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for any smooth compact manifold X or wedges

(2.2) X△ × Rq.

The novelties refer to any neighbourhood of the singular subset. In analytic de-
scriptions we pass to open stretched cones

(2.3) X∧ = R+ ×X

in “some” choice of splitting of variables (r, x), r ∈ R+, x ∈ X. Analogously we look
at open stretched wedges

X∧ × Rq

in the splitting of variables (r, x, y), in obvious meaning of notation. In such simple
cases it is easy to imagine the nature of transition maps. For instance, two different
splittings of variables (r, x), (r̃, x̃) belong to the same cone structure if the transition
from (r, x) to (r̃, x̃) is the restriction of a smooth map between the involved closed
cylinders R+ ×X → R+ ×X to R+ ×X. Thus we can introduce an infinite (over-
countable) variety of non-equivalent cone configurations, but each of those opens an
equivalence class of cone structures. Globally we then obtain manifolds with conical
singularities. The idea is even visible for dimX = 0, i.e., for R+ which is regarded
as a specific (open) cone. In a similar manner we can characterize wedge charts,
with a natural notion of equivalence of splittings of variables (r, x, y) and (r̃, x̃, ỹ),
respectively, which gives us manifolds with edges. This allows us to continue the
construction, and by repeatedly (k times) carrying out the process we reach

Mk,

the category of spaces of singularity order k.

Let us now look at a few examples, namely M ∈ M1 which can be a “global”
manifold with conical singularities or with edges. Replacing the former X by M we
obtain in an obvious manner spaces in M2, etc. Even for this case the respective
spaces may be “non-elementary”. For instance, if X1, X2 ∈M0 are compact smooth
manifolds, the spaces X△

1 , X
△
2 belong to M1 and we have

X△
1 ×X△

2 ∈M2.

It is not easy to imagine the corner geometry of this space, though this belongs to
the harmless examples.

3. The analysis induced by non-smooth geometries

In cases of non-smooth geometries we follow a similar scheme as in the smooth
case where there is only one kind of charts which map a coordinate neighbourhood
V ⊂M into an Euclidean space Rn for n = dimM.

Already on a manifold M with smooth boundary ∂M we have the former situa-
tion over M \ ∂M, but close to ∂M the charts map to half-spaces Rn

+ = {x =
(x1, . . . , xn) ∈ Rn : xn ≥ 0}. In this way such spaces M belong to M1.

Concerning M ∈Mk we have k+1 classes of charts and every p ∈M is contained in
one of them. For any p we can determine a minimal l, 0 ≤ l ≤ k, and interpret the
above neighbourhood V (p) as an element of Ml. Thus appart from global effects in
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PDE-problems we carry out local (singular) operations. This discussion is aimed at
understanding the analysis on singular spaces, and we intend to explain the nature
of substitutes of the Fourier transform of standard distribution spaces and adequate
analogues of pseudo-differential operators who will be the adequate condidates of
solving equations, i.e., of constructing parametrices to elliptic PDE.

4. Example: Reduction of boundary conditions to the boundary

In order to illustrate important cases where singularities of a space are realized
as interfaces and where the geometry near a boundary induces in a natural manner
pseudo-differential operators we outline some ideas around the principle of reducing
a boundary condition to the boundary. We begin with the case of the Dirichlet prob-
lem for the standard Laplacian ∆ in a smooth bounded domain Ω in Rn, regarded
as a continuous operator

(4.1) A0 :=

(
∆
T0

)
: C∞(Ω)→

C∞(Ω)
⊕

C∞(∂Ω)
.

For simplicity for the moment we realize the operator between spaces of smooth
functions, where

T0u := u|∂Ω
is the restriction operator which corresponds to Dirichlet conditions for u. We em-
ploy the well-known fact that A0 determines an isomorphism, and the inverse will
be written as a row matrix

(4.2) P0 :=
(
P0 K0

)
:
C∞(Ω)
⊕

C∞(∂Ω)
→ C∞(Ω).

The operator P0 is of the form P0 = E + G0 for a fundamental solution E of the
Laplacian and a so-called Green operator G0. The operator P0 is also called Green’s
function of the Dirichlet problem, and K0 is also called the double layer potential.
The identity

(4.3) A0P0 :=
(
∆P0 ∆K0

T0P0 T0K0

)
=

(
1 0
0 1

)
allows us reduce the Neumann problem

(4.4) A1 :=

(
∆
T1

)
: C∞(Ω)→

C∞(Ω)
⊕

C∞(∂Ω)

to the boundary by means of A0, according to

(4.5) A1P0 :=
(
∆P0 ∆K0

T1P0 T1K0

)
=

(
1 0

T1P0 T1K0

)
for T1u = ∂

∂νu|∂Ω with ∂
∂ν being the derivative in inner normal direction. The opera-

tor R := T1K0 is a first order classical pseudo-differential operator on the boundary
and just represents the reduction of the Neumann condition T1 to the boundary.
This process has been analyzed and interpreted in the first decades of developing the



228 D.-C. CHANG, M. HEDAYAT MAHMOUDI, AND B.-W. SCHULZE

pseudo-differential analysis which is a natural way to generate pseudo-differential
operators purely in terms of standard techniques using differential operators, see
Hörmanders work [15]. Originally Hörmander applied some elementary computa-
tions. Here we tacitly took material from Boutet-de Monvel’s calculus [2], which
was developed to formulating an operator algebra for boundary value problems with
compositions as soon as rows and columns fit together in the middle. The original
purpose of [2] was also to prove an analogue of the Atiyah-Singer-Index Theorem
on manifolds with boundary.

Other examples of reducing elliptic boundary conditions to the boundary are ex-
plicitly elaborated in the monogroph [11] jointly with Harutynyan. In this case the
resulting reduced operators R are Douglis-Nirenberg elliptic and may have a non-
vanishing Fredholm index as operators in Sobolev spaces. Then, relation (4.5) gives
an index identity, namely,

(4.6) indA1 − indA0 = indR

(in this case the summands all vanish), the meaning of (4.6) is the well-known
Agranovich-Dynin formula and compares the indices of two elliptic boundary value
problems for the same elliptic operator. Before we come to further questions which
also concern interface problems we draw some conclusions in the simplest case of
reduction to the boundary which we sketched so far. Setting for the moment

N := T1P0

it is instructive to see that relation (4.5) which takes the form

(4.7) A1P0 =
(
1 0
N R

)
allows us to express a parametrix

(4.8) P1 :=
(
P1 K1

)
for the operator A1. In fact, we have

(4.9) (A1P0)(−1) ∼ A0P1 ∼
(

1 0

−R(−1)N R(−1)

)
with upper (−1) indicating a parametrix of the respective operator. Here we employ
the fact that parametrices exist in Boutet de Monvel’s calculus and “∼” means
equivalence modulo smoothing operators in that calculus. Thus, using notation in
(4.2) and freely composing operators in Boutet de Monvel’s set-up we can write

(4.10) P1 ∼ P0
(

1 0

−R(−1)N R(−1)

)
∼

(
P0 −K0R

(−1)N K0R
(−1)

)
i.e., it follows that

(4.11) P1 =
(
P0 +G1 K1

)
for

G1 = −K0R
(−1)N, K1 = K0R

(−1),

i.e., P1 is expressed in terms of A0 and R(−1).
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Remark 4.1. The operators G1 are just of Green type while K0,K1 are operators
of potential type in Boutet de Monvel’s calculus.

In a next step we pass to interpreting the Zaremba problem in connection with
singular interface problems. Here we partly refer to joint work with Habal [4].

The Zaremba problem in its simplest form is formulated for the Laplacian ∆ in a
smooth domain where the boundary ∂Ω is subdivided into submanifolds Y− and
Y+ with common boundary Z = Y− ∩ Y+, first assumed to be smooth and of codi-
mension 1 on ∂Ω, such that ∂Ω = Y− ∪ Y+, and where we pose Dirichlet conditions
on intY− and Neumann conditions on intY+. In other words the Zaremba problem
represents a boundary value problem where the conditions have a jump along the
interface Z. As is well known this situation is much more difficult than the above
mentioned boundary value problems. The jump of the conditions causes that the
Fredholm property of associated operators is violated, and a careful analysis shows
that similarly as boundary conditions we have to impose extra interface conditions
along Z of trace and potential type. Thus, in contrast to Boutet de Monvel’s cal-
culus with its 2× 2 block matrix operators we now have 3× 3 matrices with trace,
potential, Green operators mapping data over Z to distributions on Y−, Y+, Z as
well as in converse direction. In addition we see that the transmission property is
violated across Z on the boundary. In models of physics the situation also makes
sense for parabolic equations with jumping conditions along interfaces on a spatial-
time cylinder. In any case it is interesting to admit also interfaces Z which have a
non-smooth geometry, for instance conical points or edges. However, if Z itself is
smooth then, if we return to the Zaremba problem in above-mentioned form, the
reduction of Zaremba boundary conditions, represented by T0|intY− , T1|intY+ to the
boundary yields a pair of operators (1, R+) where 1 is the identity operator on the
Dirichlet side, R+ the restriction to intY+ of the above operator R to the Neumann
side. There is a process, elaborated in joint work with Chang and Habal, cf. [4], to
perform the reduction back, i.e., to reproduce the original Zaremba problem from
the operator R+ on the Neumann side, and also to associate a Fredholm 3×3 block
matrix operator of the transmission algebra in one-to-one correspondence with a
2× 2 block matrix operator on Y+ with R+ in the upper left corner together with
Green, potential and trace operators, as is known from the edge pseudo-differential
algebra with Y+ being treated as a manifold with edge Z, though in this case with a
one-dimensional model cone R+, as in boundary value problems. Nevertheless the
operator R+ violates the transmission property in a spectacular way, and in order
to treat the problem we have to “switch on” the tools of the pseudo-differential
edge calculus, cf. [9], [26], [27] or [29]. In this way, we illustrated that a quite obvi-
ous physical situation with discontinuous boundary conditions gives rise to specific
problems of singular analysis, here, of edge problems in “simplest” form. Further
singular problems are induced in other models of physics or applied sciences.

5. Boundary conditions as a source of singular operators

We now specify the observations from the preceding Section on how non-trivial
interface configurations are induced by boundary conditions. First of all the bound-
ary may have singularities anyway. Then, e.g., in a cube or some other piecewise
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smooth domain the non-smooth geometry on the boundary generates replacing the
standard local coordinates by local models with the corresponding stratification,
and then we need to activate the “technical” details of the singular analysis from
the very beginning. However, if the boundary is smooth, the interfaces Z appearing,
say, in jumping boundary conditions such as the Zaremba problem can be of a very
“non-standard” behaviour. The interface Z in any case may correspond to various
physical contents, e.g., in crack theory where jumping boundary conditions along Z
correspond to singular stress-displacement factors of cracks in media see, e.g., [19]
or examples in the monographs [10], [11], [16], [28], or other detailed descriptions
in expositions devoted to applications for instance [10], [16], [19]. Simplest models
of cracks can be described by one-dimensional intervals, when in local represen-
tation of the above-mentioned boundary, say, by Rn−1, the crack is an interval
−1 ≤ x1 ≤ 1, with end points x1 = −1, x1 = 1, in the (x1, x2) hyperplane. Then
we can interprete those end points as different conical singularities, and the open
interval −1 < x1 < 1 as an edge of codimension n − 2. Every configurationof this
kind, also when we admit other codimensions of the crack, or when we admit once
again singularities along the crack, gives rise to a singular problem, i.e., the task
of the mathematical approach is to create structures which are flexible enough to
reflect the corresponding situation of the concrete model. This is what we mean by
the influence of singular interfaces to the mathematical background.

Before we come to the structure of new inventions of the singular analysis which are
considered in the following Sections, we note that other models of immediate practi-
cal interest, namely from many-particle systems in classical mechanics or quantum
mechanics, see, e.g., papers [7] and [8] can also be seen from the point of view of
singular analysis.

6. Singular spaces and degenerate operators

It has been a real challenge in the development of mathematical tools to describe
the large variety of singular spaces by a transparent framework. The same is true
of the variety of operators. Those are admitted to be of arbitrary order, since
the calculus requires compositions and properties of solutions are identified with
corresponding structures of parametrices, in the elliptic case. Then, in elaborating
step by step the concept, we are aware of more and more specific structures which
may be quite unexpected at first glance. Here in the present exposition we focus
on interface aspects, i.e., singularities which are regarded as interfaces in situations
coming from mixed or transmission problems but with singularities. Therefore, it
seems to be the best way to once again indicate the formulation of singular spaces
of the category Mk for k ≥ 1. A topological space M belongs to Mk, if M contains
a “singular stratum” sk(M) such that

(6.1) M \ sk(M) ∈Mk−1

has the structure of a (locally trivial) B△
k−1-bundle over sk(M) for some Bk−1 ∈

Mk−1 (assumed to be already defined) cf. also [3].

Analogously as the above-mentioned regularity of transition maps we have the no-
tion of isomorphy of objects Bk−1 in Mk−1. This gives rise to isomorphy between
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objects R×Bk−1, since the latter space again belongs to Mk−1, and then transitions

R+ ×Bk−1 → R+ ×Bk

are required to be restrictions of isomorphisms R×Bk−1 → R×Bk−1 to R+×Bk−1.
This process is compatible with quotient spaces in the definition of cones B△

k−1 =

(R+×Bk−1)/({0}×Bk−1) which gives the bundle structure over sk−1(M) a precise
meaning. Now (6.1) allows us to define an sk−1(M) := sk−1(M \ sk(M)), and we
may start the process all over again. This process is finite and we get an sequence
of strata

(6.2) s(M) := (s0(M), s1(M), . . . , sk(M))

of strictly decreasing dimension where all components belong to M0. Examples
are straight cones with singular base manifolds or wedges and, in particular we
have a precise structure of singular interfaces, e.g., embedded in boundaries. Other
examples can be easily derived, e.g., if an M ∈ Mk is embedded in Rn for some
n ∈ N, then Rn \M is singular in our category as well.

Another important point is to specify the nature of differential operators A and
their principal symbolic hierarchies

(6.3) σ(A) := (σ0(A), σ1(A), . . . , σk(A))

associated with (6.2). The components of σ(A) are associated with those of the
stratification s(M) of the respective singular space M. The simplest way of orga-
nizing operators of order µ ∈ N belonging to the calculus over M is to look at edge-
degenerate differential operators close to sk(M) ∋ y, locally y = (y1, . . . , yqk) ∈ Rqk ,
which are of the form

(6.4) A = r−µ
∑

j+|α|≤µ

ajα(r, y)(−r∂r)j(rDy)
α

for families ajα(r, y) ∈ C∞(R+×Rqk ,Diff
µ−(j+|α|)
deg (Bk−1)) where degerate differential

operators are indicated by subscript deg, which are assumed to be introduced in
the inductive step for Bk−1 ∈Mk−1 before. We assume here qk > 0. Then

(6.5) σk(A)(y, η) = r−µ
∑

j+|α|≤µ

ajα(0, y)(−r∂r)j(rη)α

is an operator-valued symbol for (y, η) ∈ T ∗sk(M) \ 0, acting between Kegel spaces
Ks,γ(B∧

k−1) → Ks−µ,γ−µ(B∧
k−1) for weights γ = (γ1, . . . , γk) ∈ Rk. It can be easily

checked that the spaces Ks,γ(B∧
k−1) admit the action of a group κ = {κδ}δ∈R+ of

isomorphisms

(κδu)(r, x) := δ(bk−1+1)/2u(δr, x), δ ∈ R+,

where bk−1 = dimBk−1 and that

σk(A)(y, δη) = δµκ−1
δ σk(A)(y, η)κ

−1
δ .

This is an operator-valued substitute of homogeneity of functions in the standard
sense. In the case qk = 0 which corresponds to a corner singularity sk(M) we have
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also a symbolic structure attached to the corner, in this case called the principal
conormal symbol of A which is a family of operators

σM (A)(v) : Hs(Bk−1)→ Hs−µ,γ′−µ(Bk−1)

for weights γ′ = (γ1, . . . , γk−1) and v ∈ Γ bk−1
2

−γk
. Then applying the procedure in

an iterative manner yields the full principal symbolic hierarchy where σ0(A) has the
meaning of the standard homogeneous principal symbol of A over s0(M).

7. Edge- and corner quantizations

One of the supporting principles in analysis on singular space is to follow a step
by step procedure from lower to higher orders of singularities. Spaces B with conical
or edge singularities belong to M1 while smooth manifolds X are elements of M0.
The quantizations start with the class

(7.1) Lµ
cl(X;Rd

ζ)

of classical pseudo-differential operators of order µ ∈ R, on compact X ∈ M0

depending on parameters ζ, and their dimension depends on further iterations.
The space (7.1) is Fréchet in a natural way, and we have the space A(C, Lµ

cl(X;Rd
ζ))

of holomorphic functions in C in the complex variable v with values in this space.
This gives rise to the first essential quantization step, namely, we pass to the space

(7.2) Mµ
Ov

(X;Rd
ζ)

of all those holomorphic functions h1(v, ζ) ∈ A(C, Lµ
cl(X;Rd

ζ)) such that h1(β +

iρ, ζ) ∈ Lµ
cl(X; Γβ × Rd

ζ) for every real β, uniformly in compact β-intervals.
Here

Γβ := {v ∈ C : Re v = β}
is a weight line, motivated by the Mellin transform

Mu(v) =

∫ ∞

0
rv−1u(r)dr,

first applied to compactly supported functions on R+, later also applied for vector-
or operator- valued functions. We have in this context also weighted Mellin pseudo-
differential operators, operating along the variable r ∈ R+, interpreted as a distance
variable to the next higher singularities, e.g., when X is the base of the cone X△,
and we have in mind a B ∈ M1 which is locally close to its edge to Y = s1(B) of
dimension q1 modelled on

(7.3) X△ × Rq

in the splitting of variables (r, x, y) which are variables in the open stretched wedge
X∧ × Rq for X∧ = R+ × X. Weighted Mellin pseudo-differential operators with
parameters have amplitude functions

(7.4) h(r, y, v, η, ζ) := h̃(r, y, v, rη, rζ)

for

(7.5) h̃(r, y, v, η̃, ζ̃) ∈ C∞(R+ × Rq,Mµ
Ov

(X;Rq+d

η̃,ζ̃
))
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and for n = dimX are of the form

(7.6) Op
γ−n/2
Mr

(h)(y, η, ζ)u = M−1
v→rh(r, y, v, η, ζ)Mr′→vu(r

′),

where M stands for the weighted Mellin transform of weight γ ∈ R, which acts as

u(r)→ (Mu)(v)|Γn+1
2 −γ

.

Then the multiplication by f is combined with the point wise action of f when it
is operator-valued, and the weighted inverse of the Mellin transform is defined as

g(v)→
∫
Γn+1

2 −γ

r−vg(v)d̄v

for d̄v = (2πi)−1dv with integration on the weight line Γn+1
2

−γ from Im v = −∞ to

Im v = +∞. Local parameter-dependent amplitude functions along Y in variables
y ∈ Rq are of the form

(7.7) a1(y, η, ζ) = h1(y, η, ζ) + (m1 + g1)(y, η, ζ)

for

h1(y, η, ζ) = r−µ{ω1Op
γ−n/2
M (h)(y, η, ζ)ω′

1},
where ω1, ω

′
1 are cut-off functions in r and m1+g1 represent the asymptotic content

of the edge calculus. We will discuss this contribution later on.

8. The symbolic hierarchies associated with singular strata

Let B ∈M1 be a manifold with edge Y, near Y in local coordinates y ∈ Rq, q > 0,
modelled on

X△ × Rq

for a closed X ∈ M0. In stretched coordinates operators refer to the splitting of
variables (r, x, y) ∈ X∧ × Rq. The space of edge operators

(8.1) Lµ(B, g,Rd
ζ)

with parameters ζ ∈ Rd and weight data g := (γ, γ − µ,Θ) and a weight interval
Θ = (−(θ + 1), 0] is defined as the set of all

(8.2) A(ζ) = H(ζ) + (M +G)(ζ) +Aint(ζ) +G(ζ).

The ingredients of (8.2) will be analyzed below. In any case after the complete
definition we will have

Lµ
cl(B \ Y ;Rd

ζ) ⊂ Lµ(B, g;Rd
ζ)

and hence A(ζ) has a principal symbol

σ0(A(ζ))

of the standard parameter-dependent calculus of pseudo-differential operators over
the smooth manifold B \Y. However, close to Y where the part H(ζ)+ (M +G)(ζ)
is localized, there is contributed a parameter-dependent operator valued principal
edge symbol

σ1(A(·))(y, η, ζ).
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In order to give an idea on its nature we briefly describe symbol spaces of the classes

(8.3) Sµ(Rq
y × Rq+d

η,ζ ;H, H̃) and Sµ
cl(R

q
y × Rq+d

η,ζ ;H, H̃)

which are generalizations of Hörmander’s symbol spaces where subscript “cl” indi-
cates classical symbols. In this notation H is a Hilbert space with group action,
i.e., there is a family κ = {κδ}δ∈R+ of isomorphisms

(8.4) κδ : H → H

such that κδκδ′ = κδδ′ , κ1 = idH , and for every h ∈ H the function δ → κδh belongs
to C(R+,H). Concerning H̃ we make similar assumptions, relative to another κ̃ =
{κ̃δ}δ∈R+ , cf. [26]. The notion also admits Fréchet spaces with group action, or

finite-dimensional spaces CN equipped with κδ = idCN for all δ ∈ R+. The symbolic
estimates of elements a(y, η, ζ) in the Hilbert space case have the form

∥κ̃−1
δ {D

α
yD

β
η,ζa(y, η, ζ)}κδ∥L(H,H̃) ≤ c⟨η, ζ⟩µ−|β|

for all multi-indices α ∈ Nq, β ∈ Nq+d, y ∈ K for compact K b Rq, with constants
c = c(α, β,K). Here ⟨η, ζ⟩ = (1 + |η|2 + |ζ|2)1/2 and “classical” indicates twisted
homogeneity, i.e., symbols have components

a(µ−j)(y, η, ζ) ∈ S(µ−j)(Rq × (Rq+d \ {0});H, H̃)

such that for every N ∈ N

a(y, η, ζ)−
N∑
j=0

χ(η, ζ)a(µ−j)(y, η, ζ) ∈ Sµ−(N+1)(Rq × (Rq+d \ {0}), H, H̃)

for any excision function χ(η, ζ) in covariables and parameters in Rq+d. Twisted
homogeneity of order ν ∈ R defines the space of all

f(ν)(y, η, ζ) ∈ C∞(Rq × (Rq+d \ {0}),L(H, H̃))

such that

f(ν)(y, δη, δζ) = δν κ̃−1
δ f(ν)(y, η, ζ)κδ

for all (η, ζ) ̸= 0, δ ∈ R+. The operator-valued symbols a(y, η, ζ) in (8.3) open
corresponding classes of pseudo-differential operators via Fourier quantization

Opy(a)(ζ)u =

∫∫
ei(y−y′)ηa(y, η, ζ)u(y′)dy′d̄η.

The argument functions belong to vector-valued weighted Sobolev spaces which are
studied in more detail below in Section 9. The summands Aint(ζ) in (8.2) belong to
Lµ
cl(B \ Y ;Rd

ζ) while G(ζ) are specific parameter-dependent smoothing operators.

Those are described in [27].

After having completed explaining the edge operator spaces (8.1) we are in a similar
position as before with (7.1) when we want to carry out the step to the next higher
singularity. As essential ingredient was the space (7.2) on the level of X ∈ M0 as
base space. Now, (8.1) which refers to B ∈M1 allows us to introduce a space

(8.5) Mµ
O(B, gB;Rd

ζ)
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later on involved in holomorphic Mellin symbols for the next higher singular oper-
ators. The space (8.5) consists of all

h2(v2, ζ) ∈ A(Cv2 , L
µ(B, gB;Rd

ζ))

such that

h2(β + iρ2, ζ) ∈ Lµ(B, gB; Γβ × Rd
ζ)

for every real β, uniformly in compact β-intervals. Note that in this process the
dimension d can be determined in a new way and make it depending on B. The
former v ∈ C from this moment on will be called v1 and edge variables/covariables
are changed to y1, η1 ∈ Rq1 , with q1 rather than q. Then the next higher edge
calculus is based on

B△ × Rq2

and, similarly as before we look at the open stretched wedge B∧ × Rq2 splitting
of variables (r2, x2, y2). It is clear now how we can organize analogues of Mellin
symbols and Mellin operators (7.4), (7.5) and (7.6), respectively, and again we can
form amplitude functions (7.7) close to r2 = 0 by a similar process as before. Cut-off
functions ω2 and ω′

2 now refer to the new axial variables r2 and r′2, respectively. We
do not repeat all elements of this approach, again, but it is demonstrated in which
way we reach higher operator spaces over spaces in M2, then M3, etc.

9. Weighted cone- and wedge spaces

The operator spaces which we constructed so far are closely related to some
weighted distribution spaces over infinite (stretched) cones B∧ or wedges B∧ ×Rq.
Here, for keeping the ideas more transparent, we return to the simpler notation
from the very beginning with X ∈M0, B ∈M1, and we refer to variables (r, x, y),
etc. The wedge calculus on this level of consideration as well as all higher levels
of singularity depend in a crucial way on some new inventions, which already have
been introduced in the early days of edge calculus in [26], after investigation of [25].
Let us illustrate the way of creating weighted Sobolev spaces on manifolds B ∈M1

with edge. The local description of B close to an edge Y of dimension q > 0 is
locally in variables based on the abstract concept in terms of Hilbert spaces H
with group action κ = {κδ}δ∈R+ . Let Ws(Rq,H), s ∈ R, denote the completion of
S(Rq,H) with respect to the norm

(9.1) ∥u∥Ws(Rq ,H) :=
{∫
⟨η⟩2s∥κ−1

⟨η⟩û(η)∥
2
H d̄η

}1/2

with û being the Fourier transform in Rq, cf. [26], [27]. The spaces Ws(Rq,H) have
a number of useful properties and admit similar functional-analytic considerations
as the standard Sobolev spaces Hs(Rn) of smoothness s in Rn. When we insert
H := Hs(Rn) endowed with the group action

(κδu)(x) := δn/2u(δx), δ ∈ R+,

then a simple computation shows that

(9.2) Ws(Rq,Hs(Rn)) = Hs(Rq+n).
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In the edge calculus we build up the local spaces Ws(Rq,H) by means of what we
call weighted Kegel spaces H = Ks,γ(X∧). Those are defined by

Ks,γ(X∧) := {u = ωu0 + (1− ω)u∞ : u0 ∈ Hs,γ(X∧), u∞ ∈ Hs
cone(X

∧)}.

Here ω is any cut-off function on the r half-axis, ≡ 1 close to r = 0, ≡ 0 far from
r = 0, and the spaces Hs,γ(X∧) are weighted cone Sobolev spaces, based on the
Mellin transform in r and locally in x in variables x ∈ Rn on the Fourier transform.
The norm in local terms is defined as

∥u∥Hs(R+×Rn) :=
{∫

Rn

∫
Γn+1

2

⟨v, ξ⟩2s|(Fx→ξMr→vu)(v, ξ)|2d̄vd̄ξ
}1/2

for any s, γ ∈ R. Then, globally along compact X ∈ M0 we obtain the spaces by
using an open covering of X by charts mapping to Rn, a subordinate partition of
unity and a corresponding summation in a standard way. The spaces Ks,γ(X∧)
are different from Hs,γ(X∧) with respect to their behaviour for r →∞. The Kegel
spaces to not feel the weight at ∞. The corresponding spaces Hs

cone(X
∧) treat the

infinite stretched cone as a manifold with conical exit to ∞. A simple case which
also can be used for the definition in the general case is X := Sn, the unit sphere
in R1+n with (Sn)∧ being identified with R1+n \ {0} via polar coordinates. In this
case, after cutting out the origin we have

(1− ω)Hs
cone((S

n)∧) = (1− ω)Hs(R1+n).

This property has the consequence that, together with identity (9.2), the norms
(9.1) for H = Ks,γ(X∧) just produce spaces contained in Hs

loc(Rn+1+q). In fact, a
careful evaluation of norms (9.1) shows that the local behaviour of norms for growing
|η| draws more and more Hs(R1+n)-information to arbitrary small neighbourhoods
r < ϵ for any ϵ > 0, which induces the mentioned Hs

comp-identification for r > ϵ
but which also shows that the more we approach r = 0 the norm expression feels
the influence of the weight γ, cf. [27]. This makes the analysis with distributions
in Ws(Rq,Ks,γ(X∧)) a bit unusual. If B is a global manifold with edge we need a
careful consideration on the transition behaviour under changing charts, connected
with coordinate neighbourhoods close to the edge Y, cf., e.g., [27], but then, using
a corresponding system of charts

χj : Rq → Y, j = 0, . . . , N,

distributions in the global analogues of the norm of Ws(Rq,Ks,γ(X∧)) supported
close to Y, now denoted as elements in Hs,γ(B), are defined by

∥u∥Hs,γ(B) :=
{ N∑

j=1

∥(φju) ◦ (idR+ × (χ−1
j )∗)∥2Ws(Rq ,Ks,γ(X∧))

}1/2

for a subordinate partition of unity (φ1, . . . , φN ). By construction we then have

Hs,γ(B) ⊂ Hs
loc(B \ Y ).

The system of notation is that as soon we want to express local distributions, in the
norms either in Rq or along R+ with the rescaling effect from the group action we
employ calligraphic letters, but on (often compact) manifolds B with singularities
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we employ notation like Hs,γ(B), analogously as standard Sobolev spaces, but γ
only affects distributions in an arbitrary small neighbourhood of the singularity.

It is also essential to compare Mellin actions in Hs,γ(X∧) and Ks,γ(X∧)-spaces
with respect to r → ∞, where a special choice of Mellin quantizations plays a
role, together with the kernel cut-off method and the interplay with the pseudo-
differential calculus on manifolds with conical exit to ∞.

10. Asymptotics contributed by elliptic problems

As noted before the strata of a space M ∈ Mk may be interpreted as a gener-
alization of interfaces of different dimension. In the zero-dimensional case we also
speak about corners or conical singularities. A starting point of explaining the
various levels of higher singular calculus may be differential operators in stretched
coordinates, namely,

(10.1) (r, x, y) ∈ B∧ × Rq

for a splitting of variables (r, x) ∈ B∧, B ∈ Mk−1 and y ∈ Rq, q > 0. In the corner
case we have q = 0. Let us consider, for instance, the case q > 0. Then differential
operators of order µ ∈ N which reflect a higher geometric singularity, modeled on an
edge with local variables y ∈ Rq, are of the form (6.4). The general task is then to
express by means of an adequate singular analogue of the smooth pseudo-differential
calculus ellipticity, parametrices and regularity of solutions u of equations Au = f
for prescribed right-hand sides f. The problem is similar to the case of elliptic
boundary value problems which are locally considered in variables

(r, y) ∈ R+ × Rq

where the wedge R+ ×Rq is regarded as the local model of the respective manifold
with boundary. In this case B is of dimension zero. As is well-known even this
case is rich of phenomena which can make the program to a relatively voluminous
calculus, see [2], [22] or [24] when the symbols σ0(A) have the transmission property
at the boundary. In this case we can control solutions with Sobolev space regularity
or, alternatively, with smoothness, up to the boundary. Except for the fact that
we usually pose elliptic boundary conditions for vanishing or non-vanishing Atiyah-
Bott abstruction, cf. [1], [30], we have to admit that generically the transmission
property is violated, and then problems are to be embedded into the edge calculus.
In this case it is more adequate to pass to weighted Sobolev spaces with weights
γ ∈ R at r = 0. The choice of weights in the case of operators (6.4) depends on
the individual operator A, mainly on the principal conormal symbol subordinate to
(6.5)

(10.2) σM (A)(y, v) :=

µ∑
j=0

aj0(0, y)v
j : Hs(X)→ Hs−µ(X)

which is in this case a polynomial in v ∈ C. Recall that the relation between v
and the Fuchs type derivative −r ∂

∂r comes from the Mellin transform. For pseudo-

differential A we have σM (A)(y, η) = h̃(0, y, v, 0)+f0(y, v) where the first summand
is defined by (10.4) below and f0(y, v) is a so-called smoothing Mellin symbol. In
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solving elliptic equations we also have to invert (10.2) and this can only work on
weight lines Γn+1

2
−γ ∋ v where (10.2) does not vanish. Thus, since (10.2) is a

polynomial in v, there are only finitely many exceptional weights such that this
condition is violated. In the pseudo-differential case there may be infinitely many.
Assuming that those are independent of y there is the question on their precise
position. In weighted Mellin Sobolev spaces Hs,γ we usually can observe more
specific properties, namely, subspaces with asymptotics. In order to illustrate the
ideas for establishing asymptotic information of solutions of Au = f in the higher
case (6.4) we assume for simplicity k = 1, i.e., the standard edge-degenerate case.
Then the operator can be close to the edge written in coordinates y ∈ Rq in the
form

(10.3) A = Opy{r−µωOp
γ−n/2
M (h)(y, η)ω′}

where analogously as (7.6), here for the moment without parameter ζ, the Mellin
symbol h has the form

h(r, y, v, η) = h̃(r, y, v, rη)

for an

(10.4) h̃(r, y, v, η̃) ∈ C∞(R+ × Rq,Mµ
O(X;Rq

η̃)).

Then solutions are charecterized via a parametrix construction which starts with a
test parametrix

P1 := Opy{ωOp
γ−µ−n/2
M (h(−1))(y, η)rµω′}

for a Mellin symbol

h(−1)(r, y, v, η) = h̃(−1)(r, y, v, rη)

for an

(10.5) h̃(−1)(r, y, v, η̃) ∈ C∞(R+ × Rq,M−µ
O (X;Rq

η̃)).

We assume here ellipticity which contains the condition that h̃(r, y, v, η̃) takes values

in parameter-dependent elliptic elements ofMµ
O(X;Rq

η̃). Then we find h(−1)(r, y, v, η)
in such a way that

(10.6) P1A = 1 +M +G

for a Mellin operator M with smoothing Mellin symbols who contain asymptotic
information and a Green operator in the edge calculus. Now we modify P1 by
multiplying by a factor from the left of the form (1 + L) for another smoothing
Mellin operator, i.e., pass to

(10.7) P2 = (1 + L)P1.

The construction of L employs relations on the level of principal conormal symbols
and employs the identity

σM (P1)(y, v)σM (A)(y, v) = 1 + σM (M)(y, v).

There is another smoothing Mellin operator L such that its leading conormal symbol
σM (L) satisfies relation

(1 + σM (L)(y, v))(1 + σM (M)(y, v)) = 1.
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This implies

(1 + σM (L)(y, v))σM (P1)(y, v)σM (A)(y, v) = 1

and hence

(σM (A)(y, v))−1 = (1 + σM (L)(y, η))σM (P1)(y, v).

Then, on the level of operators we form P2 for

σM (P2)(y, v) := (1 + σM (L)(y, v))σM (P1)(y, v)

which gives us a parametrix with a refined property (10.6), namely, we have

P2A = 1 +N +G

for a smoothing Mellin operator N and another Green operator G such that

σM (N +G) = 0.

Then a formal Neumann series argument gives us a P3 such that

P3A = 1 +G

for a smoothing, so-called Green operator. Similar technique for constructing para-
metrices in the parabolic case has been applied in [18]. So far we did not indicate in
this exposition the nature of Green and smoothing Mellin operators which encode
asymptotics. In any case in the operator algebra on a manifold M ∈ M1 with
edge s1(M) = Y, locally close to Y modelled on X△ × Rq for some compact closed
X ∈M0, operators are locally in y ∈ Rq described modulo smoothing operators and
interior operators in Lµ

cl(s0(M)) by operator-valued amplitude functions, namely,

(10.8) a(y, η) = r−µωOp
γ−n/2
M (h)(y, η)ω′ + (m+ g)(y, η),

cf. (10.3) and Mellin and Green symbols m(y, η) + g(y, η). The smoothing Mellin
symbols are finite linear combinations of expressions like

(10.9) r−µωηr
jOp

γjα−n/2
M (fjα)(y)ω

′
η

from j = 0, . . . , θ for a weight interval Θ = (−(θ+1), 0], θ ∈ N, with Mellin symbols
fjα ∈M−∞

Rjα
(X). If M ∈M1 is our manifold with edge of dimension q > 0, we have

(10.10) Lµ(M, g),

for weight data g = (γ, γ − µ,Θ), the space of all operators of the form

A = H +M +G+Aint + C

where H is a non-smoothing Mellin operator with amplitude function

ah(y, η) = r−µωOp
γ−n/2
M (h)(y, η)ω′,

moreover, M is a smoothing Mellin operator, defined amplitude functions by (10.9),
andG is a Green operator. All those contributions are localized close to Y.Moreover,
we assume Aint ∈ Lµ

cl(M \Y ) and C is a global smoothing operator. By asymptotics
of solutions u(r, y) to elliptic equations Au = f in simplest cases we understand that
u admits a representation

u(r, y) = using(r, y) + uflat(r, y)
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where using is a singular function

using ∈ EP(X∧)

with EP(X∧) being the space of functions

(10.11) EP(X∧) = {ω
N∑
j=1

mj∑
k=0

cjkr
−pj logk r : cjk ∈ C∞(X)}

for a cut-off function ω(r) and pj ∈ C, which form together with mj ∈ N a sequence

P = {(pj ,mj)}j∈J ⊂ C× N,

called a discrete asymptotic type, where πCP = {pj}j∈J is finite when the weight
interval Θ = ((−θ+ 1), 0] is finite, and otherwise for Θ = (−∞, 0] and infinite πCP
we ask Re pj → −∞ as j →∞. In any case it is assumed that

πCP ⊂ {z :
n+ 1

2
− γ − (θ + 1) < Re z <

n+ 1

2
− γ}

for the reference weight γ ∈ R. Flat functions are elements of

Ks,γ
Θ (X∧) = lim←−

ϵ>0

Ks,γ−(θ+1)−ϵ(X∧).

If singular functions belong to (10.11) we assume the points pj to be independent of
y. Otherwise we have variable discrete asymptotics. This can be described in terms
of continuous asymptotics which is for finite Θ encoded by singular functions of the
form

u(r, y) = ω⟨ζ, r−z⟩
for a function ζ with values in analytic functionals

(10.12) ζ(y) ∈ C∞(Rq,A′(K,C∞(X)))

for a compact set K ⊂ {z ∈ C : Re z < n+1
2 − γ}. Properties of analytic functionals

in connection with asymptotics can be found in [16]. Basics are also elaborated
in [28]. For instance, if f(y, z) is a family of, say, C∞(X)-valued meromorphic
functions where the poles belong to the compact set K and which is smooth in
y ∈ Rq as a function with values in A(C \ K,C∞(X)), then if C is a counter
clockwise smooth curve surrounding K, the expression

⟨ζf (y), h⟩ :=
∫
C
f(y, z)h(z)d̄z,

h ∈ A(C), defines a function (10.12) which is pointwise discrete and of finite or-
der. The poles may depend on y and also change multiplicities. This is a typical
phenomenon in solutions when the non-bijectivity points of (10.2) on the left of
the reference weight line Γn+1

2
−γ are not constant with respect to y. In the calculus

the above-mentioned Mellin asymptotic types Rjα also may depend on y in a sim-
ilar manner represented by suitable closed sets in the complex Mellin plane. More
material can also be found in [14] or [27].

Let us return to our elliptic differential operator (10.3), and assume ellipticity in
the sense that the interior symbol is elliptic over M \ Y and the reduced interior
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symbol is also elliptic and the symbol (10.4) admits a parametrix (10.5) and that
in addition (10.2) is bijective on the weight line Γn+1

2
−γ and also that

(10.13) σ1(A)(y, η) : Ks,γ(X∧)→ Ks−µ,γ−µ(X∧)

takes values in isomorphisms for all y ∈ X and η ̸= 0 (this condition is independent
of s). Then we have

Theorem 10.1. An elliptic A defines a Fredholm operator

A : Hs,γ(M)→ Hs−µ,γ−µ(M)

for every s ∈ R and has a parametrix P ∈ L−µ(M, g−1) for g−1 = (γ−µ, γ,Θ). For

every asymptotic type Q there is an asymptotic type P such that Au ∈ Hs−µ,γ−µ
Q (M)

implies u ∈ Hs,γ
P (M).

This result has several modifications, in particular when we ask a weaker condi-
tion than (10.13). If, for instance (10.13) is only a family of Fredholm operators, then
we can pose additional edge conditions which are analogues of Shapiro-Lopatinski
elliptic conditions or Toeplitz conditions, see also [17] and [31].

Theorem (10.1) belongs to the typical qualitative results of the pseudo-differential
analysis on a manifold with edge. In analogous form it is also meaningful on mani-
folds with conical singularities and also on infinite (stretched) cones X∧. The same
is true of spaces in Mk for higher k. Results of this kind illustrate what we un-
derstand by the asymptotic content of analysis on spaces with singularities. For
any M ∈Mk the subset N of singularities, mentioned in Section 2, just consists of
N = M \ s0(M). We have N ∈ Mk−1, and hence N can also be the host of a cor-
responding calculus of less singularity order, and similarly N \ s0(N) ∈Mk−2, etc.
On the other hand when we see M in relation with N, then the asymptotic informa-
tion contained in solutions to elliptic equations or in parametrices is concentrated
in any neighbourhood of N. Thus the singular subset N is “loaded” with asymp-
totic quantities, distributed on the strata of N of different levels of singularity. The
investigation of this phenomenon is by no means finished. In fact it suggests fur-
ther analysis on how asymptotic data are contained in the calculus which produces
qualitative properties of solutions.

11. Concluding remarks

The analysis on manifolds with singularities has been created by the desire to
do similar things for solvability of elliptic partial differential equations in the non-
smooth case as on smooth manifolds. Many achievements of the classical analysis,
e.g., of boundary value problems contributed to a new approach on singular man-
ifolds. The recent development became a branch of analysis with operator-valued
symbols, holomorphic and meromorphic Mellin symbols, and asymptotic phenom-
ena. The present state of the development is that for every level k ∈ N of singularity
we have an algebra of operators, analogously as (10.10), which contains interesting
operators from applications and which itself is the starting point of further steps in
a hierarchy of structures. In particular, the algebras can be generalized to algebras
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of parameter-dependent operators, with extra covariables ζ ∈ Rd which can be ac-
tivated in a next step for the symbolic background of operators on the next level of
manifolds of singularities of degree k + 1. Let us finally note that many questions
remain for research in future, e.g., index theory in these operator algebras, or the
investigation of additional conditions along the strata, e.g., of trace and potential
type.
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