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In mathematical physics, such singularities are traditionally described within
the theory of generalized functions (Sobolev-Schwartz distributions). Due to the
generality of this approach, the solutions (1.1) are deprived of a qualitative analysis.
A pointwise analysis of solutions (1) in the case when q has simple singularities and
can be assumed to be the distributional derivative of a bounded variation function
Q was proposed in [24], where, in the development of Feller [25] and M. Krein’s
ideas (see the comments in [1]), the equation with generalized coefficients

(1.2) −(pu′)′ +Q′u = F ′

was replaced with the integrodifferential equation

−(pu′)(x) +

x∫
0

udQ = F (x)− F (0)− pu′(0),

where p, Q and F are the functions of bounded variation on the interval [0, ℓ], the
integral is understood in the Stiltjes sense, and the solutions belong to the class
of absolutely continuous functions whose derivatives have a bounded variation on
[0, ℓ].

In this paper we consider equation (1.2) in the case of considerably stronger
singularities in the potential (of the δ′ – interaction type). Here we replace equation
(1.2) with the integrodifferential equation

(1.3) −(pu′µ)(x) +

x∫
0

ud[Q] = F (x)− F (0).

Our advance is associated with the concept of a generalized Stieltjes integral. To
emphasize that we are considering this integral, we write a function in the differential
in square brackets.

Based on physical, more precisely, variational justification of equation (1.3) we
give an exact description of the influence function K(x, s) for (1.3), which allows
us to express the solution of equation (1.3) in traditional for the influence function
form

u(x) =

ℓ∫
0

K(x, s)d[F (s)].

Initial physical boundary conditions, that we use while the determination of the
Green function, are associated with the values of jumps of functions p, Q and F .
Equation (1.3) is the base of all classical properties of a boundary value problem
with an equation of the second order. The influence function acts as the traditional
Greenfunction, although in this case traditional description in terms of the axiomatic
for the Green function is very difficult.

2. Preliminaries

In this section we consider some notions, facts and definitions which we will need
in the sequel.
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The generalized Stieltjes inregral
β∫
α
ud[v] (which is referred in the sequel as the

π -integral) was first introduced by Yu. V. Pokornyi in [26]. Following [26], recall

that the π - integral
β∫
α
ud[v] for functions u(x) and v(x) of bounded variation can

be represented as

β∫
α

ud[v] =

β∫
α

udv0 +
∑

α<s≤β

u(s− 0)∆−v(s) +
∑

α≤s<β

u(s+ 0)∆+v(s),

where v0 is the continuous part of v and the integral
β∫
α
udv0 is understood in the

Lebesgue – Stieltjes sense. Here ∆+v(x) and ∆−v(x) denote the right and left
jumps of v at the point x, respectively; i.e., ∆+v(x) = v(x+0)−v(x) and ∆−v(x) =
v(x) − v(x − 0). In view of the general nature of the π - integral, the integrating
function v(s) in this integral defines splitting measures (left and right) at singular
points. Notice that the square brackets in the integral mean that the sum is extended
over measures splitting at singular points. If u(x) or v(x) is continuous, then the π
- integral coincides with the usual Stieltjes integral.

Following [26], if v(x) and u(x) are functions of bounded variation then for the

π -integral

β∫
α

u d[v] we have

(2.1)

β∫
α

u d[v] = u(β)v(β)− u(α)v(α)−
β∫

α

v du,

where the integral

β∫
α

v du is understood in the Lebesgue-Stieltjes sense.

The main object in this paper is the integrodifferential equation (1.3), i.e.,

−pu′µ(x) +

x∫
0

ud[Q] = F (x)− F (0).

Consider the variational motivation for equation (1.3). Let us consider a discontin-
uous Stieltjes string (a chain of strings, which are elastically connected by springs),
which is located along the segment [0, ℓ]. At the left end (at the point x = 0) and at
the right end (at the point x = ℓ) it has elastic supports (springs) with elasticities
γ1 and γ4, respectively. For determinacy, we assume that only at the point x = ξ
we have a singularity, which is generated by the discontinuity of the string.
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Let us investigate the case of small deformations. Let u(x) denote a deviation
of the considered physical system at the point x from the equilibrium state under
the action of the external force of the intensity F (x). Let us remark that at the
point x = ξ the function u(x) is not defined, but the limit values u(ξ − 0), u(ξ + 0)
(deviations of the respective ends of the string fastened by a spring) are defined and
have a physical sense. If we denote by F (x) the sum of all external forces applied to
the segment [0, x), then the total energy expended by the external force on giving
the form u(x) can be written as the following integral∫

[0,ℓ]

u(x) d[F (x)].

In the particular case, when the force f1 acts on the left end of the chain, f2 and
f3 at the point of the junction of the strings, where the force f2 acts on the right
end of the first string and the force f3 on the left end of the second string, f4 acts
on the right end of the chain, then

F (x) =



0, x = 0,

f1, 0 < x < ξ,

f1 + f2, x = ξ,

f1 + f2 + f3, ξ < x < ℓ,

f1 + f2 + f3 + f4, x = ℓ,

so that ∫
[0,ℓ]

u(x) d[F (x)] = u(0)f1 + u(ξ − 0)f2 + u(ξ + 0)f3 + u(ℓ)f4.
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Assume that p(x) is a function characterizing the local tension of the strings of the
considered model. We define the function p(x) at the point of discontinuity as equal
to the resistance of the spring that connects the strings. Then the internal energy,
which is accumulated by the system due to its own resistance, is equal to

1

2

∫
(0,ℓ)

p(x)u′2µ (x) dµ(x),

where µ(x) is a strictly increasing function on the segment [0, ℓ] and µ(x) is dis-
continuous at the points of discontinuity of the function u(x). Since the func-
tion µ(x) is continuous at the points x = 0 and x = ℓ, we can assume that
p(0)u′µ(0) = p(ℓ)u′µ(ℓ) = 0. So the following equality holds true∫

(0,ℓ)

p(x)u′2µ (x) dµ(x) =

∫
[0,ℓ]

p(x)u′2µ (x) dµ(x).

In the case when the model consists of the chain of 2 strings, which are connected
by a spring with an elasticity γ at the point ξ, we have

ℓ∫
0

p(x)u′2µ (x)

2
dµ(x) =

ξ−0∫
0

p(x)u′2x (x)

2
dx+

γ(∆u(ξ))2

2
+

ℓ∫
ξ+0

p(x)u′2x (x)

2
dx,

where µ(x) = x + θ(x − ξ), θ(x) is the Heaviside function. Let the function Q(x)
characterize the elasticity of the external medium. As the considered model contains
elastic supports of the spring type, we assume that the function Q(x) is discontin-
uous at the points of the supports concentrating, and jumps of the function Q at
these points must coincide with the elasticities of the corresponding springs. Then
the elasticity of the external medium can be taken into account by means of the
integral ∫

[0,ℓ]

u2(x)

2
d[Q(x)].

In the particular case, when the right end of the first string has the spring with the
elasticity γ2 and the left end of the second string has the spring with the elasticity
γ3, function Q(x) can be represented as

Q(x) =



0, x = 0,

γ1, 0 < x < ξ,

γ1 + γ2, x = ξ,

γ1 + γ2 + γ3, ξ < x < ℓ,

γ1 + γ2 + γ3 + γ4, x = ℓ.

So ∫
[0,ℓ]

u2(x)

2
d[Q(x)] =

u2(0)

2
γ1 +

u2(ξ − 0)

2
γ2 +

u2(ξ + 0)

2
γ3 +

u2(ℓ)

2
γ4.
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In the general case the potential energy can be expressed in the form

(2.2) Φ(u) =
1

2

∫
[0,ℓ]

p(x)(u′µ(x))
2dµ(x) +

1

2

∫
[0,ℓ]

u2(x) d[Q(x)]−
∫

[0,ℓ]

u(x) d[F (x)].

Notice that the functional Φ(u) can express the energy of the chain of the described
type, that contains any number of strings. Suppose that p(x), Q(x), and F (x)
are the functions of bounded variation on the interval [0, ℓ], where inf

(0,ℓ)
p(x) > 0.

The function µ(x) strictly increases on the interval [0, ℓ]. We consider the func-
tional (2.2) on the set E of µ - absolutely continuous functions whose derivatives
v′µ(x) are functions of bounded variation on the interval [0, ℓ]. We emphasize that
the considered function u(x) is a hypothetical (virtual) deformation. According to
Hamilton-Ostrogradski principle the real deformation u0(x) should give a minimum
to the functional (2.2). If u0(x) gives a minimum of Φ(u) to E, then the first

variation δΦ(u0)h =
d

dλ
Φ(u0 + λh)

∣∣∣∣
λ=0

must equal to zero, i.e.,

δΦ(u0)h =

ℓ∫
0

p(x)(u′0µh
′
µ)(x)dµ(x) +

ℓ∫
0

u0(x)h(x) d[Q(x)]−
ℓ∫

0

h(x) d[F (x)] = 0.

Then with respect to (2.1) we obtain the equality

−
ℓ∫

0

h(x) d[p(x)u′0µ(x)] +

ℓ∫
0

h(x) d[g(x)]−
ℓ∫

0

h(x) d[F (x)] = 0,

where d[g(x)] = u0(x)d[Q(x)]. Hence,

ℓ∫
0

h(x) d[−p(x)u′0µ(x) + g(x)− F (x)] = 0

and

−p(x)u′0µ(x) +

x∫
0

u0(s) d[Q(s)]− F (x) ≡ const = c,

or

(2.3) −p(x)u′0µ(x) +

x∫
0

u0(s) d[Q(s)] = F (x)− F (0).

Thus, we get that the real form of the considered system is a solution of equation
(1.3). Moreover, from equality (2.3) it follows that at the points x = 0 and x = ℓ
we have the boundary conditions

p(ℓ− 0)u′0µ(ℓ− 0) + u0(ℓ)γ4 = f4,

−p(+0)u′0µ(+0) + u0(0)γ1 = f1.

Let us consider in more detail equation (1.3).
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We assume that there exists a strictly increasing function µ(x) scaling the interval
[0, ℓ] such that solutions of (1.3) are µ - absolutely continuous. We assume that p,
Q and F are functions of bounded variation on [0, ℓ]; inf

(0,ℓ)
p > 0 and the integral is

understood in the π-integral sense.The µ - derivative introduced above obeys the
law

u(β)− u(α) =

β∫
α

u′µdµ,

so that u′µ(ξ) =
∆u(ξ)

∆µ(ξ)
at the discontinuity point ξ of µ.

To extend correctly the classical calculus methods to the situation under study,
we have to replace conflict points with their extensions (more exactly, separations).
Let S(µ) ∈ (0, ℓ) be the set of discontinuity points of µ(x). Notice that S(µ) may
be countable or finite. Solutions u(x) of equation (1.3) belong to the class Eµ

of µ-absolutely continuous functions whose derivatives u′µ are functions of bounded
variation on [0, ℓ]. Thus, any solution u(x) of equation (1.3) is a function of bounded
variation on [0, ℓ], that can be discontinuous only at points from S(µ). The values of
u(ξi), where ξi ∈ S(µ), are not defined: only the limit values u(ξi− 0) and u(ξi+0)
are of importance in the π - integral.

We introduce Jµ = [0, ℓ]\S(µ) with the metric ρ(x, y) = |µ(x)−µ(y)|. Clearly, the
metric space (Jµ, ρ) is not complete. Let [0, ℓ]µ denote its completion with respect

to ρ. Given an arbitrary discontinuity point ξ of µ(x) , the set [0, ℓ]µ contains a pair
of elements, denoted by ξ− 0 and ξ+0 respectively. Thus, any solution of equation
(1.3) is defined on [0, ℓ]µ.

Let Rµ = [0, ℓ]µ
∪

S(µ). Define the function σ(x) = x+p1+p2+Q1+Q2+F1+F2,
where pi, Qi and Fi are the increasing functions from the Jordan representation of
the boundary variation functions p(x) = p1(x) − p2(x), Q(x) = Q1(x) − Q2(x),
F (x) = F1(x)−F2(x). It can be assumed that σ(x) contains only the discontinuity
points of p, Q and F . Denote by S the set of discontinuity points of σ(x) that
don’t lie in S(µ). Let JRµ = Rµ \ S. Let JRµ denote its completion with respect
to the metric ρ(x, y) = |σ(x) − σ(y)|. We obtain that any point s ∈ S is replaced
with the pair {s − 0, s + 0}, 0 is replaced with +0, ℓ is replaced with ℓ − 0. Let

[0, ℓ]S = JRµ ∪ 0 ∪ ℓ. Notice that [0, ℓ]S together with any discontinuity point ξ of
µ(x), contains the pair {ξ − 0, ξ + 0}, while any point s ∈ S is replaced by the pair
{s− 0, s+ 0}, and also this set contains the pair {0,+0} and the pair {ℓ, ℓ− 0}.

It follows from (1.3) that the derivative u′µ(x) exists at any point x at which µ, p,
Q and F are all continuous. At the other points, there are left and right derivatives
u′µ(ξ − 0) and u′µ(ξ + 0) coinciding with one-sided limits. It follows from (1.3) that

−p(ξ)
∆u(ξ)

∆µ(ξ)
+ p(ξ − 0)u′µ(ξ − 0) + u(ξ − 0)∆−Q(ξ) = ∆−F (ξ),

p(ξ)
∆u(ξ)

∆µ(ξ)
− p(ξ + 0)u′µ(ξ + 0) + u(ξ + 0)∆+Q(ξ) = ∆+F (ξ),
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for discontinuity points ξ of µ(x) and

−p(s+ 0)u′µ(s+ 0) + p(s− 0)u′µ(s− 0) + u(s)∆Q(s) = ∆F (s)

for points s ∈ S. Here, ∆F (ξ) = F (ξ+0)−F (ξ− 0), ∆Q(ξ) = Q(ξ+0)−Q(ξ− 0).
Also it follows from (1.3) that for points x = 0 and x = ℓ we obtain boundary

conditions

p(ℓ− 0)u′µ(ℓ− 0) + u(ℓ)∆−Q(ℓ) = ∆−F (ℓ),

−p(+0)u′µ(+0) + u(0)∆+Q(0) = ∆+F (0).

A case when the functions p, Q, F , are continuous at points x = 0 and x = ℓ was
considered in [27]. According to [27], the equation

−pu′µ(x) +

x∫
0

ud[Q] = F (x)− F (0)− pu′(0)

is similar in properties to a second order ordinary differential equation. Some of
this properties will be used later.

Consider a homogeneous equation

−pu′µ(x) +

x∫
0

ud[Q] = −pu′µ(0).

We assume that p, Q are continuous at points x = 0 and x = ℓ. A point s ∈ (0, ℓ) is
called a zero point of a solution of the homogeneous equation if u(s−0)u(s+0) ≤ 0.
Following [27], any nontrivial solution of the homogeneous equation can have only
a finite number of zero points.

Theorem 2.1. Suppose that the function Q(x) does not decrease on the interval
[0, ℓ] and Q(x) is not a constant; p(x), F (x) are functions of boundary variation
on [0, ℓ]; µ(x) strictly increases on [0, ℓ]; inf

(0,ℓ)
p(x) > 0. Then equation (1.3) has a

unique solution.

Proof. Notice, that equation (1.3) can be rewritten in the form of a boundary value
problem

(2.4)


−p(x)u′µ(x) +

x∫
+0

u(s) d[Q(s)] = F (x)− F (+0)− p(+0)u′µ(+0),

p(ℓ− 0)u′µ(ℓ− 0) + u(ℓ)∆−Q(ℓ) = ∆−F (ℓ),

−p(+0)u′µ(+0) + u(0)∆+Q(0) = ∆+F (0).

Indeed, from (1.3) it follows that

−p(x)u′µ(x) +

+0∫
0

u(x) d[Q(x)] +

x∫
+0

u(s) d[Q(s)] = F (x)− F (0).
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We have

+0∫
0

u(x) d[Q(x)] = u(0)∆+Q(0) = F (+0)− F (0) + p(+0)u′µ(+0).

Then

−p(x)u′µ(x) + F (+0)− F (0) + p(+0)u′µ(+0) +

x∫
+0

u(s) d[Q(s)] = F (x)− F (0)

and

−p(x)u′µ(x) +

x∫
+0

u(s) d[Q(s)] = F (x)− F (+0)− p(+0)u′µ(+0),

x ∈ [0, ℓ]s\{0 ∪ ℓ}. Define the functions p, Q, F at the points x = 0 and x = ℓ by
limit values. Following [26], a solution of the equation

−p(x)u′µ(x) +

x∫
+0

u(s) d[Q(s)] = F (x)− F (+0)− p(+0)u′µ(+0)

can be represented in the form

u(x) = c1φ1(x) + c2φ2(x) + z(x),

where φ1(x), φ2(x) is a fundamental system of solutions of the homogeneous equa-
tion and z is a solution of the inhomogeneous equation. Thus, it remains to prove
that there exist c1 and c2 such that u(x) satisfies the boundary conditions. The
last question is equivalent to the problem of a trivial solution existence for the
corresponding homogeneous problem

(2.5)


−p(x)u′µ(x) +

x∫
+0

u(s) d[Q(s)] = −p(+0)u′µ(+0),

p(ℓ− 0)u′µ(ℓ− 0) + u(ℓ)∆−Q(ℓ) = 0,

−p(+0)u′µ(+0) + u(0)∆+Q(0) = 0.

Following [26], for the case when the function Q does not decrease, any nontrivial
solution of the equation

(2.6) −p(x)u′µ(x) +

x∫
+0

u(s) d[Q(s)] = −p(+0)u′µ(+0)

can have no more than one zero point. Suppose that problem (2.5) has a nontrivial
solution u(x). Consider a case when u(x) > 0. Then p(+0)u′µ(+0) > 0 and u′µ(x) >
0. But from the last fact it follows that u′µ(ℓ − 0) > 0. This contradicts to the
equality

p(ℓ− 0)u′µ(ℓ− 0) + u(ℓ− 0)∆−Q(ℓ) = 0.
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Similarly, the case u(x) < 0 is impossible. Let τ be a zero point of the function
u(x). If u(0) = 0, then u′µ(+0) = 0. According to [26], the Cauchy problem

−p(x)u′µ(x) +

x∫
+0

u(s) d[Q(s)] = −p(+0)u′µ(+0),

u(0) = 0,

u′µ(+0) = 0

has only the trivial solution. Similarly we can consider the case u(ℓ) = 0. Suppose
that the zero point τ belongs to (0, ℓ). Let u(τ − 0) < 0, u(τ + 0) ≥ 0. Then

∆u(τ) = u(τ + 0) − u(τ − 0) > 0, i.e. u′µ(τ) =
∆u(τ)

∆µ(τ)
> 0. Let us consider (2.6),

when x ∈ [τ + 0, ℓ− 0]. Then

−p(x)u′µ(x) +

x∫
τ+0

u(s) d[Q(s)] = −p(τ + 0)u′µ(τ + 0).

Since the zero point τ can be only unique, we get u(x) > 0 for all x > τ . Hence
x∫

τ+0

u(s) d[Q(s)] > 0.

On the other hand, we note that at the point τ we have the equality

−p(τ + 0)u′µ(τ + 0) + p(τ)u′µ(τ) + u(τ + 0)∆+Q(τ) = 0,

from which it follows that p(τ + 0)u′µ(τ + 0) > 0. From

p(x)u′µ(x) =

x∫
τ+0

u(s) d[Q(s)] + p(τ + 0)u′µ(τ + 0),

it follows that u′µ(x) > 0, in particular, u′µ(ℓ − 0) > 0. This contradicts to the
equality

p(ℓ− 0)u′µ(ℓ− 0) + u(ℓ)∆−Q(ℓ) = 0.

�

3. The influence function and its properties

In this section we give an exact description of the influence function, starting
from the physical or, more precisely, the variational motivation for equation (1.3).
At the physical level, the influence function K(x, s) is defined as the deformation
of the original system under the action of a unit force applied at the point x = s.

As it was shown above, the potential energy corresponding to a virtual deforma-
tion u(x) arising under the influence of an external force d[F (x)] is expressed by the
functional

Φ(u) =

∫
[0,ℓ]

p
(u′µ)

2

2
dµ+

∫
[0,ℓ]

u2

2
d[Q]−

∫
[0,ℓ]

ud[F ].
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If the external load has a unit value and is applied only at a point x = s, where u(x)
is continuous at x = s, then the work of this force is equal to u(s), and the last term

in the representation of Φ becomes
ℓ∫
0

ud[Θ(x− s)], where Θ(x− s) is the Heaviside

function. If the function u(x) is discontinuous at a point ξ, then we consider two
cases, when the work of this force is equal to u(ξ − 0) or to u(ξ + 0) respectively.

Thus, by the influence function K(x, s) of the original problem (1.3) we mean
the solution of the equation

(3.1) −p(x)v′µ(x) +

x∫
0

v(t) d[Q(t)] = Θ(x− s),

where s ∈ [0, ℓ]µ is fixed.

If the function µ(x) is continuous at a point ξ, then we define

Θ(x− s) =

{
1, x > s,

0, x < s.

If the function µ(x) is discontinuous at a point ξ, then we define

Θ(x− (ξ − 0)) =

{
0, x < ξ,

1, x ≥ ξ,

Θ(x− (ξ + 0)) =

{
0, x ≤ ξ,

1, x > ξ.

If s = 0 then

Θ(x) =

{
1, 0 < x < ℓ,

0, x = 0.

If s = ℓ then

Θ(x− ℓ) =

{
0, 0 < x < ℓ,

1, x = ℓ.

The properties listed below can be obtained immediately from (3.1).
If the function µ(x) is continuous at a point s ∈ (0, ℓ), then

−p(s+ 0)K ′
µ(s+ 0, s) + p(s− 0)K ′

µ(s− 0, s) +K(s, s)∆Q(s) = 1.

If s = 0, then
−p(+0)K ′

µ(+0, 0) +K(0, 0)∆+Q(0) = 1.

If s = ℓ, then
p(ℓ− 0)K ′

µ(ℓ− 0, ℓ) +K(ℓ, ℓ)∆−Q(ℓ) = 1.

If the function µ(x) is discontinuous at a point ξ, then

−p(ξ)
K(ξ + 0, ξ − 0)−K(ξ − 0, ξ − 0)

∆µ(ξ)
+

+p(ξ − 0)K ′
µ(ξ − 0, ξ − 0) +K(ξ − 0, ξ − 0)∆−Q(ξ) = 1,

p(ξ)
K(ξ + 0, ξ + 0)−K(ξ − 0, ξ + 0)

∆µ(ξ)
−
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−p(ξ + 0)K ′
µ(ξ + 0, ξ + 0) +K(ξ + 0, ξ + 0)∆+Q(ξ) = 1.

Theorem 3.1. The following equality holds:

max
[0,ℓ]µ

K(x, s) = K(s, s).

Proof. Assume that s = 0. The another cases can be considered similarly. We
denote v(x) = K(x, 0). Then

−p(x)v′µ(x) +

x∫
0

v(t) d[Q(t)] = Θ(x).

If 0 < x < ℓ, then

−p(x)v′µ(x) +

x∫
+0

v(t) d[Q(t)] = −p(+0)v′µ(+0),

and −p(+0)v′µ(+0) + v(0)∆+Q(0) = 1.
As in Theorem 2.1, we can prove that the function v(x) preserves the sign on the

interval [0, ℓ] and moreover v(x) > 0. Consider the equality

p(ℓ− 0)v′µ(ℓ− 0) + v(ℓ− 0)∆−Q(ℓ) = 0.

Since v(ℓ− 0) > 0, we have p(ℓ− 0)v′µ(ℓ− 0) < 0. Notice that for x ∈ [+0, ℓ− 0] we
have

−p(x)v′µ(x) +

x∫
+0

v(t) d[Q(t)] = −p(+0)v′µ(+0),

−p(ℓ− 0)v′µ(ℓ− 0) +

ℓ−0∫
+0

v(t) d[Q(t)] = −p(+0)v′µ(+0).

We obtain that

−p(ℓ− 0)v′µ(ℓ− 0) + p(x)v′µ(x) +

ℓ−0∫
x

v(t) d[Q(t)] = 0,

and it follows that

p(x)v′µ(x) = p(ℓ− 0)v′µ(ℓ− 0)−
ℓ−0∫
x

v(t) d[Q(t)].

Hence, v′µ(x) < 0 for all x ∈ [+0, ℓ− 0].
Then the function v(x) decreases on the interval [+0, ℓ− 0]. Hence, max

[0,ℓ]µ

v(x) =

v(+0) = v(0). �
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Theorem 3.2. Suppose that the function Q(x) does not decrease on the interval
[0, ℓ] and Q(x) does not equal to a constant. Let φ1(x), φ2(x) be the solutions of
the equations

−p(x)v′µ(x) +

x∫
0

v(t) d[Q(t)] = Θ(x),

−p(x)v′µ(x) +

x∫
0

v(t) d[Q(t)] = Θ(x− ℓ).

Then the influence function K(x, s) can be represented as

(3.2) K(x, s) =
1

φ2(0)

{
φ1(x)φ2(s), 0 ≤ s ≤ x ≤ ℓ,

φ2(x)φ1(s), 0 ≤ x ≤ s ≤ ℓ.

Proof. Let us prove that the function K(x, s) from (3.2) is a solution of equation
(3.1). Notice that φ2(0) ̸= 0. Indeed, the function φ2(x) is a solution of the problem

−p(x)v′µ(x) +

x∫
+0

v(t) d[Q(t)] = −p(+0)v′µ(+0),

−p(+0)v′µ(+0) + v(0)∆+Q(0) = 0,

p(ℓ− 0)v′µ(ℓ− 0) + v(ℓ)∆−Q(ℓ) = 1.

If φ2(0) = 0, then φ′
2µ(+0) = 0. Following [26], the homogeneous Cauchy problem

can have only the zero solution, hence φ2(x) ≡ 0. Then the function φ2(x) does not
satisfy the condition at the point ℓ. Hence, φ2(0) ̸= 0.

The function K(·, s) belongs to the class E when s is fixed, because φ1(·) ∈ E
and φ2(·) ∈ E.

Let us show that

−p(+0)K ′
µ(+0, 0) +K(0, 0)∆+Q(0) = 1.

We have

−
p(+0)φ′

1µ(+0)φ2(0)

φ2(0)
+

φ1(0)φ2(0)

φ2(0)
∆+Q(0) = 1.

Let us show that

p(ℓ− 0)K ′
µ(ℓ− 0, ℓ) +K(ℓ− 0, ℓ)∆−Q(ℓ) = 1.

We have

(3.3)
p(ℓ− 0)φ1(ℓ)φ

′
2µ(ℓ− 0)

φ2(0)
+

φ2(ℓ)φ1(ℓ)

φ2(0)
∆−Q(ℓ) =

φ1(ℓ)

φ2(0)
.

According to [26] p̃(x)W (x) = const, where the function p̃(x) coincides with p(x)
on (0, ℓ) and p̃(0) = p(+0), p̃(ℓ) = p(ℓ− 0),

W (x) =

∣∣∣∣ φ1(x) φ2(x)
φ′
1µ(x) φ′

2µ(x)

∣∣∣∣ .
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Then

p̃(ℓ− 0)W (ℓ− 0) = p(ℓ− 0)

∣∣∣∣ φ1(ℓ) φ2(ℓ)
φ′
1µ(ℓ− 0) φ′

2µ(ℓ− 0)

∣∣∣∣ =
= p(ℓ− 0)(φ1(ℓ)φ

′
2µ(ℓ− 0)− φ2(ℓ)φ

′
1µ(ℓ− 0)).

On the other hand, since

p(ℓ− 0)φ′
2µ(ℓ− 0) + φ2(ℓ)∆

−Q(ℓ) = 1,

p(ℓ− 0)φ′
1µ(ℓ− 0) + φ1(ℓ)∆

−Q(ℓ) = 0,

we have

p̃(ℓ− 0)W (ℓ− 0) = φ1(ℓ)(1− φ2(ℓ)∆
−Q(ℓ)) + φ1(ℓ)φ2(ℓ)∆

−Q(ℓ) = φ1(ℓ).

But

p̃(x)W (x) = p(+0)W (+0) = p(+0)(φ1(0)φ
′
2µ(+0)− φ2(0)φ

′
1µ(+0)).

Since
p(+0)φ′

2µ(+0) = φ2(0)∆
+Q(0),

p(+0)φ′
1µ(+0) = φ1(0)∆

+Q(0)− 1,

then

p(+0)W (+0) = φ1(0)φ2(0)∆
+Q(0)− φ2(0)(φ1(0)∆

+Q(0)− 1) = φ2(0).

Hence, φ2(0) = φ1(ℓ) and the right-hand side of (3.3) is equal to 1.
Consider the case when s = ξ − 0, where µ(x) is discontinuous at a point ξ. Let

us show that

−p(x)K ′
µ(x, ξ − 0) +

x∫
0

K(t, ξ − 0) d[Q(t)] = Θ(x− (ξ − 0)).

Let x < ξ. We must prove that

−p(x)K ′
µ(x, ξ − 0) +

x∫
0

K(t, ξ − 0) d[Q(t)] = 0.

We have

φ1(ξ − 0)

φ2(0)

−p(x)φ′
2µ(x) +

x∫
0

φ2(t) d[Q(t)]

 = 0.

Let us show that

−p(ξ)
K(ξ + 0, ξ − 0)−K(ξ − 0, ξ − 0)

∆µ(ξ)
+ p(ξ − 0)K ′

µ(ξ − 0, ξ − 0)+

+K(ξ − 0, ξ − 0)∆−Q(ξ) = 1.

We have

−p(ξ)
φ1(ξ + 0)φ2(ξ − 0)− φ1(ξ − 0)φ2(ξ − 0)

φ2(0)∆µ(ξ)
+

p(ξ − 0)φ′
2µ(ξ − 0)φ1(ξ − 0)

φ2(0)
+

+
φ2(ξ − 0)φ1(ξ − 0)

φ2(0)
∆−Q(ξ) =
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= −
φ2(ξ − 0)p(ξ)φ′

1µ(ξ) + p(ξ − 0)φ′
2µ(ξ − 0)φ1(ξ − 0)

φ2(0)
−

−φ2(ξ − 0)φ1(ξ − 0)∆−Q(ξ)

φ2(0)
.

Since
p(ξ)φ′

1µ(ξ) = p(ξ − 0)φ′
1µ(ξ − 0) + φ1(ξ − 0)∆−Q(ξ),

we have

−
φ2(ξ − 0)p(ξ − 0)φ′

1µ(ξ − 0) + p(ξ − 0)φ′
2µ(ξ − 0)φ1(ξ − 0)

φ2(0)
=

=
p(ξ − 0)W (ξ − 0)

φ2(0)
=

φ2(0)

φ2(0)
= 1.

Similarly we can prove that

p(ξ)
K(ξ + 0, ξ + 0)−K(ξ − 0, ξ + 0)

∆µ(ξ)
− p(ξ + 0)K ′

µ(ξ + 0, ξ + 0)+

+K(ξ + 0, ξ + 0)∆+Q(ξ) = 1.

Let x > ξ. Let us show that

−p(x)K ′
µ(x, ξ − 0) +

x∫
0

K(t, ξ − 0) d[Q(t)] = 1.

Notice that K ′
µ(x, ξ − 0) =

φ′
1µ(x)φ2(ξ − 0)

φ2(0)
,

x∫
0

K(t, ξ − 0) d[Q(t)] =

ξ−0∫
0

K(t, ξ − 0) d[Q(t)] +K(ξ + 0, ξ − 0)∆+Q(ξ)+

+

x∫
ξ+0

K(t, ξ − 0) d[Q(t)] +K(ξ − 0, ξ + 0)∆−Q(ξ).

We have the equality

−
p(x)φ′

1µ(x)φ2(ξ − 0)

φ2(0)
+

ξ−0∫
0

φ2(t)φ1(ξ − 0)

φ2(0)
d[Q(t)]+

+
φ1(ξ + 0)φ2(ξ − 0)∆+Q(ξ) + φ1(ξ − 0)φ2(ξ − 0)∆−Q(ξ)

φ2(0)
+

+

x∫
ξ+0

φ1(t)φ2(ξ − 0)

φ2(0)
d[Q(t)] = 1.

Notice that

−p(ξ − 0)φ′
2µ(ξ − 0) +

ξ−0∫
0

φ2(t) d[Q(t)] = 0,
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−p(x)φ′
1µ(x) +

x∫
ξ+0

φ1(t) d[Q(t)] = −p(ξ + 0)φ′
1µ(ξ + 0).

Then the previous equality can be rewritten as

−
φ2(0)p(ξ + 0)φ′

1µ(ξ + 0) + φ1(ξ − 0)p(ξ − 0)φ′
2µ(ξ − 0)

φ2(0)
+

+
φ1(ξ + 0)φ2(ξ − 0)∆+Q(ξ) + φ1(ξ − 0)φ2(ξ − 0)∆−Q(ξ)

φ2(0)
=

= −
φ2(ξ − 0)p(ξ)φ′

1µ(ξ)

φ2(0)
+

φ1(ξ − 0)p(ξ − 0)φ′
2µ(ξ − 0)

φ2(0)
+

+
φ1(ξ − 0)φ2(ξ − 0)∆−Q(ξ)

φ2(0)
=

= −
φ2(ξ − 0)(φ1(ξ − 0)∆−Q(ξ) + p(ξ − 0)φ′

1µ(ξ − 0))

φ2(0)
+

+
φ1(ξ − 0)φ2(ξ − 0)∆−Q(ξ)

φ2(0)
+

+
φ1(ξ − 0)p(ξ − 0)φ′

2µ(ξ − 0)

φ2(0)
=

p(ξ − 0)W (ξ − 0)

φ2(0)
=

φ2(0)

φ2(0)
= 1.

The anouther cases can be considered in a similar way. �
Theorem 3.3. Suppose that the function Q(x) does not decrease on the interval
[0, ℓ] and Q(x) does not equal to a constant. Let p(x), F (x) be functions of boundary
variation; inf

(0,ℓ)
p(x) > 0; the function µ(x) strictly increases on [0, ℓ]. Then the

corresponding solution u(x) of equation (1.3) can be represented in the form

(3.4) u(x) =

ℓ∫
0

K(x, s)d[F (s)],

where K(x, s) is the influence functuion.

Proof. We denote the right-hand side of (3.4) by v(x), that is

v(x) =

ℓ∫
0

K(x, s)d[F (s)].

According to (3.2), the function v(x) can be represented in the form

v(x) =

φ1(x)
x∫
0

φ2d[F ]

φ2(0)
+

φ2(x)
ℓ∫
x
φ1d[F ]

φ2(0)
.

To prove that the function v(x) is a solution of equation (1.3), we show first that
v(·) ∈ E. For arbitrary α ≤ β we have

v(β)− v(α) =
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=
1

φ2(0)

(φ1(β)− φ1(α))

β∫
0

φ2d[F ] + (φ2(β)− φ2(α))

ℓ∫
β

φ1d[F ]

+

+
1

φ2(0)

β∫
α

((φ1(α)− φ1(s))φ2(s) + (φ2(s)− φ2(α))φ1(s))d[F (s)]

which implies the µ-absolute continuity of the function v(x).
Let us show that the derivative v′µ of v(x) is defined by the equality

(3.5) v′µ(x) =

φ1
′
µ(x)

x∫
0

φ2d[F ]

φ2(0)
+

φ2
′
µ(x)

ℓ∫
x
φ1d[F ]

φ2(0)
.

Let ∆εz = z(x + ε) − z(x + 0), where ε > 0. We carry out the proof for the
right-hand derivative (the arguments for the left-hand derivative are similar). We
have

∆εv

∆εµ
=

1

φ2(0)

∆εφ1

∆εµ

x+ε∫
0

φ2d[F ] +
1

φ2(0)

∆εφ2

∆εµ

ℓ∫
x+ε

φ1d[F ]+

+
1

φ2(0)

x+ε∫
x+0

φ1(x+ 0)φ2(s)− φ2(x+ 0)φ1(s)

∆εµ
d[F (s)].

Let us show that

1

φ2(0)
lim
ε→0+


x+ε∫
x+0

φ1(x+ 0)φ2(s)− φ2(x+ 0)φ1(s)d[F (s)]

∆εµ(x)

 = 0.

We have ∣∣∣∣∣∣ 1

∆εµ(x)

x+ε∫
x+0

(φ1(x+ 0)φ2(s)− φ2(x+ 0)φ1(s)) d[F (s)]

∣∣∣∣∣∣ ≤
≤

max
x+0≤s≤x+ε

|φ1(x+ 0)φ2(s)− φ2(x+ 0)φ1(s)|

∆εµ(x)
V arx+ε

x+0(F ),

where we denote by Var(F) the total variation of the function F on the corresponding

interval. Let τ be point of [0, 1]µ, in which the function

|φ1(x+ 0)φ2(s)− φ2(s)φ1(x+ 0)|

reaches a maximum on a compact [x+ 0, x+ ε]. Then

max
x+0≤s≤x+ε

|φ1(x+ 0)φ2(s)− φ2(x+ 0)φ1(s)|

∆εµ(x)
≤
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≤ |φ2(τ)|
∣∣∣∣φ1(x+ 0)− φ1(τ)

∆εµ(x)

∣∣∣∣+ |φ1(τ)|
∣∣∣∣φ2(x+ 0)− φ2(τ)

∆εµ(x)

∣∣∣∣ ,
and then the expression

max
x+0≤s≤x+ε

|φ1(x+ 0)φ2(s)− φ2(x+ 0)φ1(s)|

∆εµ(x)

is limited, where ε > 0. Since V arx+ε
x+0(F ) → 0 as ε → 0+, then the required equality

is proved. Let us show that equality (3.5) is true at the point ξ ∈ S(µ). We have

v′µ(ξ) =
v(ξ + 0)− v(ξ − 0)

∆µ(ξ)
=

φ1(ξ + 0)
ξ+0∫
0

φ2d[F ]

φ2(0)
+

φ2(ξ + 0)
ℓ∫

ξ+0

φ1d[F ]

φ2(0)
−

−
φ1(ξ − 0)

ξ−0∫
0

φ2d[F ]

φ2(0)
+

φ2(ξ − 0)
ℓ∫

ξ−0

φ1d[F ]

φ2(0)
.

Notice that
ξ+0∫
0

φ2d[F ] =

ξ∫
0

φ2d[F ] + φ2(ξ + 0)∆+F (ξ),

ℓ∫
ξ+0

φ1d[F ] =

ℓ∫
ξ

φ1d[F ]− φ1(ξ + 0)∆+F (ξ),

ξ−0∫
0

φ2d[F ] =

ξ∫
0

φ2d[F ]− φ2(ξ − 0)∆−F (ξ),

ℓ∫
ξ−0

φ1d[F ] =

ℓ∫
ξ

φ1d[F ] + φ1(ξ − 0)∆−F (ξ),

so we obtain the required.
It follows from (3.5) that v′µ is a function of boundary variation, and thus v ∈ E.
Let us show that the function v(x) is a solution of equation (1.3). First, we have

x∫
0

vd[Q] =
1

φ2(0)

x∫
0

φ1(s)

s∫
0

φ2d[F ]d[Q] +
1

φ2(0)

x∫
0

φ2(s)

ℓ∫
s

φ1d[F ]d[Q].

By Fubini’s theorem we can interchange the limits of integration and with respect
to

x∫
t

φ1d[Q] = (pφ1
′
µ)(x)− (pφ1

′
µ)(t),
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we have

1

φ2(0)

x∫
0

φ1(s)

s∫
0

φ2d[F ]d[Q] =

=
1

φ2(0)

x∫
0

φ2(t)((pφ1
′
µ)(x)− (pφ1

′
µ)(t))d[F (t)].

Similarly, since
x∫

0

φ2d[Q] = p(x)φ2
′
µ(x),

we have
x∫

0

φ2(s)

ℓ∫
s

φ1d[F ]d[Q] =

=

x∫
0

p(t)φ1(t)φ2
′
µ(t)d[F (t)] + φ2

′
µ(x)p(x)

ℓ∫
x

φ1(t)d[F (t)].

Substituting the expression obtained for
x∫
0

vd[Q] into (1.3) and using the equality

p̃(x)W (x) = φ2(0), we obtain a true equality. Thus, the function v(x) is a solution
of problem (1.3). �

Theorem 3.4. Suppose that the function Q(x) does not decrease on the interval
[0, ℓ] and Q(x) does not equal to a constant. Then the influence function K(x, s) > 0

for all x, s ∈ [0, ℓ]µ × [0, ℓ]µ.

Proof. We are going to use representation (3.2) for the influence function. Let us

show that φ1(x) > 0 for all x ∈ [0, ℓ]µ. Notice that the function φ1(x) is a solution
of the problem

−p(x)φ1
′
µ(x) +

x∫
+0

φ1(t) d[Q(t)] = −p(+0)φ1
′
µ(+0),

−p(+0)φ1
′
µ(+0) + φ1(0)∆

+Q(0) = 1,

p(ℓ− 0)φ1
′
µ(ℓ− 0) + φ1(ℓ)∆

−Q(ℓ) = 0.

Since the function Q(x) doesn’t decrease we get that the function φ1(x) can have
no more than one zero point on [0, ℓ]. Let ξ be a zero point of φ1(x). If ξ = ℓ,
then φ1(ℓ) = 0, hence, φ1

′
µ(ℓ) = 0 and we have φ1 ≡ 0, because the homogeneous

Cauchy problem can have only the zero solution, which contradicts the boundary
condition at zero.

If ξ = 0, then it follows from the boundary condition that φ1
′
µ(+0) < 0. Hence

φ1(x) < 0 and φ1(ℓ) < 0. From the equation it follows that φ1
′
µ(x) < 0. So

φ1
′
µ(ℓ−0) < 0. But then the boundary condition at the point x = ℓ is not satisfied.
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Let ξ ∈ (0, l). We consider the case when φ1(ξ−0) < 0, φ1(ξ+0) ≥ 0. The another

cases can be considered similarly. We have φ1
′
µ(ξ) =

∆φ1(ξ)

∆µ(ξ)
≥ 0. Since

−p(ξ + 0)φ1
′
µ(ξ + 0) + p(ξ)φ1

′
µ(ξ) + φ1(ξ + 0)∆+Q(ξ) = 0,

then φ1
′
µ(ξ + 0) ≥ 0. Notice that the equality

−p(x)φ1
′
µ(x) +

x∫
ξ+0

φ1(t) d[Q(t)] = −p(ξ + 0)φ1
′
µ(ξ + 0)

is true on the interval (ξ, ℓ). Hence φ1
′
µ(ℓ−0) > 0. But φ1(ℓ) > 0 and it contradicts

the condition at the point ℓ.
We obtain that φ1(x) does not have zero points on the interval [0, ℓ], hence φ1(x)

preserves a sign on the interval [0, ℓ]. Assume that φ1(x) < 0. Then

−p(+0)φ1
′
µ(+0) > 0

and

−p(x)φ1
′
µ(x) > 0.

We obtain that φ1
′
µ(x) < 0, in particular, φ1

′
µ(ℓ− 0) < 0. But it contradicts to the

condition at the point ℓ. So φ1(x) > 0. The proof that φ2(x) > 0 can be carried
out similarly. Moreover, from the equalities

p(x)φ1
′
µ(x) = −

ℓ−0∫
x

φ1(t) d[Q(t)]− φ1(ℓ)∆
−Q(ℓ)

and

p(x)φ2
′
µ(x) =

x∫
+0

φ2(t) d[Q(t)] + φ2(0)∆
+Q(0)

it follows, that the function φ1(x) decreases and the function φ2(x) increases on the

interval [0, ℓ]µ. �

Theorem 3.5. Let the functions Q(x), F1(x) be non-decreading on the interval
[0, ℓ] and inf

(0,ℓ)
p > 0. Let u1(x) be a solution of the problem

(3.6) −p(x)u′µ(x) +

x∫
0

u(t) d[Q(t)] = F (x)− F (0)

where F (x) = F1(x), and u2(x) is a solution of problem (3.6) where F (x) = F1(x)+

θ(x− s), s ∈ [0, ℓ]µ. Then

max
[0,ℓ]µ

(u2 − u1)(x)

u1(x)
=

(u2 − u1)(s)

u1(s)
.
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Proof. Let s ∈ [0, ℓ]µ. Notice that

K(x, s) = u2(x)− u1(x),

and

u1(x) =

ℓ∫
0

K(x, s)d[F1(s)].

Consider, for determinacy, the case when s = ξ+0, where ξ ∈ S(µ). Another cases
can be considered similarly. Let us show that

max
[0,ℓ]µ

K(x, ξ + 0)
ℓ∫
0

K(x, s)d[F1(s)]

=
K(ξ + 0, ξ + 0)

ℓ∫
0

K(ξ + 0, s)d[F1(s)]

.

Let 0 ≤ x ≤ ξ + 0. Then

K(x, ξ + 0)
ℓ∫
0

K(x, s)d[F1(s)]

=
φ2(x)φ1(ξ + 0)

φ1(x)
x∫
0

φ2(s)d[F1(s)] + φ2(x)
ℓ∫
x
φ1(s)d[F1(s)]

.

We must show that

φ2(x)

φ1(ξ)
x∫
0

φ2(s)d[F1(s)] + φ2(x)
ℓ∫
x
φ1(s)d[F1(s)]

≤

The last inequality is true if inequality

φ1(ξ + 0)

ξ+0∫
x

φ2d[F1] ≤ φ2(ξ + 0)

ξ+0∫
x

φ1d[F1].

holds. Let us consider the function

W (x) = φ1(ξ + 0)φ2(x)− φ2(ξ + 0)φ1(x),

where 0 ≤ x ≤ ξ + 0. Since the function φ2(x) monotonically increases, and the
function φ1(x) monotonically decreases, then W ′

µ > 0. Hence the function W (x)
monotonically increases for all x ≤ ξ + 0, and W (x) ≤ W (ξ + 0) = 0. The case,
when x ∈ [ξ + 0, ℓ] can be considered similarly and in this case we have

K(x, ξ + 0)
ℓ∫
0

K(x, s)d[F1(s)]

≤ K(ξ + 0, ξ + 0)
ℓ∫
0

K(ξ + 0, s)d[F1(s)]

.

�
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