approach. We also investigate the relationship between the
well-posedness property of a set-valued problem and the Tykhonov well-posedness
property of the scalarized problem by means of the proposed scalarizing func-
tional. Also, two classes of well-posed set optimization problems with respect
to variable domination structures are identified. Finally, we apply our results to
uncertain vector optimization problems.

1. INTRODUCTION

Set optimization has developed as an extension of vector optimization where the
objective map is a set-valued map acting between abstract spaces. It is useful
in various applications ranging from economics and engineering to medicine and
thus has an essential role in optimization. For an overview and more detailed
investigations, we refer the reader to [26].

Although there are different solution concepts for the set optimization prob-
lem, nowadays it seems more appropriate when one works with a more natural
approach (called set approach) which has been introduced by Kuroiwa in [27,28].
Several authors have already investigated this problem equipped with a constant
cone, see [17,18,26] and references therein. Recently, Ko6bis [33], Durea, Strugariu
and Tammer [7], Eichfelder and Pilecka [12] have studied set optimization problems
with respect to (w.r.t.) variable ordering structures. They also provided scalariza-
tion results for obtaining optimality conditions for the solutions of these problems.
These results extend an approach given by Jahn [22] to the variable domination
structure. A nonlinear scalarization is also introduced in [13] when the images of
ordering maps are Bishop-Phelps cones. Kobis, Le and Tammer [32] introduced
nonlinear scalarizing methods to characterize several set relations and minimal so-
lutions for set-valued problems w.r.t. general domination structures as well.

The main purpose of this paper is investigating the well-posedness property for
set-valued optimization problems w.r.t. variable domination structures. This well-
posedness property is studied by many authors in the literature not only for vector
optimization but also for set optimization w.r.t. a fixed ordering structure (see for
instance [6,18,35-37]). In this paper, we introduce a new nonlinear scalarizing func-
tional modified from the well-known Gerstewitz functional [16] for a set optimization
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problem w.r.t. variable domination structures. We use a set relation generalizing
the lower set less order which has been used widely in the literature and applied
in many practical problems, see [17,18,35,40]. Our approach can be considered as
an extension of [18] in which the authors studied Gerstewitz scalarization for set
optimization problems equipped with constant cones. However, in this paper, the
assumption of cone-proper sets in [18] is relaxed. In addition, our new functional
will avoid a drawback of nonlinear scalarizing functionals given in [32], that is, the
values of these functionals at the minimal point are not necessarily zero. This is
also beneficial for us to prove the equivalence between well-posedness property of
a set-valued problem and the Tykhonov well-posedness property of a scalar prob-
lem. Moreover, one can find some classes of pointwise well-posedness sets for set
optimization based on this equivalence.

The paper is organized as follows. Section 2 presents properties of the variable
generalized lower set less relation, which will be concerned throughout our work. In
Section 3, we introduce a new nonlinear scalarizing functional and present various
important properties of this functional. By means of this functional, we characterize
minimal solutions for a family of sets in Section 4. In Section 5, we prove the equiva-
lence between the well-posedness property of a set-valued optimization problem and
the Tykhonov well-posedness property of a scalar problems in which the objective
map of the original problem is involved. Also, we identify two classes of pointwise
well-posed set optimization problems w.r.t. a cone-valued ordering structure. An
application in uncertain optimization is considered in the last section of this paper.

2. PRELIMINARIES

Throughout this paper, let Y be a linear topological space and let
P(Y):={A CY|A is nonempty}
denote the power set of Y without the empty set. A set Q C Y is a cone, if for
every ¢ € @ and A > 0 it holds that Ag € Q. A cone Q is convex, if @ +Q C Q. In
addition, a set @ is pointed, if @ N (—Q) = {0}, and a set Q is proper, if Q # Y,
Q # {0} and @ # (). For a subset A of Y, we denote by cl A the closure of A and by
int A the interior of A. A is called Q-bounded if for each neighborhood U of zero in

Y there exists a constant r > 0 such that A C rU + Q. For every A, A1, A2 € P(Y)
and A € R we denote

AL+ Ay = {a1 + a2|a1 S Al,a2 € AQ}, A = {)\a|a € A}

In addition, A+ 0 =0+ A = A, \) = 0, and for convenience we write y + A

instead of {y} + Aforally € Y. Let £ : Y =2 Y be a set-valued mapping. For each

AeP(Y), weset K(A) := UA(a + K(a)). Let X be a linear space, ) # S C X and
ac

let the set-valued mapping F': S = Y be given. We denote
Dom F :={x € S| F(z) # 0}, ImF := {F(z) | € Dom F'}.

Definition 2.1. Let A, B,C € P(Y) and a binary relation < be given. = is said
to be

(i) reflexive, if A < A.
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(ii) transitive, if A < B, B < C implies A < C.
(iii) symmetric, if A < B implies B < A.
(iv) antisymmetric, if A < B, B < A implies A = B.

There exist various types of set order relations which were introduced by Kuroiwa
([27,28]), Jahn and Ha ([23]), Kuroiwa, Tanaka and Ha ([29]). Although each of
these set order relations serves its own purpose in different applications, in this
paper, we are concerned with the generalized lower set less relation introduced
in [34]. The reason of this choice is that the lower set less order is used widely
in many references concerning set-valued optimization (see, for instance, [26] and
references therein). In addition, this relation is very important in applications, as
it can be used by the decision maker for obtaining solutions of an uncertain multi-
objective optimization problem ([20,21]). The following definition is concerned with
the generalized lower set relations w.r.t. a constant set.

Definition 2.2 (Generalized Lower Set Less Relation, [34]). Let Q € P(Y'). Then
the generalized lower set less relation for two sets A, B € P(Y') is given by

A<¥Be=vVbeBIacA:bea+Q
<— BCA+Q.

Notice that j? is reflexive if 0 € @ and it is transitive if Q +Q C Q. If the set Q
is replaced by a convex cone in Y, then this definition reduces to the definition of
the lower set less order given by Kuroiwa ([27,28]). Now, we recall the generalized
lower set less order relation, which is introduced by Eichfelder and Pilecka [12],
namely the [-less order relation of type D, denoted by le, where D is a set-valued
map from Y to Y. This relation is also further discussed in [31,32].

Definition 2.3 (Variable generalized lower set less relation). Let A, B € P(Y) and
let £ :Y ==Y be a set-valued map. The variable generalized lower set less
relation j;c is defined as

(2.1) A<FB<=VbeB JacA:bea+K(a)

Note that (2.1) can be written by B C Ugea(a + K(a)). For A, B,C € P(Y), we
write A A B if B € Ugea(a+ K(a)), A~ B if A=F B and B <[ A.

In the following, we prove some properties of the relation jf given in Definition 2.3.
Note that the assertions (i) and (ii) are presented in [12, Lemma 4.1] for the case
K :Y =Y is a cone-valued map, whereas (iii) and (iv) are given in [11] without
proof.

Theorem 2.4. The relation jf satisfies the following properties:
(i) =KX is reflexive, if

(2.2) 0€K(y) forally €Y.

(ii) j{c is transitive, if for all y € Y and for all d € K(y), it holds that
(2.3) Ky +d) € K(y)
(2.4) and K(y) + K(y) € K(y).
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(iii) Suppose that A, B € P(Y') and K satisfies the condition (2.3). Then,

A=<FB =  UpepK(b) C UscaKl(a).

(iv) Suppose that A,B,C € P(Y). Then,

Proof.

A<fBadAcC = C=FB.
(i) Let A € P(Y'). We have that
A = Ugea(a+0) € Ugea(a + K(a)).
Thus A jf A, e, j;c is reflexive.

(ii) Suppose that A4, B,C € P(Y) satisfying A <} B and B < C. The defini-

tion of j{c implies that
C C Upep(b+ K(b)) and B C Ugea(a + K(a)).

Choose b € B arbitrarily. This yields that there exists a; € A such that
b = ay + d with some d € K(ap). We have that

b+ K(b) =ap+d+ K(ap+ d)
Cap + K(ap) + K(ap + d)
Cap+ K(ap) + K(ap)
C ap + K(ayp).
Therefore,
C C Upen(b+ K(b)) € Ugeala+ K(a)).
This means that A jf C and the transitivity of j;c is satisfied.

(iii) Assume that A, B € P(Y) such that A <X B. We get that B C Ugeca(a +

K(a)) i.e., for each b € B, there is a;, € A satisfying b = ap + d where
d € K(ap). Since K(-) satisfies (2.3), we get K(b) = K(ap + d) C K(ap) C
UaGAIC((I).

Thus UpegK(b) C UgeaK(a), which is the desired conclusion.

(iv) Obviously, we have that B C Ugeca(a + K(a)) C Ueec(c+ K(c)). Therefore,

B C Ueec(c+ K(ce)), ie., C <F B.
g

3. SET OPTIMIZATION WITH RESPECT TO VARIABLE DOMINATION STRUCTURES

3.1. Optimality definitions. We begin this section with the definition of minimal
elements of a family of sets by using the relation jf given in the previous part.
The notion 'minimal’ in set optimization is introduced by Kuroiwa [28] for the case

K(:) =

K where K is a fixed, solid (i.e., int K # (), pointed, convex cone, while

the notion ’strict minimizer’ is given by Ha [19] for the case K(-) = K where K is
a fixed, pointed, closed, convex cone in Y.

Definition 3.1. Let A be a family of nonempty subsets of Y. Let £ : Y = Y be
a set-valued map satisfying (2.2).

(a) A set A€ Ais called a minimal element of A w.r.t. <K, if

AcAA<FA — A<FA
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(b) A set A € Ais called a strictly minimal element of A w.r.t. <K if
AcAA=FA — A=A

The set of all minimal and strictly minimal elements of A w.r.t. jf is denoted by
Min(A, <) and SMin(A, <), respectively.

Remark 3.2. Obviously, if A € SMin(A, <), then A € Min(A4, <), but the
inverse relation is not true in general, see [32] for more details. In addition, when
K is a constant pointed cone, both of these notions reduce to the classical concept
of minimality in vector optimization if we consider A = {{y},y € M} for some
MCY.

Observe that if A € Min(A, <) and if <[ is transitive, then for all A’ € A with
A’ ~ A, we have A’ € Min(A, jfc) Moreover, if A € SMin(A, jf) and B ~ A, it
holds that A = B.

The following proposition is generated directly from Definition 3.1 and its proof
is therefore skipped.

Proposition 3.3. Let A be a family of nonempty subsets of Y and A, A € A be
given. Then, the following statements are equivalent:
(i) A € Min(A, <F).
(i) Aec A, AAF A = AAFA
(iii) AcA A=FA = A~A

Let us now introduce a set-valued optimization problem equipped with jf. As-
sume that X,Y are linear topological spaces and S C X. We consider a set-valued
map F: X =Y with F(x) # 0 for all z € S and a set-valued map K : Y = Y such
that the relation < is reflexive. We denote by (P) the minimization problem
(P) K — min F(x)

€S

and define the optimal solutions of (P) in the following way.

Definition 3.4. (i) A point 2° € S is called a minimal solution of the set-
valued problem (P) w.r.t. <N, if F(Z) is a minimal element of the family

{F(z)}zes e,
re S Fx)=FF@#z) = F@) <fF().

(ii) A point 20 € S is called a strictly minimal solution of the set-valued problem
(P) wr.t. <K, if

reS Fz)<fF@) = z==

Remark 3.5. (i) If for all y € Y, K(y) = K, where K is a convex cone in
Y, Definition 3.4 reduces to the definition of minimal and strictly minimal
solutions of a set-valued problem which are widely used in the literature,
see for instance [18,27,28, 35].

(ii) Observe that if < is transitive and 2° is a minimal solution of (P) w.r.t.
<K, then so is any 2’ € S such that F(z) ~ F(a9).
If for all z, 2’ € S, = # 2/, it holds that F(x) # F(z'), then 2° is a strictly
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minimal solution of (P) if and only if F'(z°) is a strictly minimal element of
the family set {F(z)},es wr.t. <.

The two above concepts of solutions for (P) have the following relationship.

Proposition 3.6. If 20 is a strictly minimal solution of (P) w.r.t. jfc, then 20 is

a minimal solution of (P) w.r.t. <.

Proof. The result follows from Definition 3.4. g

3.2. Scalarization in set optimization w.r.t variable domination struc-
tures. The aim of this section is to apply the scalarization technique for deriving
some properties of solutions of a set optimization problem equipped with variable
domination structures. We first introduce a nonlinear scalarizing functional of the
set-valued map and then we study the characterization of solutions of a set-valued
optimization problem w.r.t. a variable domination structure.

Let Q C Y be a proper, closed set and k° € Y \ {0} satisfying the condition

(3.1) Q + 1[0, +00)k’ C Q.

The following nonlinear scalarization functional (see [16] and [26] for an overview)
has been widely applied in vector optimization.
For @ and k° satisfying (3.1), let zg 4o : ¥ — R U {+00} U {—00} be defined by

(3.2) VyeY: zou(y)=inf{t € Rlyetk’ - Q}.

Important properties of the functional zg yo can be found in [15] and [26]. In the
literature, several authors have extended this scalarizing functional to set optimiza-
tion equipped with a constant cone where the objective space P(Y') is ordered by
the lower set less order relation (see, for instance, [17,18] and references therein).
There are also many applications of these extensions in investigating well-posedness
for set optimization w.r.t. a fixed cone, see [18,35,40]. Dealing with the case that
the domination structure is variable, recently, Bouza and Tammer in [3] also have
introduced a scalarizing functional to characterize and compute minimal points of
a subset of a Banach space where the domination structure is given by a set-valued
mapping. In addition, the authors in [32] have used the functional (3.2) for set op-
timization w.r.t. domination structures for several set relations. As indicated in the
previous part, it is necessary to introduce a new scalarizing functional to study the
well-posedness property of set-valued optimization problems equipped with variable
domination structures such that this property is equivalent to that of a scalar prob-
lem in which the new functional is involved. This situation leads to introduce a new
scalarizing functional in the following way.

Let A,B € P(Y), K:Y = Y be a set-valued map. For each k* € Y \ {0}
satisfying

(3.3) Yy €Y : [0, +00)k’ + K(y) C K(y),

we consider a scalarizing functional ¢ o : P(Y) x P(Y) - R U {+o0} given by
(3.4) oro(A, B) = inf{t> 0] A <F tk® + B},

where inf(()) = +oo.
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If there is no confusion, from now, for k° satisfying (3.3) and B € P(Y) fixed, we
write

(3.5) or0.8(A) == oo (A, B) = inf{t > 0| A < tk° + B}.

Remark 3.7. Obviously, when A = {y}, B = {0} and K(z) = Q for all z € Y,
instead of taking the infimum over ¢t € Ry in (3.5), we take the infimum over ¢ € R
of the set {4 <) tk® + B} to receive the value zg 40(y) determined by (3.2).

It is important to mention that, if A € P(Y), B = {y}, and for every z € Y,
K(z) = {0}, then the scalarizing functional given by (3.4) becomes the directional
minimal time function

(3.6) Tro(A,) i= ppo(A,y) = inf{t > 0 [ tk° +y € A},

which is introduced by Nam and Zalinescu in [38]. The functional (3.6) is called
directional minimal time function. In addition, functional (3.6) has an inter-
esting application in locational analysis, see [38] for more details. Recently, Durea,
Pantiruc and Strugariu [8] have generalized the functional (3.6) to the case of a
set of directions. As for the functional (3.4), we illustrate in the following another
application in location problems of the functional ¢y 5(A), where B is a fixed sin-
gleton set, B = {y}, and some uncertain conditions are involved.

Suppose that A, ..., A, be n concerned destinations to which the producer, which
is denoted by the vector y € Y, wants to deliver some products (clothes, food, fur-
niture,...). Each destination A; has its direction k%, where i € {1,2,...,n}. Assume
that I : Y =3 Y be a set-valued mapping which describes the changes acting on
each point z € Y during the considered time. These changes often appear in many
practical problems, for instance, traffic jams, renovation plans, weather conditions
and so on. We suppose that the relation y+tk’ € eUA (a+K(a)), ie., A; jf y+tkt,

ac4;

means that the producer y delivers the products to the target A; successfully, where
i € {1,2,...,n}. Then the problem of finding the point y € 2 such that the total time
for the vector y to deliver products to the target sets {A1,.., Ay} can be modeled
as follows

Minimize Z i (A;,y) subject to y € Q.

i=1,...,n
We call pro p jf—monotone if
AL As € P(Y), A1 < Ay = gpo p(A1) < ppo p(A2).

In the following theorem, we present several properties of the functional @0 p given
by (3.5).

Theorem 3.8. Let A, A1,A2,B € P(Y) and the set-valued map K :' Y =Y be
given. Suppose that k° € Y\{0} such that (3.3) holds. Then, the following properties
of the functional o p are satisfied.

(a) If K(-) satisfies the conditions (2.3) and (2.4), then

Pro.B 18 j{c -monotone.
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In addition,
A~ Ay = o (A1) = pro p(A2).

(b) If K(y + tk°) = K(y) for ally € Y and t € R, then ppo g(A + k%) =
oro g(A) + 1 for all T € Ry.
(¢) For allr € Ry, it holds that

oo p(A) <17 = Upsr(tk” + B) C Ugea(a + K(a)).

(d) If K(-) satisfies (2.2), then pyo p(B)=0.
(e) Suppose that for all A € P(Y) the set Ugea(a + K(a)) is closed and K(-)
satisfies (2.2), (2.3) and (2.4). Then

(PkO,B(A):O < A j;c B.
(f) Let A,B € K(Y'). Suppose that K(-) satisfies (2.2), (2.3) and (2.4). Then
A~B <= Ugeala+K(a)) = Uep(b+ K(D)).

(g) If B is K(A)-bounded and for all v > 0 it holds that rintIC(A) + K(A) C
K(A), then gyo g(A) < 400 for all k¥ € int K(A).

Proof. (a) Let A1, As € P(Y) such that A; j{c As. Tt is sufficient to prove that
{t € Ry|A; <Xtk + B} D {t € Ry |Ay <X tk° + B}.
The above assertion is obvious if {t € Ry|4y <X tk° + B} = (. Now we
consider the case {t € Ry |As jf tk®+ B} # (). Let t € R, such that Ay jgc
tk® + B. This implies tk” + B C Ugea,(a + K(a)), i.e., for arbitrary b € B,
there exists a% € Ay satisfying tk" + b € a% + IC(a%). Since A; jfc Ay and
a? € As, we obtain 3 a} € Ay such that af € a} + K(a}), i.e., 3 di € K(a})
satisfies ag = all) + di. We have that
th +beaf +di +K(aj +di) C ap +K(ap) + K(ag + dy)
C ai +K(a}) C Ugen, (a+ K(a)).
Therefore,
thY + B C Ugea, (a+ K(a))
— Ay j;C tk‘o + B
— te{teR A <Ftk’+ B

Taking into account that ¢ be arbitrarily chosen in Ry and As jf tk% + B,
it holds that

{t e Ry|A; <K tk° + B} D {t € Ry |4y <Xtk + B}
— inf{t € R, |A; <] tk® + B} <inf{t € R |4y <} tk° 4+ B}
= @0 (A1) < o p(A2),
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Le., pro p 18 jf-monotone.
Now, we prove the second assertion. Suppose that A; ~ Ao, by the obser-
vation that

A1 ~ A2 <~ Al ‘_<;C A2 and A2 j;c Al,
and taking into account the jf —monotonicity of ¢y g, it holds that
oo (A1) < @po p(A2) and @yo p(Az2) < @po (A1), respectively.

Hence, @po g(A1) = @opo p(A2).
We prove that

{teR|A=Fth® + By +r={t e Ry |A+rk® <} tk° + B}.
Let t € Ry such that A < #k° + B. It holds that
thY + B C Ugea(a + K(a))
< (t+ 1)k + B C Ugea(a + rk° + K(a))
< (t+7)k° + B C Ugea(a +rk® + K(a + rk%))
s (f+7r) e {t e Re|A+ k" <F tk° + BY.
Therefore,
{t e Ry|A = th® + B} + 7 = {t e Ry |A+ rk® < tk° + B},
Taking the infimum over t € Ry, we get
inf{{t € Ry |A <F tk* + B} +r} = inf{t € R, |A + 7k° <[ tk" + B}.
This yields
oo g(A) +1 = o g(A+ rko).

Suppose that oo p(A) = and 7 € Ry such that u < r.
We prove the following assertion

for all t > u: tk® + B C Useala + K(a)).
By the definition of infimum and @0 g(A), there is ¢, u < ¢ < t such that
A=K #° + Bie., th° + B C Usea(a + K(a)). Therefore,
th" + B=1tk" + B+ (t — 1)k° C Ugea(a + K(a)) + (t — 1)K,

Taking into account (3.3) we get that Ugc (a4 (a)) + (t —1)k°® C Ugea(a+
K(a)). This implies tk° + B C Ugea(a + K(a)), ie., A <X tk* + B.

Now let ¢ > r arbitrary. Since r > u, we have that ¢ > u and thus tk° + B C
Uaea(a + K(a)). This implies U=, (tk® + B) C Ugea(a + K(a)), which
finishes the proof of the necessary condition.

Now we prove the sufficient condition. Assume by contradiction that

Upsr(tk® + B) C Ugea(a + K(a)) and oo p(A) =v>r.
Let e :=v —7 >0 and v’ :=r + 5. We have that

v >0 >rand vk + B C Ugeala+ K(a)), ie., A=<F K"+ B.
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Taking into account the definition of jf, it holds that
prop(A) =inf{t e Ry | A <L tk° + B} <.

Therefore, @0 g(A) < v’ < v, a contradiction, and the proof of the sufficient
condition is complete.
(d) Obviously, the following relations hold true for all ¢ > 0

thY + B = Upep(b+ 0 + tk°) € Upep(b+ K(b) + th°) C Upep(b + K(D)).
Then
Urso(tk? + B) € Upep(b+ K(b)).

Taking into account part (c), we get that oo g(B) < 0. In addition, since
the definition of @0 p(B), ¢ro g(B) > 0. Therefore, @0 g(B) = 0.

(e) The sufficient condition is a consequence of part (a) and part (d).
Conversely, if @0 p(A)=0, by part (c) it holds that

Urso(tk? + B) € Ugeala + K(a)).
Take b € B arbitrary, it is clear that for all n > 0 we have

1
Eko + b g UaeA(a + K(a))
Therefore, taking the limit when n — 400 we obtain

b € cl(Useala + K(a))) = Uaea(a + K(a)).

Thus, B C Ugea(a + K(a)), ie., A <X B.

(f) A ~ B implies that A <[ B, i.e., B C Ugea(a+K(a)). Let b € B arbitrary.
There exist a, € A and dp € K(ap) such that b = ap + dp. Since K satisfies
(2.3), K(b) = K(ap+dp) € K(ap). Taking into account that K satisfies (2.4),
we have

b+ KC(b) = ap + dp + K(b)
C ap + K(ap) + K(ap)
C ap + K(ap).
Therefore, b+ K(b) C UA(a + K(a)). Because b is taken arbitrarily, it holds
ac
that bUB(b + K(b) C LEJA(a + K(a)). Similarly, we get LGJA(a + K(a)) C
€ a a
. Theref = .
bgB(b + IC(b)). Therefore, agA(a + K(a)) bgB(b + (b))
Conversely, suppose that UA(a+ K(a)) = bUB(b+IC(b)). We will prove that
ac €
A ~ B. Since 0 € K(y) for all y € Y, we have that
AC = b b
€ U (atKla)) = U (b+K()
AC b b
—AC U+ K0)
=B =<’ A

Similarly, A jf B, and thus A ~ B.
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(g) Since B is K(A)-bounded and int IC(A) — k° is a neighborhood of 0, there is
r > 0 such that

B C r(int C(A) — k%) + K(A) € —rk® + K(A)
= B+rk’ CK(A) = gA(a + K(a))
= B+rk’ C LGJA(CL + K(a))
= o g(A) <1, ie., ppo g(A) < +oo0.
O

Remark 3.9. (i) Theorem 3.8 (a)-(f) extends [18, Theorem 4.2], where K(y) is
a constant convex cone K C Y for all y € Y. Note that even if B is not a K-
proper set, i.e., B+ K =Y, the assertion (d) holds true. However, B4+ K # Y
is needed in the proof of [18, Theorem 4.2] to obtain ¢y g(B) = 0.
(ii) Let A, B € P(Y) such that A ~ B, agA(a—l—lC(a)) is closed and K(-) satisfies

(2.2), (2.3) and (2.4). Then it holds from Theorem 3.8(e) that @0 g(A)= 0.
In addition, by using the same lines in the proof of Theorem 3.8(e), we get
the following assertion for all v > 0 and A, B € P(Y’) under the assumption
that aLgJA(a + K(a)) is closed:

prop(A) <y <= "+ BC gA(a+ K(a)), ie., A=<F~E"+ B.

(iii) If C(y) = K where K is a convex cone with nonempty interior, pgo p(A) <
+00 for all K- bounded set B and k" € int K, see [35, Proposition 3.2

Remark 3.10. The assumptions (2.3) and (2.4) of K(-) can be fulfilled when K(y)
is not necessarily given by a cone for all y € Y. For instance, the mapping /()
given by

K:Y=Y
K(y) = Ny,

where Ny := {ny|n € N} is not a cone.
In addition, an example for a set-valued map satisfying the condition in Theorem
3.8 (b), which is neither a constant map nor a cone-valued map, can be given as

K:Y=Y
K(y) = Ny + Rk°.
Indeed, we have
ViteR: K(y+tk®) = N(y + tk°) + Ri°
= Ny + Rk
= K(y)-
Therefore, K(y + tk") = K(y) for all y € Yt € R.
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Now we briefly make a comparison between our scalarizing functional (3.5) and
the scalarizing functional gjgc used in [32] for set optimization equipped with the
relation <. The functional g3 P(Y) x P(Y) — R is defined as
(3.7) ABeP(Y), g5 (A B) =supinf 2,4 k(0 (-b).

beB a€A '
where k¥ € Y\ {0} is taken such that (3.3) is fulfilled.

The following proposition shows the relationship between @0 p(A) and gff (A, B),
where A, B € P(Y)

Proposition 3.11. Let A, B € P(Y') and suppose that g=r (A, B) € Ry. Then the
following statement holds true:

oro.5(A) = g7 (A, B).

Proof. Suppose that gjf (A,B) = u € Ry. By [32, Theorem 4(a)], it holds that
Upsu(tk? + B) C Ugea(a+ K(a)). Taking into account Theorem 3.8 (c), ¢yo g(A) <
u. Assume by contradiction that 0 < 0 gp(A) = v < u. Therefore, there exists
w € R such that v < w < u. By Theorem 3.8 (c), it holds that

wk® + B C Ugen(a + K(a), ie., A=Fwk’+ B.

Taking into account [32, Theorem 4(b)], we get that g3t (A, B) < w < u, a contra-
diction. Therefore, @ro p(A) = u = g (A, B). O

4. CHARACTERIZATIONS FOR SOLUTIONS OF SET OPTIMIZATION W.R.T.
VARIABLE DOMINATION STRUCTURES VIA SCALARIZATION

This section is devoted to characterizations of minimal and strictly minimal solu-
tions of set optimization w.r.t. variable domination structures by using the scalar-
izing functional given by (3.5). We assume in this part that KC(-) satisfies the
condition (2.2), (2.3) and (2.4). Let A be a nonempty subset of P(Y). We begin
this section with the following theorem, where we are using the function (3.5) with
B = A, and k* € Y \ {0} such that (3.3) holds true.

Theorem 4.1. The following assertions are satisfied.

(a) Assume that Usea(a+K(a)) is closed for all A € A. Then A € Min(A, <)
if and only if o 4(A) >0 for all A€ A, A A A.

(b) Assume that Ugea(a+K(a)) is closed for all A € A. Then A € SMin(A, <J)
if and only if oo 5(A) >0 for all A € A\ {A}.

Proof. (a) Consider A € Min(A, <) and suppose that there exists A € A, A %
A satisfying @0 4(A) = 0. Taking into account Theorem 3.8(e), it holds
that A jgc A. Since A € Min(A, j;c), A jgc A and thus A ~ A. This is a
contradiction.
Conversely, assume that ¢ 5(4) > 0 for all A € A, A # A and A is
not a minimal element of A. Then from the definition of minimal elements
of A there exists a set A € A, A jf A and A ﬁc A. Using Theorem

3.8(a) it holds that ¢y 1(A) < ¢po 4(A). In addition, by Theorem 3.8(d)
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we get ¢po 1(A)=0. Therefore, o0 5(A) < 0, a contradiction. Thus, the
assumption A ¢ Min(A, <J) is false and the proof of the sufficient condition

is complete.

(b) Suppose that A € SMin(A, <F) and there is A € A\ {A} satisfying
¢ro 4(A) = 0. By Theorem 3.8(e), we have that A <K A. Since A €
SMin(A, <), it yields A = A, which is a contradiction.

Let us prove the sufficient condition. By contradiction, assume that
oro i(A) > 0 forall A € A\{A} and A ¢ SMin(A, <[) . Using the definition
of strictly minimal elements of A, there exists A € A such that A jf A and
A # A. Taking into account part (d) and (e) of Theorem 3.8, it holds that

(PkO,A(A) < S%O,A(/UZO'
This implies g0 35(A)=0, which is a contradiction.
U

Remark 4.2. A similar result as Theorem 4.1 is generated in [32] where the authors
used the scalarizing functional gjic, compare [32, Theorem 17].

In the following theorem, we present characterizations for minimal and strictly
minimal solutions of a set-valued optimization problem w.r.t. variable domination
structures. When () = K, where K is a convex cone in Y, a similar result is given
in [18].

Theorem 4.3. Let ' : X = Y and K : Y = Y be set-valued maps such that
Uyer(z)(y+K(y)) is closed for each v € X and the conditions (2.2), (2.3) and (2.4)
are fulfilled . Consider problem (P) and & € X. Then the following assertions hold
true.

(a) Z is a minimal solution of (P) if and only if there is a functional
G:ImF — Ry U {+o0} being <I-monotone such that
(4.1) xesS, F(x)~F(I) <= G(F(x))=0.
(b) T is a strictly minimal solution of (P) if and only if there is a functional
G:ImF — Ry U{+oo} being jf—monotone such that
(4.2) zes, GF(zr)=0 <+—= =z==z.

Proof. The idea of this proof is as similar as that in [18, Theorem 4.4], where
K(-) = K, K is a convex cone in Y. We illustrate in the following for the case the
domination structure is variable and the scalarizing functional is given by (3.5).

(a) Suppose that Z is a minimal solution of (P). Let k° € Y such that for all
y €Y, K(y)+ [0, +00)k" C K(y) and define the following functional as
G:ImF — RU{+oc}
G(F(x)) = or0,p(a) (F (),
where o p(z) given by (3.5) with B = F(z) is involved.
From Theorem 3.8(a), we get that G is <[-monotone. Let us now prove

that
x€ S, F(zx)~F(z) <— G(F(z))=0.
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Taking into account Theorem 3.8(a) and (d), it holds that
F(x)NF(f):>F( ) <1 F(2)
G(F(z)) < G(F(2)) = ¢p@ F(2)=0
G(F(x))=0
Now if we suppose that F(z) # F(z), by Theorem 4.1 (b), it holds that
G(F(z)) > 0. Therefore, if G(F(z))=0, we have that F(x) ~ F(Z).
Reciprocally, suppose that there exists a functional G : Im F' — Ry U {400}
satisfying (4.1) and G is <F-monotone. Let z € S such that F(z) <} F(z).
It is sufficient to prove that F(z) =< F(z). Since K satisfies (2.2), the
relation <F is reflexive and thus F(z) ~ F(z). Taking into account (4.1),
we get that G(F(z))=0. Since G is < monotone and F(z) <F F(z), it
yields
0 <G(F(x)) < G(F(2))=0
= G(F(x))=0
Taking into (4.1) we get that F(z) ~ F(Z) = F(z) <X F(z), which is the
desired conclusion.

(b) Let & be a strictly minimal solution of problem (P) and the functional G
defined as in part (a), that is G(F(7)) = pgo p(z)(F(x)). Because 7 is a
strictly minimal solution of (P), it yields that

Vao#z: Fz) AF F(z).
Now we suppose that G(F(z))=0. Taking into account Theorem 3.8(e), it
holds that F(z) <[ F(z). This implies # = z. Therefore, if G(F(z))=0 then
x = . On the other hand,
r=3 = G(F(z))=GF (7)) = ¢ peF@)=0.
Thus, the conclusion (4.2) holds true.
Now we prove the sufficient condition. Suppose that there exists a functional
G :ImF — Ry U {+oc} satisfying (4.2) and G is <{-monotone. Let x € S
such that F(z) <F F(z). Since (4.2) holds true, it yields
F(z) X} F(z) = 0 <G(F(z)) < G(F(z)) <0
= G(F(x))=0
= x =1
The last equation states that Z is a strictly minimal solution of (P).
O
Remark 4.4. e Since G : X — R4 U {400}, we can rewrite (4.1) and (4.2)

respectively by
argmin(G o F,S) = {z € S| F(z) ~ F(Z)}

and
argmin(G o F, S) = {z}.
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o Ifforally € Y, K(y) = K, where K is a convex cone in Y and F(z) + K is
closed for all x € S, Theorem 4.3 reduces to [18, Theorem 4.4].

5. POINTWISE WELL-POSEDNESS FOR SET OPTIMIZATIONS WITH RESPECT TO
VARIABLE DOMINATION STRUCTURES

Investigating well-posedness properties for vector as well as set optimization has
attracted many authors in the literature. Usually, one proves the equivalence be-
tween the well-posedness property of the concerned problem and the Tykhonov
well-posedness property of a scalar problem in which the objective function of the
original problem is involved. Then by using many classical results related to this
property of the scalar problems, one can derive some classes of well-posed vector
(set) optimization problems for the concerned problem. There are many publica-
tions investigating the equivalence between the well-posedness property of a vector
optimization problem and the Tykhonov well-posedness property of a scalar prob-
lem, see for example, [6,36,37]. A similar result for set optimization problems
w.r.t. fixed cones was first introduced in [40] and recently studied in [18,35] and
the references therein.

In this section, we will show that under some appropriate conditions, we also
obtain this equivalence for set-valued optimization using the set relation equipped
with a variable domination structure. Moreover, we will find two sets of points at
which a set-valued optimization problem is well-posed. Throughout this part, we
suppose that the following assumption is fulfilled.

Assumption (A):
e £:Y =2 Y is a set-valued map such that for all y € Y, K(y) is a proper,
closed, convex cone in Y and int leC(y) # .
y

e F': X =Y is a set-valued map between two real topological vector spaces,

ScXand forallze S, U (y+K(y)) is closed.
yEF ()

e k¥ is taken in Y such that k° € int ﬂle(y).
ye

We begin this section by recalling the notion of well-posedness property of an ex-
tended real-valued function (see [5]).

Definition 5.1. Let f : X — RU{—o00,+00} be an extended real-valued function
and consider problem

(P) Min ().

We say that problem (P’) is:
(i) Tykhonov well-posed, if it has a unique solution z € S and
{z,} C S, f(xp) — f(z) implies {x,} — Z.
(ii) generalized well-posed, if arg min(f,S) # 0 and
{zn} C S, f(zn) = f(z) implies I{zy, } C {xn}: {zn,} — 7.



316 E. KOBIS, TH.T. LE, CHR. TAMMER, AND J.-CH. YAO

Remark 5.2. (P’) is Tykhonov well-posed if and only if it is generalized well-posed
and the set arg min(f, S) is a singleton.

Now we will present the well-posedness property for the set-valued problem (P)
given in Section 3.1 under Assumption (A). Recall that for FF: X = Y and K :
Y =Y, (P) has the following formula

K —gcrlelglF(w)

The following definition extends Definition 5.1 in [18] for a set-valued problem
(P) equipped with a variable domination structure.

Definition 5.3. Let k¥ € int ﬂle(y) and Z be a minimal solution of problem (P).
ye

(a) A sequence {x,} C S is said to be k%-minimizing for (P) at z, if
Hen} CRLN{0}, {en} = 01 Fan) X F(T) + £,k Vn.

(b) (P) is said to be k-well-posed at z, if every k’-minimizing sequence at
converges to .
(¢) {xzn} C S is said to be minimizing at z, if

3de} © K@)\ O}, {du) = 0: Plan) <5 F(E) +do, .
ye
(d) (P) is said to be well-posed at z, if Z is a strictly minimal solution and for
all minimizing {z,} at z it holds that {z,} — Z.

The following lemma, given by Durea [6], will be used in the next proposition
which states that Definition 5.3(a) and Definition 5.3(c) are equivalent.

Lemma 5.4 ([6, Lemma 2.2]). Let K C Y be a proper, closed, conver cone with
nonempty interior and {k,} be a sequence of elements from Y that converges to 0.
Then for every k € int K there exists a sequence {ay} of positive real numbers s.t.
{an} — 0 and ank — k, € int K for every natural number n.

Proposition 5.5. Let {z,} C S, k¥ € int ygle(y) and T be a minimal solution of
problem (P). Then the two following assertions are equivalent:
(i) {xn} is kO-minimizing for (P) at Z.
(i1) {zn} is minimizing for (P) at .
Proof. [(i) — (ii)]: Since {x,} is k°-minimizing for (P) at Z, we have that
Hend CREN{0}, {en} = 0: F(z,) <X F(Z) + ,k°, ¥n.
Let dy, := €,k°, Vn. It holds that
{dn} € 0 K@)\ {0}, {dn} = 0 and F(zs) <5 F(Z) + dn.
Taking into account definition of minimizing property, we get that {z,} is minimiz-

ing for (P) at Z, i.e., (4i) holds true.
[(i1) — (4)] : Suppose that {x,} is minimizing for (P) at z, i.e.,

3Hd,} ygle(y) \ {0}, {dn} = 0: F(z,) =X F(z)+d,, Vn.



SCALARIZATIONIN SET OPTIMIZATION W.R.T. VARIABLE DOMINATION STRUCTURES 317

We will prove that
FHany CRyN\ {0}, {an} = 0: F(z,) <X F(Z) 4+ a,k®, vn.
We have that

F(xn) jgc F(j) +dp, & F(f) +d, C eg( )(yn + /C(yn))
Yn Tn

(51) SP@C Ut Kly)) + (~dy)

Let K := ﬂle(y). Since for all y € Y, K(y) is a conex cone, we have that
ye
K(y) + K C K(y). Therefore, for all n € N, it holds that

(5.2)
U n+l€ n)) +int K C U n+lc n)) + K C U n"’lc n)):
yneF(xn)(y (Yn)) yneF(xn)(y (Yn)) yneF(xn)(@/ (Yn))

By Assumption (A), K is a proper, closed, convex cone with int K # (). Taking into
account k¥ € int K, {d,} Y, 0 and applying Lemma 5.4, we obtain that
FHan} SR\ {0}, {an} = 0: ank® —d, €int K, ¥n € N.

This implies that —d,, € —a,k® + int K. Taking into account (5.1), it holds for all
n € N that

FZ)C U (yo+Kyn) — ank® +int K
Yn€F (xn)

= F(7) + O‘nko - U (yn + K(yn)) +int K.
Yn€F (xn)

Taking into account (5.2), we get that
F(z) +ank® C U (yo+K(yn)), Yn €N

yneF(xn)
(5.3) — F(x,) <X F(Z) + a,k®, Vn e N.
The relation (5.3) ensures that {x,,} is k’-minimizing for the problem (P) at z. The
proof is complete. O

The following theorem states that there exists a class of scalar problems whose
Tykhonov well-posedness property is equivalent to the well-posedness of the original
set optimization problem (P).

Theorem 5.6. Suppose that K :' Y = Y satisfies (2.3). Furthermore, let T be a
strictly minimal solution of problem (P) such that ¢o pz)(F(Z)) € R. Consider
the scalar problem

Poro ron) Min{ gy o (F(2)) | @ € S}.
Then the following statements are equivalent:
(a) Problem (P) is well-posed at .

(b) For every k° € int ﬁle(y), problem (P, ) is Tykhonov well-posed.
ye

Pr0,F(z)

)) is Tykhonov well-

kO, F(z

C ere 18 € mt N Yy) such that problem
Th s KV ¢ i YIC h th bl P,
ye
posed.
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(a) = (b). : Let k° € int ﬂle(y) arbitrary. Taking into account Theorem 4.3(b),
ye

we have that
oro, p(z)(F(2))=0 and for all  # T : pro p(z)(F(x)) > 0.
Thus argmin,c g pro p(z) (F(2)) = {}, i.e, T is a unique solution of (P, F(i)). Now
take {x, } C S such that po pz) (F(2n)) = @ro p(z) (F(7)). It is sufficient to prove
that {z,} — Z.
Let &, := 040 p(z) (F(2n)), and e, := @40 p(z)(F(2n)) + 5. It holds that
{en} =0, &, > 1, and F(z,) <X F(Z) + ¢, k°.
By the last relation, we get that {x,} is k°-minimizing and thus, a minimizing
sequence for (P). Since (P) is well-posed, {z,} — .
[(b) = (¢)] This implication is obvious.
[(¢) = (a)]: Suppose that (c) holds true, we will prove that (a) is fulfilled. Let {x,}
is a minimal solution sequence for problem (P) at z. By Proposition 5.5, there is a
sequence {e,} — 07 and
Von:F(z,) 2 F@) +enk’ = @40 p)(Flan)) < en.
Taking into account Z is a strictly minimal solution of (P), it holds that

Van # 2 1 opo pez) (F(zn)) > 0.
Thus, we get {¢r0 p@) (F(2n))} — 0= ¢po p) (F(Z)). Since (P

PO, F(z)

well-posed, it holds that {z,} — Z, i.e., problem (P) is well-posed at z. O

) is Tykhonov

Now, we are finding some classes of well-posed set optimization problems. We
recall the two following classical results of well-posed scalar optimization problems,
which will be used in the sequel.

Theorem 5.7 ([2, Theorem 2.1]). Let X be a locally compact metric space. Suppose
f: X = RU{—00,+00} is a proper lower semicontinuous and quasiconvex function
on X. The following conditions are equivalent:

(a) Problem (P’) is generalized well-posed;

(b) argmin(f, X) is nonempty and compact.

Proposition 5.8 ([5, Example 6 |). Let X be a normed vector space, S C X be
a compact set and f: X — RU{—o00, 400} be a proper and lower semicontinuous
function on X. Suppose that argmin(f, S) has a unique element. Then problem (P’)
is Tykhonov well-posed.

In the following proposition, we show the sufficient conditions which ensure the
lower-semicontinuous property of the composition function @0 g o F', where kY e
int N K(y) and B € P(Y).

yey

Proposition 5.9. Suppose that F' : X =Y satisfies that S(F, jf, rk?4+A) = {z €
X| F(x) =<} 7k° + A} is closed for all A € P(Y) and r > 0. In addition, assume
that KC(-) satisfies (2.8). Then ¢go o F: X — Ry U{400} is lower semicontinuous
on S for all k¥ € int leC(y).

y
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Proof. We prove that for all v € R, the set S(@go g o F,v) is closed. This assertion
holds true when v < 0 since S(pgo g o F,7y) = 0. If v > 0, we prove that S(pgo g o
Fyy) = S(F, <F, 7k + B).

Let # € S(ppo g o F,7). Taking into account Remark 3.9 (ii), we have that

oropF(r) < v = F(z) 2 7k° + B = 2 € S(F, =[,7k" + B).
Therefore,
(54) S(ka,BoFa’Y) QS(F7j;CvFYkO+B)

Conversely, let x € S(F, jf,’yko + B), i.e., F(x) jf ~vkY + B. By the definition
(3.5), it holds that

oo pF(x) <v =2 € S(ppogoF,7).

Therefore,
(5.5) S(F, =5, vk° + B) C S(ppo 5o F,7)
(5.4) together with (5.5) imply that S(¢ppo p o F,v) = S(F, =, vk* + B). O

Now we present the first class of well-posed set-valued optimization problems
w.r.t. variable domination structures.

Theorem 5.10. Let X be a normed vector space and Y be a linear topological space.
Consider problem (P) with the mappings F : X =Y and K : Y =Y satisfy all
the assumptions given in Proposition 5.9. Let T be a strictly minimal solution of
problem (P) and S be a compact subset of X. Then (P) is well-posed at .

Proof. Let k° € int ﬂle(y). By Proposition 5.9, o0 gz oF' is lower semicontinuous.
ye

Furthermore, by Theorem 4.3 (b), it holds that argmin(pgo gz © F,S) = {7}
Therefore, according to Proposition 5.8, problem (P, . (@)) is Tykhonov well-posed.

Applying Theorem 5.6, we have that problem (P) is well-posed at z. O

Before deriving the second class of well-posed set optimization problems w.r.t.
variable domination structures, we introduce a K-quasiconvex map. Recall that
when K(-) = K, where K is a convex cone in Y with nonempty interior, a K-
quasiconvex set valued map is defined in [35, Definition 2.2] for F' : X = Y such
that

F(zy + (1 = M) =K (F(z1) + K) N (F(x2) + K), YA €[0,1], 21,25 € S,
where S is a convex subset of Y. We now extend this definition to the case the

domination is variable as follows.

Definition 5.11. The set-valued mapping F' : X =3 Y is said to be K-quasiconvex
w.r.t. jf on a nonempty, convex set S C X if for all z1,z9 € S and X € [0,1] it
holds that F(Az1 + (1 — A)x2) <F I&J( (y+K(y)) N }(EJ( )(y + K(y)).

ye

x1) YyEF (z2
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In the following, we show that the quasiconvex property can be inherited via
scalarizing functional given by (3.5).

Proposition 5.12. If F : X =2 Y s K-quasiconver w.r.t. j;c on a nonempty

conver set S C X then ppo g o F' is a quasiconver function on S for all K0 e

int ﬂle(y) and B € P(Y). Furthermore, the converse statement is true if K(-)
ye

satisfies (2.3).

Proof. [=] : Let z1, 22 € S be two arbitrary elements. We have to show that for all
A € [0,1] it holds that

oro g o F(Az1 + (1 — N)w2) < max{pgo g o F(z1), pro p o F(r2)}.

Obviously, this assertion holds true for the case either ¢po p o F(z1) = 400 or
@0 g © F'(x2) = +00. We now suppose that both ¢y o F(z1) and @y g o F(x2)
are real numbers. We will prove that the set S(px0 g o F,7) is convex for all v € R.
This assertion is trivial when v < 0 since S(pgo g o F,7v) = (). Now we suppose
that v > 0 and o pF(z1) < v and @po pF(z2) < 7. Let oy := ppo pF(21) and
g 1= o pF(x3). Take & := max{ay, a2} <~ and € > 0 arbitrary.

Since Theorem 3.8 (c), it holds that

F(z1) =F (@+¢)k°+ B
and

F(x2) <l (@ +)k° + B.
Therefore,

(@+e)k’+BC U (y+Ku)n U (y+K®¥)).
yeF(z1) yeF(z2)

Taking into account Definition 5.11, we get that
a+e)k’+BC U + K(y)).
( ) o yEF()\:Jc1+(1—)\):v2)(y )
Therefore, pro pF(Ax1 + (1 — N)z2) < a+¢, for all € > 0.
Thus, oo pF(Ar1 + (1 — Nz2) < a < v, ie., Az + (1 — Nz € S(ppo g o F,v) or
S(pro p o F,7) is convex.

[«=] : Conversely, suppose that o g o F' is quasiconvex, we prove that for all
z1,79 € S and A € [0,1] it holds that F(Az1 + (1 — A)ag) <F }(EJ (y + K(y)) N
ye

(z1)
U +K®)).
JeF (m)(y ()

Take z € U (y+K(y)N U (y+ K(y)), arbitrarily. This is equivalent to
yEF (z1) yEF (z2)

2
F(x;) <X {z}, for i = 1,2. Therefore, by Theorem (3.8)(e), oo (23 (F () = 0.
Since ppo 1,3 o F' is quasiconvex,

Pro {3 © F(Az1 + (1 = N)z2) < 0.

By Theorem (3.8)(e),
FQwy+ (1= Nz2) < {2},
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that is, z € U +K(y)) forallze U +K(y)n U +K(y)),
. at is, z yeF(/\x1+(1—/\):c2)(y (y)) for all z yeF(xl)(y (v)) yEF(CEz)(y ()
ie.,
FQuai+ (1= Na2) =5 U (y+K@u)n U (y+K(@)).
yEF(z1) yEF (z2)
The proof is complete. O

In the following, we present the second class of well-posed set optimization prob-
lems whose the objective map is K-quasiconvex.

Theorem 5.13. Let X be a locally compact metric space, S be a convex subset of
X. Suppose that F': X =Y and K : Y =2 Y satisfy all the assumptions given in
Proposition 5.9 and F is KC-quasiconvex w.r.t. jf on S. Let T be a strictly minimal
solution of problem (P). Then (P) is well-posed at .

Proof. Let k° € int ﬁle(y). By Proposition 5.9 and Proposition 5.12, @0 p(z) o F
ye
is lower semicontinuous and quasiconvex. Taking into account Theorem 5.7 and

argmin(pgo gz o F, S) = {7},

problem (Pp,, . (a_:)) is generalized well-posed and also is Tykhonov well-posed. Ap-
plying Theorem 5.6, we have that problem (P) is well-posed at z. The proof is
complete. O

Remark 5.14. Theorem 5.10 and Theorem 5.13 respectively extend [35, Theorem
4.5 ] and [35, Theorem 4.6 |, in which the authors used the domination K(-) = C,
where C' C Y is a convex cone such that int C # (). Note that in this case (2.3)
holds true and thus one can get [35, Theorem 4.5 | and [35, Theorem 4.6 | without
the fulfilment of this condition.

6. APPLICATION TO UNCERTAIN OPTIMIZATION

Robust Optimization has been of great interest in the optimization community
since the groundbreaking work by Ben-Tal, El Ghaoui, and Nemirovski in the
1990ies (see, for instance, [1]). However, the field of robust optimization dates
back to the 1940ies, where Wald [39] investigated worst case analysis in decision
theory. Uncertain data contaminate most optimization problems in various appli-
cations ranging from science and engineering to industry and thus represent an
essential component in optimization. From a mathematical point of view, many
problems can be modeled as an optimization problem and be solved, but in real
life, having exact data is very rare and seems almost impossible. Due to a lack of
complete information, uncertain data can highly affect solutions and thus influence
the decision making process. Hence, it is crucial to address this important issue in
optimization theory. Potential applications of uncertain optimization include sup-
ply and inventory management, since demand and tools needed for the production
process can easily be exposed to uncertain changes. Further examples for uncertain
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data in optimization problems can be found in the field of market analysis, share
prices, transportation science, timetabling and location theory.

In order to gain realistic insights into a problem in a complex surrounding, con-
trary objectives play an important role and are thus intensely studied in optimiza-
tion. In this section, we study such multi-objective problems that are contaminated
with uncertain data in a general setting.

The first robust concepts for uncertain multicriteria optimization problems was
introduced by Deb and Gupta [9]. Using an idea by Branke [4], the authors define
robustness as some sensitivity against disturbances in the decision space. They call
a solution to a problem robust if small perturbations in the decision space result in
only small disturbances in the objective space. Kuroiwa and Lee [30] presented the
first scenario-based approach by directly transferring the main idea of robust scalar
optimization to multicriteria optimization. This concept was generalized by Ehrgott
et al. [14] who implicitly used a set-order relation to define robust solutions for
uncertain multicriteria optimization problems. As was recently observed in [20,21],
robust multi-objective optimization is an important application of set optimization.
Different approaches to robust multi-objective optimization with a fixed domination
structure were examined in [20,21].

In this section, we will introduce a concept for obtaining optimistic solutions of an
uncertain multi-objective optimization problem, where the domination structure is
equipped with a variable ordering. Moreover, we develop optimality conditions for
optimistic solutions of uncertain vector optimization problems based the the results
derived in the preceding sections. Our approach enables the decision maker to
specify his preferences with regard to the domination structure rather than relying
on a given optimality concept.

Now we recall some notation of uncertain multi-objective optimization introduced
in Ehrgott et al. [14] (see also [21]) which will be used throughout this section. Let
Y be a linear topological space, X is a linear space, S C X a nonempty set, and let
an uncertainty set ) # U C RY be given. The uncertainty set ¢ contains all possible
parameter values that the uncertain parameter may attain. Let f : S xU — Y
be the function that is to be minimized. Our goal is to obtain solutions that are
optimistic, i.e., that perform well in the best-case scenario. For the scalar case
Y =R, this would mean to minimize the functional infee f(x, &) on X. Of course,
if f is vector-valued, this scalar approach cannot be easily transferred to vector
optimization. Due to the absence of a total order on Y, we need to define the
meaning of an optimal solution.

We define for z € X the outcome set

Ju(z) == {f(x, )| £ €U},

i.e., the image of f under Y. For a fixed £ € U, the vector optimization problem is
denoted by

(P(8)) min f(z,£).

TeEX

The family of all problems (Jg;,(P(€)), is called uncertain optimization prob-
lem, and is denoted by P(U). Furthermore, the family of all sets fy/(x), x € S, is
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denoted by A. In contrast to the original robustness concepts, our “optimistic” con-
cept uses the lower set less order relation equipped with a variable domination struc-
ture according to Definition 3.1. This kind of optimality focuses on the lower bound
of a set fy(z). Contrary to the traditional robustness approach, we are therefore
not interested in a worst-case concept but a best-case concept. Thus, this approach
is suitable for a decision maker who is not considered to be risk averse but rather
risk affine and has positive expectations about the future.

Definition 6.1. Let an uncertain optimization problem P(U{) be given and let
K :Y =2 Y be a set-valued map satisfying (2.2). z € S is called an optimistic
solution of problem P(U) if fi4(Z) is a minimal element of A in terms of Definition
3.1 (a). £ € S is called a strictly optimistic solution of problem P(U) if fi(Z) is a
strictly minimal element of A in terms of Definition 3.1 (b).

Now we discuss the role of the variable domination structure. For simplicity,
we consider the case Y = R?, i.e., we consider an uncertain bicriteria optimization
problem. Assume that the data of a vector a € R? is perturbed by uncertain data
and only an approximation A C R? is known (see Figure 1 (a)). Similarly, the data
of a vector b is disturbed and only an estimated set B can be generated. In order
to compare the set A to the set E, the lower set less order relation le with the

fixed ordering cone Q = Ri shall be used, such that BC A+ Q<= A le B. This

relation ensures that the lower bounds of B are not “worse” than those of A. Since
the data are uncertain, it seems likely that there exist undesired elements located
far from where most uncertain data is found. If there ex1sts such an element b ¢ B
which is located far away from B, then the relation A < B, where B := BU {b},
may not hold anymore (see Figure 1 (b)). In order to stlll include b in the analysis
but to obtain the result that the set A is, for the most part, preferred to B, a
planner can introduce a variable domination structure in the following way: Let
a€Aand K:Y =Y with

| K ifty=a,
Kly) := { R?2  else,

where K is a cone which fulfills b € {a} + K (K := K(a)), see Figure 1, (b)). Then
we have A jf B. This ensures that all estimated elements are taken into account,
as nondesired elements can be handled by using variable domination structures.

Now we are ready to apply the characterizations of solutions of set optimization
problems w.r.t. variable domination structures, which were derived in Section 4, to
the uncertain optimization problem P(Uf).

Corollary 6.2. Let k° € Y\ {0} be given such that the inclusion (3.3) is satisfied.
Then the following assertions hold.

(a) Assume that Uycy,,2)(y + K(y)) is closed for all fy(z) € A. Then z € S is

an optimistic solution of problem P(U) if and only if oo 5,z (fu(x)) >0

for all fu(z) € A, fu(z) # fulZ).
(b) Assume that Uycy,,(2)(y+K(y)) is closed for all fy(x) € A. Then € S is a
strictly optimistic solution of problem P(U) if and only if oo 4, (z)(fu(x)) >

0 for all fy(x) € A\ {fu(@)}.
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FIGURE 1. Visualization of two outcome sets A, B C R? of a uncer-
tain bicriteria optimization problem with undesired elements.

In the next corollary, we denote Im fi; := {fy(z) | z € S and fy(x) # 0}.

Corollary 6.3. Let k° € Y \ {0} be given such that the inclusion (3.3) is satisfied
and let K : Y =Y be a set-valued map such that Uycp,y(y + K(y)) is closed for
each x € S and the conditions (2.2), (2.3) and (2.4) are fulfilled. Consider T € S.
The following assertions hold true.

(a) & is an optimistic solution of problem P(U) if and only if there is a functional
G :Im fyy — Ry U {400} being jf—monotone such that

z €S, fulx)~ fulz) <= G(fulz))=0.

(b) T is a strictly optimistic solution of problem P(U) if and only if there is a
functional G : Im fyy — Ry U {+o0} being jf—monotone such that

zeS, Gfylx))=0 = =z=z.

7. CONCLUSION

This paper introduces a new scalarizing functional and investigates its properties
to characterize solutions of a set-valued problem equipped with variable domination
structures. This functional is also used to study the well-posedness properties of a
set-valued problem w.r.t. variable domination structures. In addition, we highlight
that this functional has many applications not only in location problems but also
in uncertain problems. Our future research is studying some numerical methods
to calculate solutions of set-valued optimization problems with respect to variable
domination structures.
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