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number of papers of Kornev, Loi, Obukhovskii, Zecca and Yao [15]- [24], [31] con-
cerned with extension of the notion of guiding functions; the work of Loi [30] for
the method of guiding functions in infinite dimensional Hilbert spaces; the papers
of Kryszewski [28], Kryszewski and Gabor [10]; Loi, Obukhovskii and their coau-
thors [34]- [36], Kornev and Liou [25] for the application of the method of guiding
functions to bifurcation problems. The backgrounds and applications of the method
of guiding functions in nonlinear analysis can be found in the recent monograph [33].

Recently, Andres and Górniewicz [1] introduced the random topological degree
and developed the method of random guiding functions for the study of random
periodic solutions of random differential inclusions in finite dimensional spaces. In
the present paper, based on the approach given in [1,31] we present the notion of a
random coincidence degree, the notions of smooth and nonsmooth random gener-
alized integral guiding functions and use them to prove some existence theorems of
random periodic solutions to problem (1.1).

The paper is organized in the following way. In the next section we recall some
notions from theory of linear Fredholm operators, multivalued analysis and theory
of random coincidence degree. The notions of random generalized integral guiding
functions and of random nonsmooth generalized integral guiding functions are pre-
sented in Section 3 and 4, respectively. The main results are Theorems 3.6, 4.4 and
4.7.

2. Preliminaries and notation

2.1. Fredholm operators. Let X,Y be Banach spaces. At first, let us recall some
notions from the theory of linear Fredholm operators (see, e.g., [11]).

A linear bounded operator L : domL ⊆ X → Y is said to be a linear Fredholm
operator of index zero if

(i) ImL is a closed subset of Y ;
(ii) The spaces Ker L and Coker L are finite-dimensional and

dimKer L = dimCoker L.

For every linear Fredholm operator of zero index L : domL ⊆ X → Y there
exist projections PL : X → X and QL : Y → Y such that ImPL = KerL and
KerQL = ImL. If we define the operator

LPL
: domL ∩KerPL → ImL

as the restriction of L on domL ∩ Ker PL, then LPL
is a linear isomorphism and

we can define the operator KPL
: ImL → domL as KPL

= L−1
PL

. Now let CokerL =

Y/ImL; ΠL : Y → CokerL be a canonical operator projection

ΠL(z) = z + ImL

and ΛL : CokerL → KerL be a linear continuous isomorphism. Then the equation

Lx = y, y ∈ Y

is equivalent to the following one:

x = PLx+ (ΛLΠL +KL)y,
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where KL : Y → X is defined as

KL = KPL
(i−QL).

2.2. Multimaps and random coincidence degree. We describe now some no-
tions of the theory of multivalued maps that will be used in the sequel.

Let X,Y be metric spaces. Denote

P (Y ) = {M ⊂ Y : M ̸= ∅},
C(Y ) = {M ∈ P (Y ) : M is closed},
K(Y ) = {M ∈ P (Y ) : M is compact}.

Definition 2.1 (see, e.g., [5,13,14]). A multivalued map (multimap) F : X → P (Y )
is said to be:

(i) upper semicontinuous (u.s.c) if F−1(V ) = {y ∈ X : F(y) ∩ W ̸= ∅} is a
closed subset of Y for every closed set W ⊂ Y ;

(ii) lower semicontinuous (l.s.c) if F−1(V ) = {y ∈ X : F(y)∩V ̸= ∅} is an open
subset of Y for every open set V ⊂ Y ;

(iii) continuous if it is both u.s.c. and l.s.c.;
(iv) closed if its graph ΓF = {(y, z) : z ∈ F(y)} is a closed subset of X × Y ;

(v) compact if the set F(X) is compact in Y ;
(vi) completely u.s.c. if F is u.s.c. and the set F(U) is relatively compact in Y

for each bounded set U ⊂ X;

Definition 2.2 (see [1]). Multimap F : Ω×X → C(Y ) is called a random multiop-
erator if it is product-measurable (see, e.g., [6]), i.e. measurable w.r.t. Σ ⊗ B(X),
where Σ ⊗ B(X) is the smallest σ-algebra on Ω × X which contains all the sets
A × B, where A ∈ Σ and B ∈ B(X) and B(X) denotes the Borel σ-algebra on X.
If, moreover, F(ω, ·) : X → C(Y ) is u.s.c. for all ω ∈ Ω, then F is called a random
u-multioperator.

Definition 2.3 (see [1]). Let A ⊂ Y be a closed subset and F : Ω × A → P (Y ) a
random multioperator. A random fixed point ξ of F is a measurable map ξ : Ω → A
such that

ξ(ω) ∈ F(ω, ξ(ω)), ∀ω ∈ Ω.

Theorem 2.4 (see [1]). Let Y be a separable Banach space, F : Ω × Y → C(Y ) a
random multioperator. If for each ω ∈ Ω the set

FixFω := {x ∈ Y : x ∈ F(ω, x)}

of fixed points of Fω = F(ω, ·) is nonempty and closed then F has a random fixed
point.

Definition 2.5. A multimap F : Ω×X → K(Y ) is said to be:

a) a random compact u-multioperator if it is a random u-multioperator and for
each ω ∈ Ω the multimap F(ω, ·) : X → K(Y ) is compact;

b) a random completely u-multioperator if it is a random u-multioperator and
for each ω ∈ Ω the multimap F(ω, ·) : X → K(Y ) is completely u.s.c.
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Now, let Y be a separable Banach space, Kv(Y ) denote a collection of all
nonempty compact convex subsets of Y , U ⊂ Y an open bounded subset and
F : Ω × U → Kv(Y ) a random compact u-multioperator such that x /∈ F(ω, x)
for all x ∈ ∂U and for all ω ∈ Ω, where ∂U denotes the boundary of U . Then
for each ω ∈ Ω the topological degree of the corresponding multivalued vector field
deg

(
i−F(ω, ·), U

)
is well defined (see, e.g., [2,5,13,14,28] . The random topological

degree of i−F on U is defined as following (see [1]):

D(i−F , U) :=
{
deg

(
i−F(ω, ·), U

)
| ω ∈ Ω

}
.

By D(i−F , U) ̸= 0 we mean that deg
(
i−F(ω, ·), U

)
̸= 0 for all ω ∈ Ω.

Theorem 2.6 (see [1]). If D(i−F , U) ̸= 0, then F has a random fixed point in U ,
i.e., there exists a measurable function ξ : Ω → U such that ξ(ω) ∈ F(ω, ξ(ω)) for
all ω ∈ Ω.

LetX,Y be a separable Banach spaces, Cv(Y ) denote a collection of all nonempty
closed convex subsets of Y , U ⊂ X an open bounded subset, L : domL ⊆ X →
Y a linear zero index Fredholm operator and F : Ω × U → Cv(Y ) a random
multioperator such that:

(i) Lx /∈ F(ω, x) for all x ∈ ∂U ∩ domL and ω ∈ Ω;
(ii) (ΛLΠL +KL) ◦ F(ω, x) is a random compact u-multioperator.

Then for each ω ∈ Ω the coincidence degree of the pair (L,F(ω, ·)) is defined as
(see, e.g., [37], [39])

deg(L,F(ω, ·), U) := deg(Φ(ω, ·), U),

where

Φ(ω, x) = PLx+ (ΛLΠL +KL) ◦ F(ω, x).

The random coincidence degree of the pair (L,F) is defined as

Deg (L,F , U) := {deg(L,F(ω, ·), U) | ω ∈ Ω}.

We say that Deg (L,F , U) ̸= 0 provided Deg (L,F(ω, ·), U) ̸= 0 for all ω ∈ Ω.
From the definition the next existence result easily follows.

Theorem 2.7. If Deg (L,F , U) ̸= 0, then there exists a random coincidence point
in U , i.e., there exists a measurable function ξ : Ω → U ∩ domL such that Lξ(ω) ∈
F(ω, ξ(ω)) for all ω ∈ Ω.

2.3. Notation. For simplicity, we will use the same notation | · | [
⟨
·, ·

⟩
] to denote

the norm [resp., the inner product] in finite-dimensional spaces. Let I be a closed
subset R endowed with the Lebesgue measure. By C(I,Rn) [Lp(I,Rn) (p ≥ 1)] we
denote the spaces of all continuous [respectively, p−summable] functions u : I → Rn

with usual norms:

∥u∥C = max
t∈I

|u(t)| and ∥u∥p =
(∫ T

0
|u(t)|pdt

) 1
p

.
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Consider the space of all absolutely continuous functions u : I → Rn whose deriva-
tives belong to Lp(I,Rn). It is known (see, e.g., [3]) that this space can be identified
with the Sobolev space W 1,p(I,Rn) with the norm

∥u∥W =
(
∥u∥pp + ∥u′∥pp

) 1
p
.

By W 1,p
T (I,Rn) we denote the space of all functions x ∈ W 1,p(I,Rn) satisfying

the boundary condition of periodicity x(0) = x(T ). Recall that (see, e.g., [3]) the
embedding W 1,2(I,Rn) ↪→ C(I,Rn) is compact. The symbols BC(0, r) [BRn(0, r)]
denote the closed ball of radius r centered at 0 in the space C(I,Rn) [respectively,
Rn].

3. Random smooth generalized integral guiding functions

Now, let us consider problem (1.1). Assume that the following hypotheses hold
true.

(F1) F : Ω× I × Rn → Kv(Rn) is a random u-multioperator;
(F2) there exists c > 0 such that for every ω ∈ Ω:

∥F (ω, t, y)∥ := sup{|z| : z ∈ F (ω, t, y)} ≤ c(1 + |y|), ∀y ∈ Rn

for a.e. t ∈ I.

By a random solution of (1.1) we mean a function ξ : Ω× I → Rn such that

1) the map ω ∈ Ω → ξ(ω, ·) ∈ C(I,Rn) is measurable:
2) for each ω ∈ Ω the function ξ(ω, ·) is in W 1,2(I,Rn) and satisfies{

ξ′(ω, t) ∈ F
(
ω, t, ξ(ω, t)

)
,

ξ(ω, 0) = ξ(ω, T ),

for a.e. t ∈ I.

From (F1)− (F2) it follows that the superposition multioperator

PF : Ω× C(I,Rn) → P (L2(I,Rn)),

PF (ω, x) = {f ∈ L2(I,Rn) : f(s) ∈ F (ω, s, x(s)), for a.e. s ∈ I},

is well defined. Moreover, for each ω ∈ Ω the multimap PF (ω, ·) : C(I,Rn) →
P (L2(I,Rn)) is closed (see, e.g., [2, 5, 13,14]).

Definition 3.1 (see [1, Definition 5.3]). A map V : Ω×Rn → R is called a random
potential if the following two conditions are satisfied:

(i) V (·, x) : Ω → R is measurable for every x ∈ Rn;
(ii) V (ω, ·) : Rn → R is a C1-map for every ω ∈ Ω.

Definition 3.2 (see [1, Definition 5.4]). A random potential V is called a random
direct potential if there exists R0 > 0 such that

∇V (ω, z) =

(
∂V (ω, z)

∂z1
, · · · , ∂V (ω, z)

∂zn

)
̸= 0

for all (ω, z) ∈ Ω× Rn : |z| ≥ R0.
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From the above definition it follows that for a fixed ω ∈ Ω the topological degree

deg
(
∇V (ω, ·), BRn(0, R)

)
is well-defined for all R ≥ R0 and it is nothing but deg

(
∇V (ω, ·), BRn(0, R0)

)
.

By a random index ind V of the random direct potential V we mean the random
topological degree D

(
∇V,BRn(0, R0)

)
.

Definition 3.3. A random potential V : Ω×Rn → Rn is said to be a random strict
integral guiding function for problem (1.1) if there exists N > 0 such that for all
ω ∈ Ω from x ∈ C(I,Rn) with ∥x∥2 ≥ N it follows that

(3.1)

∫ T

0

⟨
∇V (ω, x(s)), f(s)

⟩
dt > 0 ∀f ∈ PF (ω, x).

It is easy to verify the following assertion.

Lemma 3.4. If V : Ω × Rn → Rn is a random strict integral guiding function for
problem (1.1), then it is a random direct potential, and hence there exists its random
index indV .

Definition 3.5. A random direct potential V : Ω×Rn → Rn is said to be a random
generalized integral guiding function for problem (1.1) if there exists N > 0 such
that for all ω ∈ Ω from x ∈ C(I,Rn) with ∥x∥2 ≥ N it follows that

(3.2)

∫ T

0

⟨
∇V (ω, x(s)), f(s)

⟩
dt ≥ 0 for some f ∈ PF (ω, x).

Now we are in position to prove the main result of this section.

Theorem 3.6. Let conditions (F1)−(F2) hold. If there exists a random generalized
integral guiding function V for problem (1.1) such that indV ̸= 0, then problem (1.1)
has a random solution.

Proof. Step 1. Let us consider the case of the random strict integral guiding
function for problem (1.1). Define the operator L : W 1,2

T (I,Rn) → L2(I,Rn), Lx =
x′. It is well known (see, e.g., [11]) that L is a linear Fredholm operator of index
zero and

Ker L ∼= Rn ∼= Coker L.

The projection
ΠL : L

2(I,Rn) → Rn,

is defined as

ΠLg =
1

T

T∫
0

g(s) ds

and the homeomorphism ΛL : Rn → Rn is the identity operator. The space L2(I,Rn)
can be represented as

L2(I,Rn) = L0 ⊕ L1,

where L0 = Coker L and L1 = ImL.
The decomposition of an element g ∈ L2(I,Rn) is denoted by

g = g(0) + g(1), g(0) ∈ L0, g
(1) ∈ L1.
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Problem (1.1) can be substituted with the following operator inclusion

Lx ∈ PF (ω, x),

or equivalently, by the fixed point problem

(3.3) x ∈ Γ(ω, x),

where the multimap Γ: Ω× C(I,Rn) ( C(I,Rn) is defined as

Γ(ω, x) = PLx+ (ΠL +KL) ◦ PF (ω, x).

Let us show that Γ is measurable. In fact, it is sufficient to prove that PF is
measurable. To do this, notice that from (F1) it follows that for a given (ω, x) ∈
Ω×C(I,Rn) the multifunction t ∈ I ( F (ω, t, x(t)) is measurable. Now, let us fix
an arbitrary g ∈ L2(I,Rn) and define the function

hg : Ω× C(I,Rn) → [0,∞),

hg(ω, x) = distL2(I,Rn)

(
g,PF (ω, x)

)
.

Applying [8], Proposition 3.4 (b) we conclude that

hg(ω, x) =
(∫ T

0
dist2Rn(g(s), F (ω, s, x(s))ds

)1/2
.

From the Fubini theorem it follows that the map hg is measurable and hence (see,
e.g., [6], Ch.III or [5], Theorem 1.5.6) the multimap PF is measurable.

Now, for every ω ∈ Ω let us prove that Γ(ω, ·) : C(I,Rn) ( C(I,Rn) is a
completely u.s.c. multimap with compact, convex values. Indeed, from the fact
that the operator ΠL + KL is linear and continuous it follows that the multimap
(ΠL +KL) ◦PF (ω, ·) is closed (see, e.g., Theorem 1.5.30 [5] or Corollary 5.1.2 [14]).
Further, from (F2) it follows that for every bounded subset U ⊂ C(I,Rn) the set

(ΠL + KL) ◦ PF (ω,U) is bounded in W 1,2
T (I,Rn), and by the Sobolev embedding

theorem (see, e.g., [3]) it is a relatively compact subset of C(I,Rn). Therefore, the
multimap (ΠL + KL) ◦ PF (ω, ·) is u.s.c. and now the assertion follows from the
fact that PL is continuous and has a finite-dimensional range. So, Γ is a random
completely u-multioperator.

Now our aim is to evaluate the coincidence degree of the pair (L,Γ) on a ball of
a sufficiently large radius. Fix ω ∈ Ω and assume that xω ∈ C(I,Rn) is a solution
to the inclusion (3.3). Then there exist fω ∈ PF (ω, xω) such that{

x′ω(t) = fω(t), for a.e. t ∈ I,

xω(0) = xω(T ).

Therefore,∫ T

0

⟨
∇V (ω, xω(t)), fω(t)

⟩
dt =

∫ T

0

⟨
∇V (ω, xω(t)), x

′
ω(t)

⟩
dt = 0.

Consequently, ∥xω∥2 < N . From (F2) it follows that there exists M > 0 such that
∥x′ω∥2 < M . So, we can choose R1 > 0 which does not depend on ω such that
∥xω∥C < R1.
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Let R = R1 + 1. Then for any ω ∈ Ω inclusion (3.3) has only trivial solutions on
BC(0, R). Therefore, the degree deg(L,Γ(ω, ·), BC(0, R)) is well-defined for every
ω ∈ Ω. To evaluate this characteristic, we consider the following family of multimaps

Ψω : BC(0, R)× [0, 1] → Kv(C(I,Rn)),

Ψω(x, η) = PLx+ (ΠL +KL) ◦ φ
(
PF (ω, x), η

)
,

where the map φ : L2(I,Rn)× [0, 1] → L2(I,Rn) is defined as

(3.4) φ(g, η) = g(0) + ηg(1),

when g(0) ∈ L0, g
(1) ∈ L1 and g = g(0) + g(1).

It is easy to verify that Ψ is a compact u.s.c. multimap. Let us show that

x /∈ Ψω(x, η)

for all (x, η) ∈ ∂BC(0, R) × [0, 1]. To the contrary, assume that there is (x∗, η∗) ∈
∂BC(0, R)× [0, 1] such that x∗ ∈ Ψω(x∗, η∗). Then there exist f∗ ∈ PF (ω, x∗) such
that {

x′∗(t) = φ
(
f∗, η∗

)
(t) for a.e. t ∈ I,

x∗(0) = x∗(T ),

or equivalently, {
x′∗ = η∗f

(1)
∗ ,

0 = f
(0)
∗ ,

where f
(0)
∗ + f

(1)
∗ = f∗, f

(0)
∗ ∈ L0, f

(1)
∗ ∈ L1.

If η∗ ̸= 0, then∫ T

0

⟨
∇V (ω, x∗(t)), f∗(t)

⟩
dt =

1

η∗

∫ T

0

⟨
∇V (ω, x∗(t)), x

′
∗(t)

⟩
dt = 0.

Therefore, ∥x∗∥2 < N , and hence ∥x∗∥C ≤ R1 < R, giving a contradiction.
If η∗ = 0, then x∗ ∈ Ker L, i.e., x∗(t) ≡ z ∈ Rn for all t ∈ I. Since ∥z∥2 > N we

have

(3.5)

∫ T

0

⟨
∇V (ω, z), γ(t)

⟩
dt = T

⟨
∇V (ω, z),ΠLγ

⟩
> 0,

for all γ ∈ PF (ω, z).
In particular,

0 <
⟨
∇V (ω, z),ΠLf∗

⟩
=

⟨
∇V (ω, z),ΠLf

(0)
∗

⟩
= 0,

that is the contradiction.
Thus, Ψω is a homotopy connecting the multimaps Ψω(·, 1) = Γ(ω, ·) and

Ψω(·, 0) = PL +ΠL ◦ PF (ω, ·).
By virtue of the homotopy invariance property of the topological degree we have

deg(i− Γ(ω, ·), BC(0, R)) = deg(i− PL −ΠLPF (ω, ·), BC(0, R)).

Notice that the multimap PL + ΠLPF (ω, ·) takes values in Rn, and hence, by the
Map Restriction Property (see, e.g., [5, 14]):

deg(i− PL −ΠLPF (ω, ·), BC(0, R)) = deg(i− PL −ΠLPF (ω, ·), BRn(0, R)).
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In the space Rn the vector multifield i− PL −ΠLPF (ω, ·) has the form:

i− PL −ΠLPF (ω, ·) = −ΠLPF (ω, ·).

From (3.5) it easily follows that −ΠLPF (ω, ·) and −∇V (ω, ·) are homotopic on
∂BRn(0, R). So we obtain

deg(i− Γ(ω, ·), BC(0, R)) = deg(−ΠLPF (ω, ·), BRn(0, R)) =

= (−1)ndeg
(
∇V (ω, ·), BRn(0, R)

)
̸= 0.

Therefore, the random coincidence degree Deg (L,Γ, BC(0, R)) ̸= 0. Applying The-
orem 2.7 we obtain that problem (1.1) has a random solution.

Step 2. Now we consider the case of the random generalized integral guiding
function for problem (1.1).

Consider a multimap B : C(I,Rn) → P (L2(I,Rn)) defined as

B(x) =

{
φ : |φ(t)| ≤ c(1 + ∥xt∥) and γ(x)

∫ T

0

⟨
∇V

(
x(s)

)
, φ(s)

⟩
ds ≥ 0

}
,

for a.e. t ∈ [0, T ], c is a constant from the condition (F2),

γ(x) =

{
0, if ∥x∥2 ≤ N,
1, if ∥x∥2 > N.

It is clear that B is a closed multimap.
Let us consider a multimap PB

F : Ω× C(I,Rn) → P (L2(I,Rn)) given as

PB
F (ω, x) = PF (ω, x) ∩B(x).

Obviously, for each ω ∈ Ω the multimap PB
F (ω, ·) : C(I,Rn) → P (L2(I,Rn)) is

closed and the condition (3.2) is satisfied for all f ∈ PB
F (ω, x).

For the random direct potential V we define a map YV : Ω×Rn → Rn as follows

YV (ω, x) =

{
∇V (ω, x), if ∥∇V (ω, x)∥ ≤ 1,
∇V (ω,x)

∥∇V (ω,x)∥ , if ∥∇V (ω, x)∥ > 1.

It is easy to see that the map Y is continuous.
For any εm > 0 we define a multimap Pm

F : Ω × C(I,Rn) → P (L2(I,Rn)) as
following

Pm
F (ω, x) = PB

F (ω, x) + εmYV (ω, x).

It is clear for each ω ∈ Ω the multimap Pm
F (ω, ·) : C(I,Rn) → P (L2(I,Rn)) is

closed and for each εm > 0 the condition (3.1) is fulfilled for all f ∈ Pm
F (ω, x).

By applying results of Step 1 we can prove for each εm > 0 the solvability of the
following operator inclusion

Lx ∈ Pm
F (ω, x),

or, equivalently, the existence of a fixed point

xm ∈ PLxm + (ΛLΠL +KL) ◦ Pm
F (xm),

from where the existence of a solution for problem (1.1) follows. �
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4. Random nonsmooth generalized integral guiding functions

Firstly, let us recall some notions of non-smooth analysis (see, e.g., [7]). Let
V : Rn → R be a locally Lipschitz functional. For every y0 ∈ Rn and ν ∈ Rn the
generalized directional derivative V 0(y0; ν) of V at the point y0 in the direction ν is
defined as

(4.1)
V 0(y0; ν) = lim

y → y0
t ↓ 0

V (y + tν)− V (y)

t
.

By Proposition 2.1.1 [7], the functional V 0 : Rn ×Rn → R is upper semicontinuous,
i.e., for each sequences (yn, νn) ∈ Rn×Rn, (yn, νn) → (y0, ν0), the following relation
holds:

lim
n→+∞

V 0(yn; νn) ≤ V 0(y0; ν0).

The generalized gradient ∂V (x0) of functional V at y0 ∈ Rn is defined by:

∂V (y0) =
{
y ∈ Rn :

⟨
y, ν

⟩
≤ V 0(y0; ν) for every ν ∈ Rn

}
.

It is well known (see, e.g., [7]) that the multimap ∂V : Rn → P (Rn) is u.s.c. and has
compact convex values. In particular, it means that for every continuous function
x : [0, T ] → Rn the set P∂V (x) of all summable selections of the multifunction
∂V (x(t)) is non-empty.

A locally Lipschitz functional V : Rn → R is called regular, if for every y ∈ Rn

and ν ∈ Rn there exists the directional derivative V ′(y, ν) and V ′(y, ν) = V 0(y, ν).
It is known (see, e.g., [7]) that locally bounded convex functionals are regular.

Lemma 4.1 (see [20]). Let V : Rn → R be a regular functional, x : [0, T ] → Rn an
absolutely continuous function. Then the function V (x(t)) is absolutely continuous
and

V (x(t))− V (x(0)) =

∫ t

0
V 0(x(s), x′(s))ds, t ∈ [0, T ].

Definition 4.2. A map V : Ω×Rn → R is called a random nonsmooth potential if
the following two conditions are satisfied:

(i) V (·, x) : Ω → R is measurable for every x ∈ Rn;
(ii) V (ω, ·) : Rn → R is a locally Lipschitz functional for every ω ∈ Ω.

Definition 4.3. A random nonsmooth potential V : Ω × Rn → R is said to be a
random nonsmooth strict integral guiding function for problem (1.1), if the following
conditions hold:

(i) the function V (ω, ·) is regular for every ω ∈ Ω;
(ii) there exists N > 0 such that for all ω ∈ Ω from x ∈ C(I,Rn) with ∥x∥2 ≥ N ,

it follows that ∫ T

0

⟨
υ(t), f(t)

⟩
dt > 0

for all υ ∈ P∂V (ω, x) and for all f ∈ PF (ω, x), where

P∂V (ω, x) =
{
υ ∈ L2(I,Rn) : υ(t) ∈ ∂V (ω, x(t)) for a.e. t ∈ I

}
.



ON PERIODIC SOLUTIONS OF RANDOM DIFFERENTIAL INCLUSIONS 255

It is easy to verify that if V is the random nonsmooth strict integral guiding func-
tion for (1.1), then for every ω ∈ Ω the topological degree deg

(
∂V (ω, ·), BRn(0, r)

)
of the multivalued vector field is well-defined for all r ≥ N√

T
. Denote ind V =

D
(
∂V,BRn(0, r)

)
.

Analogously to Theorem 3.6 we obtain the following result.

Theorem 4.4. Let conditions (F1) − (F2) hold. If there exists a regular random
nonsmooth strict integral guiding function for problem (1.1) such that ind V ̸= 0,
then problem (1.1) has a random solution.

Definition 4.5. A random nonsmooth potential V : Ω × Rn → R is said to be a
random nonsmooth direct potential if there exists R0 > 0 such that

0 /∈ ∂V (ω, x)

for all (ω, z) ∈ Ω× Rn : |z| ≥ R0.

From the above definition it follows that for a fixed ω ∈ Ω the topological de-
gree deg

(
∂V (ω, ·), BRn(0, R)

)
is well-defined for all R ≥ R0 and it is nothing but

deg
(
∂V (ω, ·), BRn(0, R0)

)
.

Definition 4.6. A random nonsmooth direct potential V : Ω × Rn → R is said to
be a random nonsmooth generalized integral guiding function for problem (1.1), if
except the condition (i) the following estimate holds:

(ii)′ there exists N > 0 such that for all ω ∈ Ω from x ∈ C(I,Rn) with ∥x∥2 ≥ N ,
it follows that ∫ T

0

⟨
υ(t), f(t)

⟩
dt ≥ 0

for all υ ∈ P∂V (ω, x) and for all f ∈ PF (ω, x).

Theorem 4.7. Let conditions (F1) − (F2) hold. If there exists a regular random
nonsmooth generalized integral guiding function for problem (1.1) such that ind V ̸=
0, then problem (1.1) has a random solution.

Proof. For k ∈ N let us consider

Mk = sup
{
∥P∂V (ω, x)∥ : ω ∈ Ω, x ∈ B

n
(k)

}
,

where B
n
(k) denotes the closed ball radius k centered at 0. Following [4], we define

a map η : Rn → R as

η(x) = 1 + (∥x∥ − k)Mk+2 + (k + 1− ∥x∥)Mk+1, k ≤ ∥x∥ ≤ k + 1.

It is clear, that the map η is continuous and the following condition holds

η(x) ≥ max {1, ∥P∂V (ω, x)∥} for all ω ∈ Ω, x ∈ Rn.

A multimap Y : Ω× Rn → Kv(Rn) given as

Y (ω, x) =
∂V (ω, x)

η(x)

is random u-multioperator and satisfies the estimate ∥Y (ω, x)∥ ≤ 1 for all ω ∈
Ω, x ∈ Rn.
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We consider now an auxiliary periodic problem for a random differential inclusion
of the following form

(4.2)

{
x′(ω, t) ∈ FY (ω, t, x(ω, t)) = F (ω, t, x(ω, t)) + εmY (ω, x),

x(ω, 0) = x(ω, T ).

for all ω ∈ Ω.
It easy to see that the function V is a random nonsmooth strict integral guiding

function for problem (4.2). Thus the conditions of the theorem 4.4 are satisfied and
the problem (4.2) has a random solution. It follows that the problem (1.1) has a
random solution. �
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