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problem w.r.t. variable domination structures. We use a set relation generalizing
the lower set less order which has been used widely in the literature and applied
in many practical problems, see [17, 18, 35, 40]. Our approach can be considered as
an extension of [18] in which the authors studied Gerstewitz scalarization for set
optimization problems equipped with constant cones. However, in this paper, the
assumption of cone-proper sets in [18] is relaxed. In addition, our new functional
will avoid a drawback of nonlinear scalarizing functionals given in [32], that is, the
values of these functionals at the minimal point are not necessarily zero. This is
also beneficial for us to prove the equivalence between well-posedness property of
a set-valued problem and the Tykhonov well-posedness property of a scalar prob-
lem. Moreover, one can find some classes of pointwise well-posedness sets for set
optimization based on this equivalence.

The paper is organized as follows. Section 2 presents properties of the variable
generalized lower set less relation, which will be concerned throughout our work. In
Section 3, we introduce a new nonlinear scalarizing functional and present various
important properties of this functional. By means of this functional, we characterize
minimal solutions for a family of sets in Section 4. In Section 5, we prove the equiva-
lence between the well-posedness property of a set-valued optimization problem and
the Tykhonov well-posedness property of a scalar problems in which the objective
map of the original problem is involved. Also, we identify two classes of pointwise
well-posed set optimization problems w.r.t. a cone-valued ordering structure. An
application in uncertain optimization is considered in the last section of this paper.

2. Preliminaries

Throughout this paper, let Y be a linear topological space and let

P(Y ) := {A ⊆ Y |A is nonempty}
denote the power set of Y without the empty set. A set Q ⊂ Y is a cone, if for
every q ∈ Q and λ ≥ 0 it holds that λq ∈ Q. A cone Q is convex, if Q+Q ⊆ Q. In
addition, a set Q is pointed, if Q ∩ (−Q) = {0}, and a set Q is proper, if Q ̸= Y ,
Q ̸= {0} and Q ̸= ∅. For a subset A of Y , we denote by clA the closure of A and by
intA the interior of A. A is called Q-bounded if for each neighborhood U of zero in
Y there exists a constant r > 0 such that A ⊆ rU +Q. For every A,A1, A2 ∈ P(Y )
and λ ∈ R we denote

A1 +A2 = {a1 + a2|a1 ∈ A1, a2 ∈ A2}, λA = {λa|a ∈ A}.
In addition, A + ∅ = ∅ + A = A, λ∅ = ∅, and for convenience we write y + A
instead of {y}+A for all y ∈ Y . Let K : Y ⇒ Y be a set-valued mapping. For each
A ∈ P(Y ), we set K(A) := ∪

a∈A
(a+K(a)). Let X be a linear space, ∅ ̸= S ⊆ X and

let the set-valued mapping F : S ⇒ Y be given. We denote

DomF := {x ∈ S | F (x) ̸= ∅}, ImF := {F (x) | x ∈ DomF}.

Definition 2.1. Let A,B,C ∈ P(Y ) and a binary relation ⪯ be given. ⪯ is said
to be

(i) reflexive, if A ⪯ A.
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(ii) transitive, if A ⪯ B, B ⪯ C implies A ⪯ C.
(iii) symmetric, if A ⪯ B implies B ⪯ A.
(iv) antisymmetric, if A ⪯ B, B ⪯ A implies A = B.

There exist various types of set order relations which were introduced by Kuroiwa
( [27, 28]), Jahn and Ha ( [23]), Kuroiwa, Tanaka and Ha ( [29]). Although each of
these set order relations serves its own purpose in different applications, in this
paper, we are concerned with the generalized lower set less relation introduced
in [34]. The reason of this choice is that the lower set less order is used widely
in many references concerning set-valued optimization (see, for instance, [26] and
references therein). In addition, this relation is very important in applications, as
it can be used by the decision maker for obtaining solutions of an uncertain multi-
objective optimization problem ([20,21]). The following definition is concerned with
the generalized lower set relations w.r.t. a constant set.

Definition 2.2 (Generalized Lower Set Less Relation, [34]). Let Q ∈ P(Y ). Then
the generalized lower set less relation for two sets A,B ∈ P(Y ) is given by

A ⪯Q
l B ⇐⇒ ∀ b ∈ B ∃ a ∈ A : b ∈ a+Q

⇐⇒ B ⊆ A+Q.

Notice that ⪯Q
l is reflexive if 0 ∈ Q and it is transitive if Q+Q ⊆ Q. If the set Q

is replaced by a convex cone in Y , then this definition reduces to the definition of
the lower set less order given by Kuroiwa ([27, 28]). Now, we recall the generalized
lower set less order relation, which is introduced by Eichfelder and Pilecka [12],
namely the l-less order relation of type D, denoted by ⪯D

l , where D is a set-valued
map from Y to Y . This relation is also further discussed in [31,32].

Definition 2.3 (Variable generalized lower set less relation). Let A,B ∈ P(Y ) and
let K : Y ⇒ Y be a set-valued map. The variable generalized lower set less
relation ⪯K

l is defined as

A ⪯K
l B ⇐⇒ ∀ b ∈ B, ∃ a ∈ A : b ∈ a+K(a)(2.1)

Note that (2.1) can be written by B ⊆ ∪a∈A(a+K(a)). For A,B,C ∈ P(Y ), we
write A ̸⪯K

l B if B ̸⊆ ∪a∈A(a+K(a)), A ∼ B if A ⪯K
l B and B ⪯K

l A.

In the following, we prove some properties of the relation ⪯K
l given in Definition 2.3.

Note that the assertions (i) and (ii) are presented in [12, Lemma 4.1] for the case
K : Y ⇒ Y is a cone-valued map, whereas (iii) and (iv) are given in [11] without
proof.

Theorem 2.4. The relation ⪯K
l satisfies the following properties:

(i) ⪯K
l is reflexive, if

0 ∈ K(y) for all y ∈ Y.(2.2)

(ii) ⪯K
l is transitive, if for all y ∈ Y and for all d ∈ K(y), it holds that

K(y + d) ⊆ K(y)(2.3)

and K(y) +K(y) ⊆ K(y).(2.4)
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(iii) Suppose that A,B ∈ P(Y ) and K satisfies the condition (2.3). Then,

A ⪯K
l B =⇒ ∪b∈BK(b) ⊆ ∪a∈AK(a).

(iv) Suppose that A,B,C ∈ P(Y ). Then,

A ⪯K
l B and A ⊂ C =⇒ C ⪯K

l B.

Proof. (i) Let A ∈ P(Y ). We have that

A = ∪a∈A(a+ 0) ⊆ ∪a∈A(a+K(a)).

Thus A ⪯K
l A, i.e., ⪯K

l is reflexive.

(ii) Suppose that A,B,C ∈ P(Y ) satisfying A ⪯K
l B and B ⪯K

l C. The defini-

tion of ⪯K
l implies that

C ⊆ ∪b∈B(b+K(b)) and B ⊆ ∪a∈A(a+K(a)).

Choose b ∈ B arbitrarily. This yields that there exists ab ∈ A such that
b = ab + d with some d ∈ K(ab). We have that

b+K(b) = ab + d+K(ab + d)

⊆ ab +K(ab) +K(ab + d)

⊆ ab +K(ab) +K(ab)

⊆ ab +K(ab).

Therefore,

C ⊆ ∪b∈B(b+K(b)) ⊆ ∪a∈A(a+K(a)).

This means that A ⪯K
l C and the transitivity of ⪯K

l is satisfied.

(iii) Assume that A,B ∈ P(Y ) such that A ⪯K
l B. We get that B ⊆ ∪a∈A(a +

K(a)) i.e., for each b ∈ B, there is ab ∈ A satisfying b = ab + d where
d ∈ K(ab). Since K(·) satisfies (2.3), we get K(b) = K(ab + d) ⊆ K(ab) ⊆
∪a∈AK(a).
Thus ∪b∈BK(b) ⊆ ∪a∈AK(a), which is the desired conclusion.

(iv) Obviously, we have that B ⊆ ∪a∈A(a+K(a)) ⊆ ∪c∈C(c+K(c)). Therefore,
B ⊆ ∪c∈C(c+K(c)), i.e., C ⪯K

l B.
□

3. Set optimization with respect to variable domination structures

3.1. Optimality definitions. We begin this section with the definition of minimal
elements of a family of sets by using the relation ⪯K

l given in the previous part.
The notion ’minimal’ in set optimization is introduced by Kuroiwa [28] for the case
K(·) = K where K is a fixed, solid (i.e., intK ̸= ∅), pointed, convex cone, while
the notion ’strict minimizer’ is given by Ha [19] for the case K(·) = K where K is
a fixed, pointed, closed, convex cone in Y .

Definition 3.1. Let A be a family of nonempty subsets of Y . Let K : Y ⇒ Y be
a set-valued map satisfying (2.2).

(a) A set Ā ∈ A is called a minimal element of A w.r.t. ⪯K
l , if

A ∈ A, A ⪯K
l Ā =⇒ Ā ⪯K

l A.
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(b) A set Ā ∈ A is called a strictly minimal element of A w.r.t. ⪯K
l , if

A ∈ A, A ⪯K
l Ā =⇒ Ā = A.

The set of all minimal and strictly minimal elements of A w.r.t. ⪯K
l is denoted by

Min(A,⪯K
l ) and SMin(A,⪯K

l ), respectively.

Remark 3.2. Obviously, if Ā ∈ SMin(A,⪯K
l ), then Ā ∈ Min(A,⪯K

l ), but the
inverse relation is not true in general, see [32] for more details. In addition, when
K is a constant pointed cone, both of these notions reduce to the classical concept
of minimality in vector optimization if we consider A = {{y}, y ∈ M} for some
M ⊆ Y .
Observe that if Ā ∈ Min(A,⪯K

l ) and if ⪯K
l is transitive, then for all A′ ∈ A with

A′ ∼ Ā, we have A′ ∈ Min(A,⪯K
l ). Moreover, if Ā ∈ SMin(A,⪯K

l ) and B̄ ∼ Ā, it
holds that Ā = B̄.

The following proposition is generated directly from Definition 3.1 and its proof
is therefore skipped.

Proposition 3.3. Let A be a family of nonempty subsets of Y and Ā, A ∈ A be
given. Then, the following statements are equivalent:

(i) Ā ∈ Min(A,⪯K
l ).

(ii) A ∈ A, Ā ̸⪯K
l A =⇒ A ̸⪯K

l Ā.

(iii) A ∈ A, A ⪯K
l Ā =⇒ A ∼ Ā.

Let us now introduce a set-valued optimization problem equipped with ⪯K
l . As-

sume that X,Y are linear topological spaces and S ⊂ X. We consider a set-valued
map F : X ⇒ Y with F (x) ̸= ∅ for all x ∈ S and a set-valued map K : Y ⇒ Y such
that the relation ⪯K

l is reflexive. We denote by (P) the minimization problem

K −min
x∈S

F (x)(P)

and define the optimal solutions of (P) in the following way.

Definition 3.4. (i) A point x0 ∈ S is called a minimal solution of the set-
valued problem (P) w.r.t. ⪯K

l , if F (x̄) is a minimal element of the family
{F (x)}x∈S i.e.,

x ∈ S, F (x) ⪯K
l F (x̄) =⇒ F (x̄) ⪯K

l F (x).

(ii) A point x0 ∈ S is called a strictly minimal solution of the set-valued problem
(P) w.r.t. ⪯K

l , if

x ∈ S, F (x) ⪯K
l F (x̄) =⇒ x = x̄.

Remark 3.5. (i) If for all y ∈ Y , K(y) ≡ K, where K is a convex cone in
Y , Definition 3.4 reduces to the definition of minimal and strictly minimal
solutions of a set-valued problem which are widely used in the literature,
see for instance [18,27,28,35].

(ii) Observe that if ⪯K
l is transitive and x0 is a minimal solution of (P) w.r.t.

⪯K
l , then so is any x′ ∈ S such that F (x) ∼ F (x0).

If for all x, x′ ∈ S, x ̸= x′, it holds that F (x) ̸= F (x′), then x0 is a strictly
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minimal solution of (P) if and only if F (x0) is a strictly minimal element of
the family set {F (x)}x∈S w.r.t. ⪯K

l .

The two above concepts of solutions for (P) have the following relationship.

Proposition 3.6. If x0 is a strictly minimal solution of (P) w.r.t. ⪯K
l , then x0 is

a minimal solution of (P) w.r.t. ⪯K
l .

Proof. The result follows from Definition 3.4. □

3.2. Scalarization in set optimization w.r.t variable domination struc-
tures. The aim of this section is to apply the scalarization technique for deriving
some properties of solutions of a set optimization problem equipped with variable
domination structures. We first introduce a nonlinear scalarizing functional of the
set-valued map and then we study the characterization of solutions of a set-valued
optimization problem w.r.t. a variable domination structure.

Let Q ⊂ Y be a proper, closed set and k0 ∈ Y \ {0} satisfying the condition

Q+ [0,+∞)k0 ⊆ Q.(3.1)

The following nonlinear scalarization functional (see [16] and [26] for an overview)
has been widely applied in vector optimization.
For Q and k0 satisfying (3.1), let zQ,k0 : Y → R ∪ {+∞} ∪ {−∞} be defined by

∀ y ∈ Y : zQ,k0(y) = inf{t ∈ R|y ∈ tk0 −Q}.(3.2)

Important properties of the functional zQ,k0 can be found in [15] and [26]. In the
literature, several authors have extended this scalarizing functional to set optimiza-
tion equipped with a constant cone where the objective space P(Y ) is ordered by
the lower set less order relation (see, for instance, [17, 18] and references therein).
There are also many applications of these extensions in investigating well-posedness
for set optimization w.r.t. a fixed cone, see [18, 35, 40]. Dealing with the case that
the domination structure is variable, recently, Bouza and Tammer in [3] also have
introduced a scalarizing functional to characterize and compute minimal points of
a subset of a Banach space where the domination structure is given by a set-valued
mapping. In addition, the authors in [32] have used the functional (3.2) for set op-
timization w.r.t. domination structures for several set relations. As indicated in the
previous part, it is necessary to introduce a new scalarizing functional to study the
well-posedness property of set-valued optimization problems equipped with variable
domination structures such that this property is equivalent to that of a scalar prob-
lem in which the new functional is involved. This situation leads to introduce a new
scalarizing functional in the following way.

Let A,B ∈ P(Y ), K : Y ⇒ Y be a set-valued map. For each k0 ∈ Y \ {0}
satisfying

∀y ∈ Y : [0,+∞)k0 +K(y) ⊆ K(y),(3.3)

we consider a scalarizing functional φk0 : P(Y )× P(Y ) → R ∪ {+∞} given by

(3.4) φk0(A,B) = inf{t≥ 0 | A ⪯K
l tk0 +B},

where inf(∅) = +∞.



SCALARIZATION IN SETOPTIMIZATION W.R.T.VARIABLE DOMINATION STRUCTURES 307

If there is no confusion, from now, for k0 satisfying (3.3) and B ∈ P(Y ) fixed, we
write

φk0,B(A) := φk0(A,B) = inf{t ≥ 0 | A ⪯K
l tk0 +B}.(3.5)

Remark 3.7. Obviously, when A = {y}, B = {0} and K(z) = Q for all z ∈ Y,
instead of taking the infimum over t ∈ R+ in (3.5), we take the infimum over t ∈ R
of the set {A ⪯K

l tk0 +B} to receive the value zQ,k0(y) determined by (3.2).

It is important to mention that, if A ∈ P(Y ), B = {y}, and for every z ∈ Y,
K(z) = {0}, then the scalarizing functional given by (3.4) becomes the directional
minimal time function

(3.6) Tk0(A, y) := φk0(A, y) = inf{t ≥ 0 | tk0 + y ∈ A},

which is introduced by Nam and Zălinescu in [38]. The functional (3.6) is called
directional minimal time function. In addition, functional (3.6) has an inter-
esting application in locational analysis, see [38] for more details. Recently, Durea,
Pantiruc and Strugariu [8] have generalized the functional (3.6) to the case of a
set of directions. As for the functional (3.4), we illustrate in the following another
application in location problems of the functional φk0,B(A), where B is a fixed sin-
gleton set, B = {y}, and some uncertain conditions are involved.
Suppose that A1, ..., An be n concerned destinations to which the producer, which
is denoted by the vector y ∈ Y , wants to deliver some products (clothes, food, fur-
niture,...). Each destination Ai has its direction ki, where i ∈ {1, 2, ..., n}. Assume
that K : Y ⇒ Y be a set-valued mapping which describes the changes acting on
each point z ∈ Y during the considered time. These changes often appear in many
practical problems, for instance, traffic jams, renovation plans, weather conditions
and so on. We suppose that the relation y+tki ∈ ∪

a∈Ai

(a+K(a)), i.e., Ai ⪯K
l y+tki,

means that the producer y delivers the products to the target Ai successfully, where
i ∈ {1, 2, ..., n}. Then the problem of finding the point y ∈ Ω such that the total time
for the vector y to deliver products to the target sets {A1, .., An} can be modeled
as follows

Minimize
∑

i=1,...,n

φki(Ai, y) subject to y ∈ Ω.

We call φk0,B ⪯K
l -monotone if

A1, A2 ∈ P(Y ), A1 ⪯K
l A2 =⇒ φk0,B(A1) ≤ φk0,B(A2).

In the following theorem, we present several properties of the functional φk0,B given
by (3.5).

Theorem 3.8. Let A,A1, A2, B ∈ P(Y ) and the set-valued map K : Y ⇒ Y be
given. Suppose that k0 ∈ Y \{0} such that (3.3) holds. Then, the following properties
of the functional φk0,B are satisfied.

(a) If K(·) satisfies the conditions (2.3) and (2.4), then

φk0,B is ⪯K
l -monotone.
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In addition,

A1 ∼ A2 =⇒ φk0,B(A1) = φk0,B(A2).

(b) If K(y + tk0) = K(y) for all y ∈ Y and t ∈ R, then φk0,B(A + rk0) =
φk0,B(A) + r for all r ∈ R+.

(c) For all r ∈ R+, it holds that

φk0,B(A) ≤ r ⇐⇒ ∪t>r(tk
0 +B) ⊆ ∪a∈A(a+K(a)).

(d) If K(·) satisfies (2.2), then φk0,B(B)=0.
(e) Suppose that for all A ∈ P(Y ) the set ∪a∈A(a + K(a)) is closed and K(·)

satisfies (2.2), (2.3) and (2.4). Then

φk0,B(A)=0 ⇐⇒ A ⪯K
l B.

(f) Let A,B ∈ K(Y ). Suppose that K(·) satisfies (2.2), (2.3) and (2.4). Then

A ∼ B ⇐⇒ ∪a∈A(a+K(a)) = ∪b∈B(b+K(b)).

(g) If B is K(A)-bounded and for all r > 0 it holds that r intK(A) + K(A) ⊆
K(A), then φk0,B(A) < +∞ for all k0 ∈ intK(A).

Proof. (a) Let A1, A2 ∈ P(Y ) such that A1 ⪯K
l A2. It is sufficient to prove that

{t ∈ R+|A1 ⪯K
l tk0 +B} ⊇ {t ∈ R+|A2 ⪯K

l tk0 +B}.

The above assertion is obvious if {t ∈ R+|A2 ⪯K
l tk0 + B} = ∅. Now we

consider the case {t ∈ R+|A2 ⪯K
l tk0+B} ̸= ∅. Let t ∈ R+ such that A2 ⪯K

l

tk0 +B. This implies tk0 +B ⊆ ∪a∈A2(a+K(a)), i.e., for arbitrary b ∈ B,
there exists a2b ∈ A2 satisfying tk0 + b ∈ a2b + K(a2b). Since A1 ⪯K

l A2 and
a2b ∈ A2, we obtain ∃ a1b ∈ A1 such that a2b ∈ a1b + K(a1b), i.e., ∃ d1 ∈ K(a1b)
satisfies a2b = a1b + d1. We have that

tk0 + b ∈ a1b + d1 +K(a1b + d1) ⊆ a1b +K(a1b) +K(a1b + d1)

⊆ a1b +K(a1b) ⊆ ∪a∈A1(a+K(a)).

Therefore,

tk0 +B ⊆ ∪a∈A1(a+K(a))

=⇒ A1 ⪯K
l tk0 +B

⇐⇒ t ∈ {t ∈ R+|A1 ⪯K
l tk0 +B}.

Taking into account that t be arbitrarily chosen in R+ and A2 ⪯K
l tk0 +B,

it holds that

{t ∈ R+|A1 ⪯K
l tk0 +B} ⊇ {t ∈ R+|A2 ⪯K

l tk0 +B}
=⇒ inf{t ∈ R+|A1 ⪯K

l tk0 +B} ≤ inf{t ∈ R+|A2 ⪯K
l tk0 +B}

⇐⇒ φk0,B(A1) ≤ φk0,B(A2),
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i.e., φk0,B is ⪯K
l -monotone.

Now, we prove the second assertion. Suppose that A1 ∼ A2, by the obser-
vation that

A1 ∼ A2 ⇐⇒ A1 ⪯K
l A2 and A2 ⪯K

l A1,

and taking into account the ⪯K
l −monotonicity of φk0,B, it holds that

φk0,B(A1) ≤ φk0,B(A2) and φk0,B(A2) ≤ φk0,B(A1), respectively.

Hence, φk0,B(A1) = φk0,B(A2).
(b) We prove that

{t ∈ R+|A ⪯K
l tk0 +B}+ r = {t ∈ R+|A+ rk0 ⪯K

l tk0 +B}.

Let t̂ ∈ R+ such that A ⪯K
l t̂k0 +B. It holds that

t̂k0 +B ⊆ ∪a∈A(a+K(a))

⇐⇒ (t̂+ r)k0 +B ⊆ ∪a∈A(a+ rk0 +K(a))

⇐⇒ (t̂+ r)k0 +B ⊆ ∪a∈A(a+ rk0 +K(a+ rk0))

⇐⇒ (t̂+ r) ∈ {t ∈ R+|A+ rk0 ⪯K
l tk0 +B}.

Therefore,

{t ∈ R+|A ⪯K
l tk0 +B}+ r = {t ∈ R+|A+ rk0 ⪯K

l tk0 +B}.

Taking the infimum over t ∈ R+, we get

inf{{t ∈ R+|A ⪯K
l tk0 +B}+ r} = inf{t ∈ R+|A+ rk0 ⪯K

l tk0 +B}.

This yields

φk0,B(A) + r = φk0,B(A+ rk0).

(c) Suppose that φk0,B(A) = u and r ∈ R+ such that u ≤ r.
We prove the following assertion

for all t > u : tk0 +B ⊆ ∪a∈A(a+K(a)).

By the definition of infimum and φk0,B(A), there is t̄, u ≤ t̄ < t such that

A ⪯K
l t̄k0 +B i.e., t̄k0 +B ⊆ ∪a∈A(a+K(a)). Therefore,

tk0 +B = t̄k0 +B + (t− t̄)k0 ⊆ ∪a∈A(a+K(a)) + (t− t̄)k0.

Taking into account (3.3) we get that ∪a∈A(a+K(a))+(t− t̄)k0 ⊆ ∪a∈A(a+
K(a)). This implies tk0 +B ⊆ ∪a∈A(a+K(a)), i.e., A ⪯K

l tk0 +B.
Now let t > r arbitrary. Since r ≥ u, we have that t > u and thus tk0+B ⊆
∪a∈A(a + K(a)). This implies ∪t>r(tk

0 + B) ⊆ ∪a∈A(a + K(a)), which
finishes the proof of the necessary condition.
Now we prove the sufficient condition. Assume by contradiction that

∪t>r(tk
0 +B) ⊆ ∪a∈A(a+K(a)) and φk0,B(A) = v > r.

Let ε := v − r > 0 and v′ := r + ε
2 . We have that

v > v′ > r and v′k0 +B ⊆ ∪a∈A(a+K(a)), i.e., A ⪯K
l v′k0 +B.
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Taking into account the definition of ⪯K
l , it holds that

φk0,B(A) = inf{t ∈ R+ | A ⪯K
l tk0 +B} ≤ v′.

Therefore, φk0,B(A) ≤ v′ < v, a contradiction, and the proof of the sufficient
condition is complete.

(d) Obviously, the following relations hold true for all t > 0

tk0 +B = ∪b∈B(b+ 0 + tk0) ⊆ ∪b∈B(b+K(b) + tk0) ⊆ ∪b∈B(b+K(b)).

Then

∪t>0(tk
0 +B) ⊆ ∪b∈B(b+K(b)).

Taking into account part (c), we get that φk0,B(B) ≤ 0. In addition, since
the definition of φk0,B(B), φk0,B(B) ≥ 0. Therefore, φk0,B(B) = 0.

(e) The sufficient condition is a consequence of part (a) and part (d).
Conversely, if φk0,B(A)=0, by part (c) it holds that

∪t>0(tk
0 +B) ⊆ ∪a∈A(a+K(a)).

Take b ∈ B arbitrary, it is clear that for all n > 0 we have

1

n
k0 + b ⊆ ∪a∈A(a+K(a)).

Therefore, taking the limit when n → +∞ we obtain

b ∈ cl(∪a∈A(a+K(a))) = ∪a∈A(a+K(a)).

Thus, B ⊆ ∪a∈A(a+K(a)), i.e., A ⪯K
l B.

(f) A ∼ B implies that A ⪯K
l B, i.e., B ⊆ ∪a∈A(a+K(a)). Let b ∈ B arbitrary.

There exist ab ∈ A and db ∈ K(ab) such that b = ab + db. Since K satisfies
(2.3), K(b) = K(ab+db) ⊆ K(ab). Taking into account that K satisfies (2.4),
we have

b+K(b) = ab + db +K(b)

⊆ ab +K(ab) +K(ab)

⊆ ab +K(ab).

Therefore, b+K(b) ⊆ ∪
a∈A

(a+K(a)). Because b is taken arbitrarily, it holds

that ∪
b∈B

(b + K(b)) ⊆ ∪
a∈A

(a + K(a)). Similarly, we get ∪
a∈A

(a + K(a)) ⊆
∪

b∈B
(b+K(b)). Therefore, ∪

a∈A
(a+K(a)) = ∪

b∈B
(b+K(b)).

Conversely, suppose that ∪
a∈A

(a+K(a)) = ∪
b∈B

(b+K(b)). We will prove that

A ∼ B. Since 0 ∈ K(y) for all y ∈ Y, we have that

A ⊆ ∪
a∈A

(a+K(a)) = ∪
b∈B

(b+K(b))

⇒A ⊆ ∪
b∈B

(b+K(b))

⇒B ⪯K
l A.

Similarly, A ⪯K
l B, and thus A ∼ B.
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(g) Since B is K(A)-bounded and intK(A)− k0 is a neighborhood of 0, there is
r > 0 such that

B ⊆ r(intK(A)− k0) +K(A) ⊆ −rk0 +K(A)

⇒ B + rk0 ⊆ K(A) = ∪
a∈A

(a+K(a))

⇒ B + rk0 ⊆ ∪
a∈A

(a+K(a))

⇒ φk0,B(A) ≤ r, i.e., φk0,B(A) < +∞.

□

Remark 3.9. (i) Theorem 3.8 (a)-(f) extends [18, Theorem 4.2], where K(y) is
a constant convex cone K ⊂ Y for all y ∈ Y . Note that even if B is not a K-
proper set, i.e., B+K = Y, the assertion (d) holds true. However, B+K ̸= Y
is needed in the proof of [18, Theorem 4.2] to obtain φk0,B(B) = 0.

(ii) Let A,B ∈ P(Y ) such that A ∼ B, ∪
a∈A

(a+K(a)) is closed and K(·) satisfies
(2.2), (2.3) and (2.4). Then it holds from Theorem 3.8(e) that φk0,B(A)= 0.
In addition, by using the same lines in the proof of Theorem 3.8(e), we get
the following assertion for all γ ≥ 0 and A,B ∈ P(Y ) under the assumption
that ∪

a∈A
(a+K(a)) is closed:

φk0,B(A) ≤ γ ⇐⇒ γk0 +B ⊆ ∪
a∈A

(a+K(a)), i.e., A ⪯K
l γk0 +B.

(iii) If K(y) = K where K is a convex cone with nonempty interior, φk0,B(A) <

+∞ for all K- bounded set B and k0 ∈ intK, see [35, Proposition 3.2]

Remark 3.10. The assumptions (2.3) and (2.4) of K(·) can be fulfilled when K(y)
is not necessarily given by a cone for all y ∈ Y . For instance, the mapping K(·)
given by

K : Y ⇒ Y

K(y) = Ny,

where Ny := {ny|n ∈ N} is not a cone.
In addition, an example for a set-valued map satisfying the condition in Theorem

3.8 (b), which is neither a constant map nor a cone-valued map, can be given as

K : Y ⇒ Y

K(y) = Ny + Rk0.

Indeed, we have

∀ t ∈ R : K(y + tk0) = N(y + tk0) + Rk0

= Ny + Rk0

= K(y).

Therefore, K(y + tk0) = K(y) for all y ∈ Y, t ∈ R.
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Now we briefly make a comparison between our scalarizing functional (3.5) and

the scalarizing functional g⪯
K
l used in [32] for set optimization equipped with the

relation ⪯K
l . The functional g⪯

K
l : P(Y )× P(Y ) → R is defined as

A,B ∈ P(Y ), g⪯
K
l (A,B) := sup

b∈B
inf
a∈A

za+K(a),k0(−b).(3.7)

where k0 ∈ Y \ {0} is taken such that (3.3) is fulfilled.

The following proposition shows the relationship between φk0,B(A) and g⪯
K
l (A,B),

where A,B ∈ P(Y )

Proposition 3.11. Let A, B ∈ P(Y ) and suppose that g⪯
K
l (A,B) ∈ R+. Then the

following statement holds true:

φk0,B(A) = g⪯
K
l (A,B).

Proof. Suppose that g⪯
K
l (A,B) = u ∈ R+. By [32, Theorem 4(a)], it holds that

∪t>u(tk
0+B) ⊆ ∪a∈A(a+K(a)). Taking into account Theorem 3.8 (c), φk0,B(A) ≤

u. Assume by contradiction that 0 ≤ φk0,B(A) = v < u. Therefore, there exists
w ∈ R such that v < w < u. By Theorem 3.8 (c), it holds that

wk0 +B ⊆ ∪a∈A(a+K(a), i.e., A ⪯K
l wk0 +B.

Taking into account [32, Theorem 4(b)], we get that g⪯
K
l (A,B) ≤ w < u, a contra-

diction. Therefore, φk0,B(A) = u = g⪯
K
l (A,B). □

4. Characterizations for solutions of set optimization w.r.t.
variable domination structures via scalarization

This section is devoted to characterizations of minimal and strictly minimal solu-
tions of set optimization w.r.t. variable domination structures by using the scalar-
izing functional given by (3.5). We assume in this part that K(·) satisfies the
condition (2.2), (2.3) and (2.4). Let A be a nonempty subset of P(Y ). We begin
this section with the following theorem, where we are using the function (3.5) with
B = Ā, and k0 ∈ Y \ {0} such that (3.3) holds true.

Theorem 4.1. The following assertions are satisfied.

(a) Assume that ∪a∈A(a+K(a)) is closed for all A ∈ A. Then Ā ∈ Min(A,⪯K
l )

if and only if φk0,Ā(A) > 0 for all A ∈ A, A ̸∼ Ā.

(b) Assume that ∪a∈A(a+K(a)) is closed for all A ∈ A. Then Ā ∈ SMin(A,⪯K
l )

if and only if φk0,Ā(A) > 0 for all A ∈ A \ {Ā}.

Proof. (a) Consider Ā ∈ Min(A,⪯K
l ) and suppose that there exists A ∈ A, A ̸∼

Ā satisfying φk0,Ā(A) = 0. Taking into account Theorem 3.8(e), it holds

that A ⪯K
l Ā. Since Ā ∈ Min(A,⪯K

l ), Ā ⪯K
l A and thus A ∼ Ā. This is a

contradiction.
Conversely, assume that φk0,Ā(A) > 0 for all A ∈ A, A ̸∼ Ā and Ā is
not a minimal element of A. Then from the definition of minimal elements
of A there exists a set A ∈ A, A ⪯K

l Ā and Ā ̸⪯K
l A. Using Theorem

3.8(a) it holds that φk0,Ā(A) ≤ φk0,Ā(Ā). In addition, by Theorem 3.8(d)
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we get φk0,Ā(Ā)=0. Therefore, φk0,Ā(A) ≤ 0, a contradiction. Thus, the

assumption Ā /∈ Min(A,⪯K
l ) is false and the proof of the sufficient condition

is complete.
(b) Suppose that Ā ∈ SMin(A,⪯K

l ) and there is A ∈ A \ {Ā} satisfying

φk0,Ā(A) = 0. By Theorem 3.8(e), we have that A ⪯K
l Ā. Since Ā ∈

SMin(A,⪯K
l ), it yields A = Ā, which is a contradiction.

Let us prove the sufficient condition. By contradiction, assume that
φk0,Ā(A) > 0 for all A ∈ A\{Ā} and Ā /∈ SMin(A,⪯K

l ) . Using the definition

of strictly minimal elements of A, there exists A ∈ A such that A ⪯K
l Ā and

A ̸= Ā. Taking into account part (d) and (e) of Theorem 3.8, it holds that

φk0,Ā(A) ≤ φk0,Ā(Ā)=0.

This implies φk0,Ā(A)=0, which is a contradiction.
□

Remark 4.2. A similar result as Theorem 4.1 is generated in [32] where the authors

used the scalarizing functional g⪯
K
l , compare [32, Theorem 17].

In the following theorem, we present characterizations for minimal and strictly
minimal solutions of a set-valued optimization problem w.r.t. variable domination
structures. When K(·) = K, where K is a convex cone in Y , a similar result is given
in [18].

Theorem 4.3. Let F : X ⇒ Y and K : Y ⇒ Y be set-valued maps such that
∪y∈F (x)(y+K(y)) is closed for each x ∈ X and the conditions (2.2), (2.3) and (2.4)
are fulfilled . Consider problem (P) and x̄ ∈ X. Then the following assertions hold
true.

(a) x̄ is a minimal solution of (P) if and only if there is a functional
G : ImF → R+ ∪ {+∞} being ⪯K

l -monotone such that

x ∈ S, F (x) ∼ F (x̄) ⇐⇒ G(F (x))=0.(4.1)

(b) x̄ is a strictly minimal solution of (P) if and only if there is a functional
G : ImF → R+ ∪ {+∞} being ⪯K

l -monotone such that

x ∈ S, G(F (x))=0 ⇐⇒ x = x̄.(4.2)

Proof. The idea of this proof is as similar as that in [18, Theorem 4.4], where
K(·) = K, K is a convex cone in Y . We illustrate in the following for the case the
domination structure is variable and the scalarizing functional is given by (3.5).

(a) Suppose that x̄ is a minimal solution of (P). Let k0 ∈ Y such that for all
y ∈ Y , K(y) + [0,+∞)k0 ⊆ K(y) and define the following functional as

G : ImF → R ∪ {+∞}
G(F (x)) := φk0,F (x̄)(F (x)),

where φk0,F (x̄) given by (3.5) with B = F (x̄) is involved.

From Theorem 3.8(a), we get that G is ⪯K
l -monotone. Let us now prove

that
x ∈ S, F (x) ∼ F (x̄) ⇐⇒ G(F (x))=0.
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Taking into account Theorem 3.8(a) and (d), it holds that

F (x) ∼ F (x̄) =⇒ F (x) ⪯K
l F (x̄)

=⇒ G(F (x)) ≤ G(F (x̄)) = φF (x̄)F (x̄)=0

=⇒ G(F (x))=0.

Now if we suppose that F (x) ̸∼ F (x̄), by Theorem 4.1 (b), it holds that
G(F (x)) > 0. Therefore, if G(F (x))=0, we have that F (x) ∼ F (x̄).
Reciprocally, suppose that there exists a functional G : ImF → R+∪{+∞}
satisfying (4.1) and G is ⪯K

l -monotone. Let x ∈ S such that F (x) ⪯K
l F (x̄).

It is sufficient to prove that F (x̄) ⪯K
l F (x). Since K satisfies (2.2), the

relation ⪯K
l is reflexive and thus F (x̄) ∼ F (x̄). Taking into account (4.1),

we get that G(F (x̄))=0. Since G is ⪯K
l monotone and F (x) ⪯K

l F (x̄), it
yields

0 ≤G(F (x)) ≤ G(F (x̄))=0

⇒ G(F (x))=0

Taking into (4.1) we get that F (x) ∼ F (x̄) ⇒ F (x̄) ⪯K
l F (x), which is the

desired conclusion.
(b) Let x̄ be a strictly minimal solution of problem (P) and the functional G

defined as in part (a), that is G(F (x)) = φk0,F (x̄)(F (x)). Because x̄ is a
strictly minimal solution of (P), it yields that

∀ x ̸= x̄ : F (x) ̸⪯K
l F (x̄).

Now we suppose that G(F (x))=0. Taking into account Theorem 3.8(e), it
holds that F (x) ⪯K

l F (x̄). This implies x = x̄. Therefore, if G(F (x))=0 then
x = x̄. On the other hand,

x = x̄ =⇒ G(F (x)) = G(F (x̄)) = φk0,F (x̄)F (x̄)=0.

Thus, the conclusion (4.2) holds true.
Now we prove the sufficient condition. Suppose that there exists a functional
G : ImF → R+ ∪ {+∞} satisfying (4.2) and G is ⪯K

l -monotone. Let x ∈ S

such that F (x) ⪯K
l F (x̄). Since (4.2) holds true, it yields

F (x) ⪯K
l F (x̄) ⇒ 0 ≤G(F (x)) ≤ G(F (x̄)) ≤ 0

⇒ G(F (x))=0

⇒ x = x̄.

The last equation states that x̄ is a strictly minimal solution of (P).

□

Remark 4.4. • Since G : X → R+ ∪ {+∞}, we can rewrite (4.1) and (4.2)
respectively by

argmin(G ◦ F, S) = {x ∈ S| F (x) ∼ F (x̄)}

and

argmin(G ◦ F, S) = {x̄}.
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• If for all y ∈ Y, K(y) = K, where K is a convex cone in Y and F (x) +K is
closed for all x ∈ S, Theorem 4.3 reduces to [18, Theorem 4.4].

5. Pointwise well-posedness for set optimizations with respect to
variable domination structures

Investigating well-posedness properties for vector as well as set optimization has
attracted many authors in the literature. Usually, one proves the equivalence be-
tween the well-posedness property of the concerned problem and the Tykhonov
well-posedness property of a scalar problem in which the objective function of the
original problem is involved. Then by using many classical results related to this
property of the scalar problems, one can derive some classes of well-posed vector
(set) optimization problems for the concerned problem. There are many publica-
tions investigating the equivalence between the well-posedness property of a vector
optimization problem and the Tykhonov well-posedness property of a scalar prob-
lem, see for example, [6, 36, 37]. A similar result for set optimization problems
w.r.t. fixed cones was first introduced in [40] and recently studied in [18, 35] and
the references therein.

In this section, we will show that under some appropriate conditions, we also
obtain this equivalence for set-valued optimization using the set relation equipped
with a variable domination structure. Moreover, we will find two sets of points at
which a set-valued optimization problem is well-posed. Throughout this part, we
suppose that the following assumption is fulfilled.
Assumption (A):

• K : Y ⇒ Y is a set-valued map such that for all y ∈ Y, K(y) is a proper,
closed, convex cone in Y and int ∩

y∈Y
K(y) ̸= ∅.

• F : X ⇒ Y is a set-valued map between two real topological vector spaces,
S ⊂ X and for all x ∈ S, ∪

y∈F (x)
(y +K(y)) is closed.

• k0 is taken in Y such that k0 ∈ int ∩
y∈Y

K(y).

We begin this section by recalling the notion of well-posedness property of an ex-
tended real-valued function (see [5]).

Definition 5.1. Let f : X → R ∪ {−∞,+∞} be an extended real-valued function
and consider problem

Min
x∈S

f(x).(P’)

We say that problem (P’) is:

(i) Tykhonov well-posed, if it has a unique solution x̄ ∈ S and

{xn} ⊂ S, f(xn) → f(x̄) implies {xn} → x̄.

(ii) generalized well-posed, if arg min(f, S) ̸= ∅ and

{xn} ⊂ S, f(xn) → f(x̄) implies ∃{xnk
} ⊆ {xn} : {xnk

} → x̄.
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Remark 5.2. (P’) is Tykhonov well-posed if and only if it is generalized well-posed
and the set arg min(f, S) is a singleton.

Now we will present the well-posedness property for the set-valued problem (P)
given in Section 3.1 under Assumption (A). Recall that for F : X ⇒ Y and K :
Y ⇒ Y , (P) has the following formula

K −min
x∈S

F (x).

The following definition extends Definition 5.1 in [18] for a set-valued problem
(P) equipped with a variable domination structure.

Definition 5.3. Let k0 ∈ int ∩
y∈Y

K(y) and x̄ be a minimal solution of problem (P).

(a) A sequence {xn} ⊂ S is said to be k0-minimizing for (P) at x̄, if

∃{εn} ⊂ R+ \ {0}, {εn} → 0 : F (xn) ⪯K
l F (x̄) + εnk

0,∀n.
(b) (P) is said to be k0-well-posed at x̄, if every k0-minimizing sequence at x̄

converges to x̄.
(c) {xn} ⊂ S is said to be minimizing at x̄, if

∃{dn} ⊂ ∩
y∈Y

K(y) \ {0}, {dn} → 0 : F (xn) ⪯K
l F (x̄) + dn,∀n.

(d) (P) is said to be well-posed at x̄, if x̄ is a strictly minimal solution and for
all minimizing {xn} at x̄ it holds that {xn} → x̄.

The following lemma, given by Durea [6], will be used in the next proposition
which states that Definition 5.3(a) and Definition 5.3(c) are equivalent.

Lemma 5.4 ( [6, Lemma 2.2]). Let K ⊆ Y be a proper, closed, convex cone with
nonempty interior and {kn} be a sequence of elements from Y that converges to 0.
Then for every k ∈ intK there exists a sequence {αn} of positive real numbers s.t.
{αn} → 0 and αnk − kn ∈ intK for every natural number n.

Proposition 5.5. Let {xn} ⊂ S, k0 ∈ int ∩
y∈Y

K(y) and x̄ be a minimal solution of

problem (P). Then the two following assertions are equivalent:

(i) {xn} is k0-minimizing for (P) at x̄.
(ii) {xn} is minimizing for (P) at x̄.

Proof. [(i) → (ii)]: Since {xn} is k0-minimizing for (P) at x̄, we have that

∃{εn} ⊂ R+ \ {0}, {εn} → 0 : F (xn) ⪯K
l F (x̄) + εnk

0,∀n.
Let dn := εnk

0, ∀n. It holds that
{dn} ⊂ ∩

y∈Y
K(y) \ {0}, {dn} → 0 and F (xn) ⪯K

l F (x̄) + dn.

Taking into account definition of minimizing property, we get that {xn} is minimiz-
ing for (P) at x̄, i.e., (ii) holds true.
[(ii) → (i)] : Suppose that {xn} is minimizing for (P) at x̄, i.e.,

∃{dn} ⊂ ∩
y∈Y

K(y) \ {0}, {dn} → 0 : F (xn) ⪯K
l F (x̄) + dn, ∀n.
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We will prove that

∃{αn} ⊂ R+ \ {0}, {αn} → 0 : F (xn) ⪯K
l F (x̄) + αnk

0, ∀n.
We have that

F (xn) ⪯K
l F (x̄) + dn ⇔ F (x̄) + dn ⊆ ∪

yn∈F (xn)
(yn +K(yn))

⇔ F (x̄) ⊆ ∪
yn∈F (xn)

(yn +K(yn)) + (−dn)(5.1)

Let K := ∩
y∈Y

K(y). Since for all y ∈ Y , K(y) is a conex cone, we have that

K(y) +K ⊆ K(y). Therefore, for all n ∈ N, it holds that

∪
yn∈F (xn)

(yn +K(yn)) + intK ⊆ ∪
yn∈F (xn)

(yn +K(yn)) +K ⊆ ∪
yn∈F (xn)

(yn +K(yn)).
(5.2)

By Assumption (A), K is a proper, closed, convex cone with intK ̸= ∅. Taking into

account k0 ∈ intK, {dn}
Y−→ 0 and applying Lemma 5.4, we obtain that

∃{αn} ⊆ R+ \ {0}, {αn} → 0 : αnk
0 − dn ∈ intK, ∀n ∈ N.

This implies that −dn ∈ −αnk
0 + intK. Taking into account (5.1), it holds for all

n ∈ N that

F (x̄) ⊆ ∪
yn∈F (xn)

(yn +K(yn))− αnk
0 + intK

⇐⇒ F (x̄) + αnk
0 ⊆ ∪

yn∈F (xn)
(yn +K(yn)) + intK.

Taking into account (5.2), we get that

F (x̄) + αnk
0 ⊆ ∪

yn∈F (xn)
(yn +K(yn)), ∀n ∈ N

⇐⇒ F (xn) ⪯K
l F (x̄) + αnk

0, ∀n ∈ N.(5.3)

The relation (5.3) ensures that {xn} is k0-minimizing for the problem (P) at x̄. The
proof is complete. □

The following theorem states that there exists a class of scalar problems whose
Tykhonov well-posedness property is equivalent to the well-posedness of the original
set optimization problem (P).

Theorem 5.6. Suppose that K : Y ⇒ Y satisfies (2.3). Furthermore, let x̄ be a
strictly minimal solution of problem (P) such that φk0,F (x̄)(F (x̄)) ∈ R. Consider
the scalar problem

Min{φk0,F (x̄)(F (x)) | x ∈ S}.(Pφk0,F (x̄)
)

Then the following statements are equivalent:

(a) Problem (P) is well-posed at x̄.
(b) For every k0 ∈ int ∩

y∈Y
K(y), problem (Pφk0,F (x̄)

) is Tykhonov well-posed.

(c) There is k0 ∈ int ∩
y∈Y

K(y) such that problem (Pφk0,F (x̄)
) is Tykhonov well-

posed.
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(a) ⇒ (b). : Let k0 ∈ int ∩
y∈Y

K(y) arbitrary. Taking into account Theorem 4.3(b),

we have that

φk0,F (x̄)(F (x̄))=0 and for all x ̸= x̄ : φk0,F (x̄)(F (x)) > 0.

Thus argminx∈S φk0,F (x̄)(F (x)) = {x̄}, i.e, x̄ is a unique solution of (Pφk0,F (x̄)
). Now

take {xn} ⊆ S such that φk0,F (x̄)(F (xn)) → φk0,F (x̄)(F (x̄)). It is sufficient to prove
that {xn} → x̄.
Let t̄n := φk0,F (x̄)(F (xn)), and εn := φk0,F (x̄)(F (xn)) +

1
n . It holds that

{εn} → 0, εn > t̄n and F (xn) ⪯K
l F (x̄) + εnk

0.

By the last relation, we get that {xn} is k0-minimizing and thus, a minimizing
sequence for (P). Since (P) is well-posed, {xn} → x̄.
[(b) ⇒ (c)] This implication is obvious.
[(c) ⇒ (a)]: Suppose that (c) holds true, we will prove that (a) is fulfilled. Let {xn}
is a minimal solution sequence for problem (P) at x̄. By Proposition 5.5, there is a
sequence {εn} → 0+ and

∀ n : F (xn) ⪯K
l F (x̄) + εnk

0 =⇒ φk0,F (x̄)(F (xn)) ≤ εn.

Taking into account x̄ is a strictly minimal solution of (P), it holds that

∀xn ̸= x̄ : φk0,F (x̄)(F (xn)) > 0.

Thus, we get {φk0,F (x̄)(F (xn))} → 0 = φk0,F (x̄)(F (x̄)). Since (Pφk0,F (x̄)
) is Tykhonov

well-posed, it holds that {xn} → x̄, i.e., problem (P) is well-posed at x̄. □
Now, we are finding some classes of well-posed set optimization problems. We

recall the two following classical results of well-posed scalar optimization problems,
which will be used in the sequel.

Theorem 5.7 ([2, Theorem 2.1]). Let X be a locally compact metric space. Suppose
f : X → R∪{−∞,+∞} is a proper lower semicontinuous and quasiconvex function
on X. The following conditions are equivalent:

(a) Problem (P’) is generalized well-posed;
(b) argmin(f,X) is nonempty and compact.

Proposition 5.8 ( [5, Example 6 ]). Let X be a normed vector space, S ⊂ X be
a compact set and f : X → R ∪ {−∞,+∞} be a proper and lower semicontinuous
function on X. Suppose that argmin(f, S) has a unique element. Then problem (P’)
is Tykhonov well-posed.

In the following proposition, we show the sufficient conditions which ensure the
lower-semicontinuous property of the composition function φk0,B ◦ F , where k0 ∈
int ∩

y∈Y
K(y) and B ∈ P(Y ).

Proposition 5.9. Suppose that F : X ⇒ Y satisfies that S(F,⪯K
l , rk

0+A) := {x ∈
X| F (x) ⪯K

l rk0 + A} is closed for all A ∈ P(Y ) and r ≥ 0. In addition, assume
that K(·) satisfies (2.3). Then φk0,B ◦F : X → R+∪{+∞} is lower semicontinuous

on S for all k0 ∈ int ∩
y∈Y

K(y).
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Proof. We prove that for all γ ∈ R, the set S(φk0,B ◦ F, γ) is closed. This assertion
holds true when γ < 0 since S(φk0,B ◦ F, γ) = ∅. If γ ≥ 0, we prove that S(φk0,B ◦
F, γ) = S(F,⪯K

l , γk
0 +B).

Let x ∈ S(φk0,B ◦ F, γ). Taking into account Remark 3.9 (ii), we have that

φk0,BF (x) ≤ γ =⇒ F (x) ⪯K
l γk0 +B ⇒ x ∈ S(F,⪯K

l , γk
0 +B).

Therefore,

S(φk0,B ◦ F, γ) ⊆ S(F,⪯K
l , γk

0 +B).(5.4)

Conversely, let x ∈ S(F,⪯K
l , γk

0 + B), i.e., F (x) ⪯K
l γk0 + B. By the definition

(3.5), it holds that

φk0,BF (x) ≤ γ ⇒ x ∈ S(φk0,B ◦ F, γ).

Therefore,

S(F,⪯K
l , γk

0 +B) ⊆ S(φk0,B ◦ F, γ)(5.5)

(5.4) together with (5.5) imply that S(φk0,B ◦ F, γ) = S(F,⪯K
l , γk

0 +B). □

Now we present the first class of well-posed set-valued optimization problems
w.r.t. variable domination structures.

Theorem 5.10. Let X be a normed vector space and Y be a linear topological space.
Consider problem (P) with the mappings F : X ⇒ Y and K : Y ⇒ Y satisfy all
the assumptions given in Proposition 5.9. Let x̄ be a strictly minimal solution of
problem (P) and S be a compact subset of X. Then (P) is well-posed at x̄.

Proof. Let k0 ∈ int ∩
y∈Y

K(y). By Proposition 5.9, φk0,F (x̄)◦F is lower semicontinuous.

Furthermore, by Theorem 4.3 (b), it holds that argmin(φk0,F (x̄) ◦ F, S) = {x̄}.
Therefore, according to Proposition 5.8, problem (Pφk0,F (x̄)

) is Tykhonov well-posed.

Applying Theorem 5.6, we have that problem (P) is well-posed at x̄. □

Before deriving the second class of well-posed set optimization problems w.r.t.
variable domination structures, we introduce a K-quasiconvex map. Recall that
when K(·) = K, where K is a convex cone in Y with nonempty interior, a K-
quasiconvex set valued map is defined in [35, Definition 2.2] for F : X ⇒ Y such
that

F (λx1 + (1− λ)x2) ⪯K
l (F (x1) +K) ∩ (F (x2) +K), ∀λ ∈ [0, 1], x1, x2 ∈ S,

where S is a convex subset of Y . We now extend this definition to the case the
domination is variable as follows.

Definition 5.11. The set-valued mapping F : X ⇒ Y is said to be K-quasiconvex
w.r.t. ⪯K

l on a nonempty, convex set S ⊆ X if for all x1, x2 ∈ S and λ ∈ [0, 1] it

holds that F (λx1 + (1− λ)x2) ⪯K
l ∪

y∈F (x1)
(y +K(y)) ∩ ∪

y∈F (x2)
(y +K(y)).
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In the following, we show that the quasiconvex property can be inherited via
scalarizing functional given by (3.5).

Proposition 5.12. If F : X ⇒ Y is K-quasiconvex w.r.t. ⪯K
l on a nonempty

convex set S ⊆ X then φk0,B ◦ F is a quasiconvex function on S for all k0 ∈
int ∩

y∈Y
K(y) and B ∈ P(Y ). Furthermore, the converse statement is true if K(·)

satisfies (2.3).

Proof. [⇒] : Let x1, x2 ∈ S be two arbitrary elements. We have to show that for all
λ ∈ [0, 1] it holds that

φk0,B ◦ F (λx1 + (1− λ)x2) ≤ max{φk0,B ◦ F (x1), φk0,B ◦ F (x2)}.
Obviously, this assertion holds true for the case either φk0,B ◦ F (x1) = +∞ or
φk0,B ◦ F (x2) = +∞. We now suppose that both φk0,B ◦ F (x1) and φk0,B ◦ F (x2)
are real numbers. We will prove that the set S(φk0,B ◦F, γ) is convex for all γ ∈ R.
This assertion is trivial when γ < 0 since S(φk0,B ◦ F, γ) = ∅. Now we suppose
that γ ≥ 0 and φk0,BF (x1) ≤ γ and φk0,BF (x2) ≤ γ. Let α1 := φk0,BF (x1) and
α2 := φk0,BF (x2). Take ᾱ := max{α1, α2} ≤ γ and ε > 0 arbitrary.
Since Theorem 3.8 (c), it holds that

F (x1) ⪯K
l (ᾱ+ ε)k0 +B

and
F (x2) ⪯K

l (ᾱ+ ε)k0 +B.

Therefore,

(ᾱ+ ε)k0 +B ⊆ ∪
y∈F (x1)

(y +K(y)) ∩ ∪
y∈F (x2)

(y +K(y)).

Taking into account Definition 5.11, we get that

(ᾱ+ ε)k0 +B ⊆ ∪
y∈F (λx1+(1−λ)x2)

(y +K(y)).

Therefore, φk0,BF (λx1 + (1− λ)x2) ≤ ᾱ+ ε, for all ε > 0.
Thus, φk0,BF (λx1 + (1 − λ)x2) ≤ ᾱ ≤ γ, i.e., λx1 + (1 − λ)x2 ∈ S(φk0,B ◦ F, γ) or
S(φk0,B ◦ F, γ) is convex.

[⇐] : Conversely, suppose that φk0,B ◦ F is quasiconvex, we prove that for all

x1, x2 ∈ S and λ ∈ [0, 1] it holds that F (λx1 + (1 − λ)x2) ⪯K
l ∪

y∈F (x1)
(y + K(y)) ∩

∪
y∈F (x2)

(y +K(y)).

Take z ∈ ∪
y∈F (x1)

(y + K(y)) ∩ ∪
y∈F (x2)

(y + K(y)), arbitrarily. This is equivalent to

F (xi) ⪯K
l {z}, for i = 1, 2. Therefore, by Theorem (3.8)(e), φk0,{z}(F (xi)) = 0.

Since φk0,{z} ◦ F is quasiconvex,

φk0,{z} ◦ F (λx1 + (1− λ)x2) ≤ 0.

By Theorem (3.8)(e),

F (λx1 + (1− λ)x2) ⪯K
l {z},
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that is, z ∈ ∪
y∈F (λx1+(1−λ)x2)

(y+K(y)) for all z ∈ ∪
y∈F (x1)

(y+K(y))∩ ∪
y∈F (x2)

(y+K(y)),

i.e.,
F (λx1 + (1− λ)x2) ⪯K

l ∪
y∈F (x1)

(y +K(y)) ∩ ∪
y∈F (x2)

(y +K(y)).

The proof is complete. □
In the following, we present the second class of well-posed set optimization prob-

lems whose the objective map is K-quasiconvex.

Theorem 5.13. Let X be a locally compact metric space, S be a convex subset of
X. Suppose that F : X ⇒ Y and K : Y ⇒ Y satisfy all the assumptions given in
Proposition 5.9 and F is K-quasiconvex w.r.t. ⪯K

l on S. Let x̄ be a strictly minimal
solution of problem (P). Then (P) is well-posed at x̄.

Proof. Let k0 ∈ int ∩
y∈Y

K(y). By Proposition 5.9 and Proposition 5.12, φk0,F (x̄) ◦ F
is lower semicontinuous and quasiconvex. Taking into account Theorem 5.7 and

argmin(φk0,F (x̄) ◦ F, S) = {x̄},
problem (Pφk0,F (x̄)

) is generalized well-posed and also is Tykhonov well-posed. Ap-

plying Theorem 5.6, we have that problem (P) is well-posed at x̄. The proof is
complete. □

Remark 5.14. Theorem 5.10 and Theorem 5.13 respectively extend [35, Theorem
4.5 ] and [35, Theorem 4.6 ], in which the authors used the domination K(·) ≡ C,
where C ⊆ Y is a convex cone such that intC ̸= ∅. Note that in this case (2.3)
holds true and thus one can get [35, Theorem 4.5 ] and [35, Theorem 4.6 ] without
the fulfilment of this condition.

6. Application to uncertain optimization

Robust Optimization has been of great interest in the optimization community
since the groundbreaking work by Ben-Tal, El Ghaoui, and Nemirovski in the
1990ies (see, for instance, [1]). However, the field of robust optimization dates
back to the 1940ies, where Wald [39] investigated worst case analysis in decision
theory. Uncertain data contaminate most optimization problems in various appli-
cations ranging from science and engineering to industry and thus represent an
essential component in optimization. From a mathematical point of view, many
problems can be modeled as an optimization problem and be solved, but in real
life, having exact data is very rare and seems almost impossible. Due to a lack of
complete information, uncertain data can highly affect solutions and thus influence
the decision making process. Hence, it is crucial to address this important issue in
optimization theory. Potential applications of uncertain optimization include sup-
ply and inventory management, since demand and tools needed for the production
process can easily be exposed to uncertain changes. Further examples for uncertain
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data in optimization problems can be found in the field of market analysis, share
prices, transportation science, timetabling and location theory.

In order to gain realistic insights into a problem in a complex surrounding, con-
trary objectives play an important role and are thus intensely studied in optimiza-
tion. In this section, we study such multi-objective problems that are contaminated
with uncertain data in a general setting.

The first robust concepts for uncertain multicriteria optimization problems was
introduced by Deb and Gupta [9]. Using an idea by Branke [4], the authors define
robustness as some sensitivity against disturbances in the decision space. They call
a solution to a problem robust if small perturbations in the decision space result in
only small disturbances in the objective space. Kuroiwa and Lee [30] presented the
first scenario-based approach by directly transferring the main idea of robust scalar
optimization to multicriteria optimization. This concept was generalized by Ehrgott
et al. [14] who implicitly used a set-order relation to define robust solutions for
uncertain multicriteria optimization problems. As was recently observed in [20,21],
robust multi-objective optimization is an important application of set optimization.
Different approaches to robust multi-objective optimization with a fixed domination
structure were examined in [20,21].

In this section, we will introduce a concept for obtaining optimistic solutions of an
uncertain multi-objective optimization problem, where the domination structure is
equipped with a variable ordering. Moreover, we develop optimality conditions for
optimistic solutions of uncertain vector optimization problems based the the results
derived in the preceding sections. Our approach enables the decision maker to
specify his preferences with regard to the domination structure rather than relying
on a given optimality concept.

Now we recall some notation of uncertain multi-objective optimization introduced
in Ehrgott et al. [14] (see also [21]) which will be used throughout this section. Let
Y be a linear topological space, X is a linear space, S ⊆ X a nonempty set, and let
an uncertainty set ∅ ̸= U ⊆ RN be given. The uncertainty set U contains all possible
parameter values that the uncertain parameter may attain. Let f : S × U → Y
be the function that is to be minimized. Our goal is to obtain solutions that are
optimistic, i.e., that perform well in the best-case scenario. For the scalar case
Y = R, this would mean to minimize the functional infξ∈U f(x, ξ) on X . Of course,
if f is vector-valued, this scalar approach cannot be easily transferred to vector
optimization. Due to the absence of a total order on Y , we need to define the
meaning of an optimal solution.

We define for x ∈ X the outcome set

fU (x) := {f(x, ξ)| ξ ∈ U},

i.e., the image of f under U . For a fixed ξ ∈ U , the vector optimization problem is
denoted by

(P (ξ)) min
x∈X

f(x, ξ).

The family of all problems
∪

ξ∈U (P (ξ)), is called uncertain optimization prob-

lem, and is denoted by P (U). Furthermore, the family of all sets fU (x), x ∈ S, is
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denoted by A. In contrast to the original robustness concepts, our “optimistic” con-
cept uses the lower set less order relation equipped with a variable domination struc-
ture according to Definition 3.1. This kind of optimality focuses on the lower bound
of a set fU (x). Contrary to the traditional robustness approach, we are therefore
not interested in a worst-case concept but a best-case concept. Thus, this approach
is suitable for a decision maker who is not considered to be risk averse but rather
risk affine and has positive expectations about the future.

Definition 6.1. Let an uncertain optimization problem P (U) be given and let
K : Y ⇒ Y be a set-valued map satisfying (2.2). x̄ ∈ S is called an optimistic
solution of problem P (U) if fU (x̄) is a minimal element of A in terms of Definition
3.1 (a). x̄ ∈ S is called a strictly optimistic solution of problem P (U) if fU (x̄) is a
strictly minimal element of A in terms of Definition 3.1 (b).

Now we discuss the role of the variable domination structure. For simplicity,
we consider the case Y = R2, i.e., we consider an uncertain bicriteria optimization
problem. Assume that the data of a vector a ∈ R2 is perturbed by uncertain data
and only an approximation A ⊂ R2 is known (see Figure 1 (a)). Similarly, the data

of a vector b̃ is disturbed and only an estimated set B̃ can be generated. In order

to compare the set A to the set B̃, the lower set less order relation ⪯Q
l with the

fixed ordering cone Q = R2
+ shall be used, such that B̃ ⊆ A+Q ⇐⇒ A ⪯Q

l B̃. This

relation ensures that the lower bounds of B̃ are not “worse” than those of A. Since
the data are uncertain, it seems likely that there exist undesired elements located

far from where most uncertain data is found. If there exists such an element b̄ /∈ B̃
which is located far away from B̃, then the relation A ⪯Q

l B, where B := B̃ ∪ {b̄},
may not hold anymore (see Figure 1 (b)). In order to still include b̄ in the analysis
but to obtain the result that the set A is, for the most part, preferred to B, a
planner can introduce a variable domination structure in the following way: Let
a ∈ A and K : Y ⇒ Y with

K(y) :=

{
K if y = a,
R2
+ else,

where K is a cone which fulfills b̄ ∈ {a}+K (K := K(a)), see Figure 1, (b)). Then
we have A ⪯K

l B. This ensures that all estimated elements are taken into account,
as nondesired elements can be handled by using variable domination structures.

Now we are ready to apply the characterizations of solutions of set optimization
problems w.r.t. variable domination structures, which were derived in Section 4, to
the uncertain optimization problem P (U).

Corollary 6.2. Let k0 ∈ Y \ {0} be given such that the inclusion (3.3) is satisfied.
Then the following assertions hold.

(a) Assume that ∪y∈fU (x)(y +K(y)) is closed for all fU (x) ∈ A. Then x̄ ∈ S is
an optimistic solution of problem P (U) if and only if φk0,fU (x̄)(fU (x)) > 0
for all fU (x) ∈ A, fU (x) ̸∼ fU (x̄).

(b) Assume that ∪y∈fU (x)(y+K(y)) is closed for all fU (x) ∈ A. Then x̄ ∈ S is a
strictly optimistic solution of problem P (U) if and only if φk0fU (x̄)(fU (x)) >
0 for all fU (x) ∈ A \ {fU (x̄)}.
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Figure 1. Visualization of two outcome sets A, B̃ ⊂ R2 of a uncer-
tain bicriteria optimization problem with undesired elements.

In the next corollary, we denote Im fU := {fU (x) | x ∈ S and fU (x) ̸= ∅}.

Corollary 6.3. Let k0 ∈ Y \ {0} be given such that the inclusion (3.3) is satisfied
and let K : Y ⇒ Y be a set-valued map such that ∪y∈F (x)(y + K(y)) is closed for
each x ∈ S and the conditions (2.2), (2.3) and (2.4) are fulfilled. Consider x̄ ∈ S.
The following assertions hold true.

(a) x̄ is an optimistic solution of problem P (U) if and only if there is a functional
G : Im fU → R+ ∪ {+∞} being ⪯K

l -monotone such that

x ∈ S, fU (x) ∼ fU (x̄) ⇐⇒ G(fU (x)) = 0.

(b) x̄ is a strictly optimistic solution of problem P (U) if and only if there is a
functional G : Im fU → R+ ∪ {+∞} being ⪯K

l -monotone such that

x ∈ S, G(fU (x)) = 0 ⇐⇒ x = x̄.

7. Conclusion

This paper introduces a new scalarizing functional and investigates its properties
to characterize solutions of a set-valued problem equipped with variable domination
structures. This functional is also used to study the well-posedness properties of a
set-valued problem w.r.t. variable domination structures. In addition, we highlight
that this functional has many applications not only in location problems but also
in uncertain problems. Our future research is studying some numerical methods
to calculate solutions of set-valued optimization problems with respect to variable
domination structures.
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