Applied Analysis and Optimization Yokohama Publishers

Volume 1, Number 1, 2017, 99-112 ISSN 2189-1664 Online Journal
© Copyright 2017

FIXED POINTS AND COUPLED FIXED POINTS FOR
MULTI-VALUED (¢,9)-CONTRACTIONS IN »-METRIC SPACES

GABRIELA PETRUSEL, TANIA LAZAR, AND VASILE L. LAZAR

ABSTRACT. In this paper, we will study the coupled fixed point problem for
multi-valued operators satisfying a nonlinear contraction condition. The ap-
proach is based on a fixed point theorem for multi-valued operators in a complete
b-metric space.

1. INTRODUCTION

The context of the results given in this paper is that of a complete b-metric
space.

Definition 1.1. Let X be a nonempty set and let s > 1 be a given real number.
A functional d : X x X — Ry is said to be a b-metric if the following axioms are
satisfied:

i) if x,y € X, then d(z,y) =0 &z =y;
ii) d(z,y) = d(y,x), for all z,y € X;
i) d(z,2) < sld(z,y) + d(y, 2)], for all z,y,z € X.

A pair (X, d) with the above properties is called a b-metric space.

For some examples of b-metric spaces see [1], [4], [7].

Let (X,d) be a b-metric space and P(X) be the set of all subset of X.

In this paper, we will use the following notations:

PX)={Y eP(X)/Y #0}; Py(X)={Y € P(X)/ Y is closed}.
If T:X — P(X) is a multi-valued operator, then € X is called fixed point for
T xeTl(x).
Fix(T) ={x € X/ v € T(x)} is the fixed point set of T

and SFiz(T) = {x € X/ T(x) = {x}} is the set of all strict fixed points of T

Moreover, we will denote by
Graph(T) = {(z,y) € X x X/ y € T'(z)} the graph of T.

Let (X, d) be a b-metric space with constant s > 1 and Z = X x X. Then, the
functional d : Z x Z — R, defined by d((z,y), (u,v)) = d(z,u) + d(y,v) for all
(,y), (u,v) € Z is a b-metric on Z with the same constant s > 1 and if (X,d) is a

complete b-metric space, then (Z,d) is a complete b-metric space, too.
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Moreover, for z, y € X, A, B,U,V € P(X) we have:
D;((z,y),U x V) = Dy(z,U) + Da(y, V);
pi(A X B,U x V) = pa(A,U) + pa(B, V');
Hi(Ax B,U x V) < Hy(A,U) + Hy(B,V),
where the following notations are used:

(1) for the gap functional generated by d “Dgy”:
Dy : P(X) x P(X) = Ry, Dy(A, B) = inf{d(a,b)/ a € A, b€ B};
(2) for the excess generalized functional “pg”:
pa: P(X) x P(X) = Ry U{+o0}, pi(4, B) =sup{Dy(a,B)/ a € A};
(3) for the Hausdorff-Pompeiu generalized functional “Hy”:
Hy: P(X) % P(X) = Ry U {+oo}, Hg(A, B) = max{pa(A, B), pa(B, A)}.

Additionally, by the properties of the gap functional Dy, if (z,y) € X x X and
A, B € Py(X), then

D;((z,y),UxV)=0% (z,y) €U x V.

Definition 1.2. Let (X, <) be a partially ordered set. Then, the partial order
“ <7 induces on the product space X x X the following partial order relation:

for (z,y), (u,v) € X x X (z,y) <, (w,v) &z <wu, y>o.

Definition 1.3. Let X be a nonempty set, let “ <” be a partial order on X and
d be a b-metric on X with constant s > 1. Then the triple (X, <,d) is called an
ordered b-metric space if:

(i) “ <7 is a partially order on X;

(ii) d is a b-metric on X with constant s > 1;

(iii) if (zp)nen is a monotone increasing sequence in X and lim z, = x* then

n—oo
z, <x* for alln € N;
(iv) if (yn)nen is a monotone decreasing sequence in X and lim y, = y* then

n—oo
yn > y* for all n € N.

Definition 1.4. Let (X, <) be a partially ordered set and A, B € P(X). We will
denote:

a) A<y B & Vae A Vbe B we have a < b;

b) A <ur B<Vaec A,3b e B such that a <b.

Definition 1.5. Let (X, <) be a partially ordered set and T' : X — P(X) be
a multi-valued operator. We say that T is strong increasing (respectively strong
decreasing) on X if for every xz,y € X with x < y we have that T'(z) <g T(y)
(respectively T'(x) >s T(y)).

Let (X, d) be a metric space and T : X x X — P(X) be a multi-valued operator.
Following [6] (where the single-valued case is treated), by definition, a coupled fixed
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point problem for 7" means to find a pair (z*,y*) € X x X satisfying

* * *
P) 13* € T(:E*,y*)
y eT(y"z")

The purpose of this paper, is to study the coupled fixed point problem for multi-
valued operators satisfying a nonlinear contraction condition. The approach is based
on some fixed point theorems for multi-valued operators in complete b-metric space.
Several properties of the solution set of the coupled fixed point problem will be also

discussed. Our results extend and complement some theorems given in [2], [8], [10],
[11], [12].

2. FIXED POINT THEOREMS FOR (¢, 1))-CONTRACTIONS
We recall first the following auxiliary result.

Lemma 2.1. Let (X,d) be a b-metric space and € > 0. Let A,B € P(X). Then
Ya € A,db € B such that
d(a,b) < H(A, B) + ¢

Let @ denote the set of all function ¢ : [0, 00) — [0, 00) satisfying:
(ip) ¢ is continuous and (strictly) increasing;
(tiy) (t) <t for all t > 0;
(iiig) ola+b) < p(a) + b, Ya,b € [0,00);
(ivy) p(st) < sp(t), (where s > 1), Vt € [0,00).
We denote by ¥ the set of all functions 1) : [0, 00) — [0, 00) which satisfy:
(i) }gr;w(t) > 0 for all r > 0;

(iiy) Jim (1) = 0.

Theorem 2.2. Let (X,<,d) be a complete ordered b-metric space with constant
s>1. Let T : X — P,y(X) be a multivalued operator strong increasing with respect
to “ < 7. Suppose that:
(i) there exist two functionals p € ® and ¥ € V such that for all (z,y) € X x X
with x < y:

e(Hy(T(x), T(y))) < @ld(z,y)) —Y(d(z,y));

(ii) there exists an element xo € X such that xo <y T'(z0).

Then Fix(T) # O and there exists a sequence (xp)nen in X of successive approzi-
mation of T starting from xog € X which converges to a fized point of T.

Proof. Let 9 € X such that xg <, T(x0). Then, there exists x; € T(xg) such
that zg < 1.

Suppose xg # z1. Otherwise zg € T'(xo) = Fizx(T) # 0.

Let € > 0.

Using Lemma 2.1 for any x1 € T'(x) there exists xo € T(x1) such that d(z1,z2) <
Hq(T(x0),T(x1)) + €

= @ (d(z1,22)) < ¢ (Ha (T(20), T(21)) + &) < @ (Ha (T(20), T(21))) + £
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Since d(xg,x1) > 0 = ¢ (d(xg,x1)) > 0. By our hypothesis, we have

¢ (Hq (T (x0),T(21))) < @ (d(zo, 1)) = ¢ (d(z0, 1)) < ¢ (d(0, 1))
We choose
€ := ¢ (d(zo, 21)) — ¢ (Ha (T (20), T(x1))) >0,

and we get

¢ (d(x1,22)) < @ (d(wo,71)) -
Since ¢ is increasing, we get that d(x1,z2) < d(zo,x1).
Since z1 € T'(x0),x2 € T(x1),x0 < 21 and because T is strong increasing = z; < .
Suppose z1 # x2. Otherwise x; € Fix(T) = Fix(T) # 0.
Using Lemma 2.1 for any z9 € T'(z1) there exists z3 € T'(z2) such that d(zg,x3) <
Hd (T((L‘l), T((L'Q)) + €

= @ (d(z,23)) < ¢ (Ha (T(21), T(22)) + &) < @ (Ha (T(21), T(22))) + €.

Since d(z1,x2) > 0 we get ¢ (d(x1,z2)) > 0.
Thus

¢ (Hq (T(21), T(22))) < ¢ (d(z1,22)) — ¥ (d(21,72)) < (d(21,72)).
We choose
€= (d(z1,22)) — ¢ (Ha (T (21),T(22))) > 0,
and we get
¢ (d(z2,23)) < ¢ (d(z1,22)) -
By the monotonicity of ¢, we get that ¢ (d(x2,x3)) < ¢ (d(x1,22)) < ¢ (d(x0,x1)).
By induction, we obtain a sequence (z,)pen in X with the following properties:
(a) zpt1 € T(xy,), for all n € N;
(b) zp, < xpya, for all n € N;
() ¢ (d(zn,xnt1)) < @ (d(xn_1,2n)), for all n € N, ¢ is increasing;
() d(xp, Tnt1) < d(Tp—1,zy),Yn € N;
(d) ¢ (d(@n, Tnt1)) < @ (d(@Tn-1,7n)) — ¥ (d(Tn-1,75)) + &, VE> 0.
Then by () we have: 0 < 0,41 := d(p, Tpy+1) is decreasing.
Thus nh_}Ir;o 6p =06 > 0.
We show that § = 0 (by contradiction).
Assume the contrary, that is § > 0. Then by letting n — oo in (d) we get:

p(0) = lim (dnt1) < lim o(d,) — lim () +& < (0) — lim 9(dn) +&.
We choose € < li_}m ¥ (dn) > 0. Then we obtain: 0 < — h_}m Y(6p) + € < 0 gives a

contradiction. Follows that 6 = 0. Further, we proof by contradiction that (z,)nen
is a Cauchy sequence.

Suppose that (x,)nen is not a Cauchy sequence on X = Je > 0 for which we can
find two sub-sequences () and (2,,x)) of (Tn)neny with n(k) > m(k) > k such
that

(21) d(:pn(k),xm(k)) > s g, k= 1,2,

We can choose n(k) to be the smallest integer with property n(k) > m(k) > k and
satisfying (2.1), follows that d(2pk)—1, Tmk)) < -
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By triangle inequality we have:
se <1k = d(Tpky, Tm(k)) < Sl @), Tn)—1) T AZnk)—1, Tm(r))] <
< 8- d(Tp(k) Tn(ky—1) T 5 €.
Letting k£ — oo we get hm TEL=S"€.
Since n(k) > m(k) we have using the property (b) that x4y > Tpyk) OF Tpyr) <
Tp(k), We put T = T, and y = xp in (i) =
We have:

< ¢ (Hy (T(xm(k)),T(%(k)))) +e<o ( k) Tngk))) — U (A @) Tgry)) + €
follows that

o(rer1) < o(rk) — ¥(rk) + € and letting k — oo = ¢(se) < p(se) — klim Y(rg) + €
— 00

= 0 < — lim 9(rg) + € and if we chose € < lim 9 (rg) > 0
k—o00 k—o00

= 0 < 0 which gives a contradiction.

Therefore (x,)nen is a Cauchy sequence in a complete b-metric space (X,d) =
dx* € X such that lim xz, = z*.

n—oo

Now, we show that z* € T'(z*)
Dy(z*,T(2%)) < sld(z", @n+1) + Da@ns1, T'(2"))]
< s-d(@”, wng) + 5 Ha(T(2n), T(2"))
= Dy(z*,T(z")) — s-d(a*, zpnt1) < s- Hy(T(xy),T(z%))
= ¢ (Da(z", T(2")) = s - d(", 2n11)) < s - @ (Ha(T(2n), T (27)))

"2 s lpld(m ) — P(d(n, ).

SIN

—~
=

Letting n — co we obtain that:

¢ (Da(z”, T(z%)) = 0) < 5[p(0) — 0.
On the other hand ¢(t) = 0 < ¢t = 0 and T has closed values, so z* € T'(z*) =
Fiz(T) # 0. O

Our next result is a fixed point theorem for a multi-valued operator satisfying a
(¢, 1)-contraction type condition on the whole space.

Theorem 2.3. Let (X,d) be a complete b-metric space with constant s > 1 and
T:X — Py(X) a multi-valued operator for which there exist two functionals p € ®
and ¥ € ¥ such that for all (x,y) € X x X we have:

¢ (Ha(T(2),T(y))) < eld(z,y)) — ¥(d(z,y)).
Then
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(a) Fix(T) # 0 and there exists a sequence (zp)nen in X of successive approx-
imations of T starting from any (xg,z1) € Graph(T) which converges to a
fized point x* of T.

(b) If additionally SFiz(T) # 0 and » € ¥ is a continuous mapping then
Fix(T) = SFiz(T) = {z*}.

Proof. (a) is the same with the proof of Theorem 2.2.
(b) Let y* € SFix(T). We consider y € SFix(T) such that y # y*.
Then d(y,y*) = Ha(T(y), T(y")) =
= o(d(y,y") = ¢(Ha(T(y), T(y"))) < e(d(y,y")) — ¥(d(y,y")).

Since y # y* = ¢(d(y,y*)) > 0 and since 9 is continuous mapping that means

P(d(y,y)) > 0.
Thus 0 < —(d(y,y*)) and we have a contradiction

=y=y" = SFiz(T) ={y"}.
Let 2* € Fiz(T) with o* # y* = d(z*,y*) > 0 = p(d(z*,y*)) > 0.
We have d(z*,y*) = Dy(z*,T(y*)) < Hd( (x*), T(y*))
= o(d(z",y") < p(Ho(T("),T(y"))) < pld(a",y")) — P(d(z", y"))
= 0 < —¢(d(z*,y")), which is a contradiction.
Finally we have SFiz(T) = Fiz(T) = {z*}. O
For related results see [3], [9].

3. COUPLED FIXED POINT THEOREMS FOR MULTI-VALUED (¢, 1)) -
CONTRACTIONS

We have the following useful definition.

Definition 3.1. Let (X, <) be a partially ordered set and G : X x X — P(X).
We say that G has the strict mixed monotone property with respect to the partial
order “ <7 if the following implications hold:

a) Zo S T = G(x()vy) Sst G(-ﬁUl,y), Vy eX
b) yo > y1 = G(x,%0) <st G(z,11), YV € X.

We recall now the following theorem, which was the starting point in the coupled
fixed point theory for single-valued operators.

Theorem 3.2 (Bhaskar and Lakshmikantham). Let (X, <) be a partially ordered
set and suppose there is a metric d on X such that (X,d) is a complete metric space.
Let F': X x X — X be a continuous mapping having the mixed monotone property
on X. Assume that there ezists a constant k € [0,1) with

k
(3.1) d(F(z,y), F(u,v)) < §[d(:c,u) +d(y,v)] for each x < u,y >wv
If there exist xg,yo € X such that
Zo < F($07y0)7 Yo > F(y0,$0)
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then there exist x*,y* € X such that

zt = F(z*,y")

Remark 3.3. The hypothesis F' : X x X — X is a continuous mapping can be
replaced by Assumption 1: X has the property that:

(a) if a non-decreasing sequence (z,)nen in X converges to z then z, < z, for
all n € N;

(b) if a non-increasing sequence (zy)nen in X converges to z then z, > z, for
all n € N.

Later on, Luong and Thuan use a more general contraction type condition:

(32 G(d(F(r,y), F(u,))) < seld, u) +dly, v)) — b(d,u) + dy,v))

where ¢, 1 : [0,00) — [0,00) are functions satisfying some appropriate conditions
and (z,y), (u,v) € X x X with x <wu, y > v.

Remark 3.4. For ¢(t) = t and ¥(t) = lg—k -t with 0 < k < 1 condition (3.2)
reduces to (3.1).

Another generalization of Bhaskar and Lakshmikantham’s theorem was given by
V. Berinde. In [2] the following class of mappings is introduced.

Remark 3.5. The functional ¢ : [0,00) — [0,00) belongs to @ if it satisfy the
following conditions:

(ip) @ is continuous and (strictly) increasing;
(tiy) (t) <t for all t > 0;
(iti,) @(t+s) < @(t) + @(s), Vt,s € [0,00).
As before, we recall that the functional 9 : [0,00) — [0,00) belongs to the set ¥ if
it satisfy the following conditions:
(iy) %gr;w(t) > 0 for all r > 0;

(i) Jim (1) = 0.

Theorem 3.6 (V. Berinde [2]). Let (X, <) be a partially ordered set and suppose
there is a metric d on X such that (X,d) is a complete metric space. Let F :
X x X — X be a mized monotone mapping for which there exist ¢ € dandp €U
such that for all x,y,u,v € X with x > u, y <.

o (d(F(w,y),F(U,U)) + d(F(y,x),F(v,u))) <

2

<o (d(fv,u)—;d(y,v)) v (d(x,u);—d(y,v)) |

Suppose either

(a) F is continuous mapping, or
(b) X satisfies Assumption 1.
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If there exist xg,yo € X such that

zo < F(2o,y0) and yo > F(yo, o)
or

zo > F(z0,y0) and yo < F(yo, o),
then there exist x*,y* € X such that

zt = F(z",y")
The first main result of this section is: the following generalization to the multi-
valued case of Theorem 3.6.

Theorem 3.7. Let (X, <,d) be an ordered b-metric space with constant s > 1 such
that the b-metric d is complete. Let F': X x X — Py(X) be a multi-valued operator
having the strict mized monotone property with respect to “ < 7. Assume that:

i) there exist two functionals p € ® and ¥ € VU such that
¢ (Ha(F(2,y), F(u,v)) + Ha(F(y, ), F(v,u))) <

< @ (d(z,u) +d(y,v)) — ¢ (d(z, u) + d(y,v))
for all (x,y), (u,v) € X x X withz <wu, y>wv.
ii) there exist (vo,y0) € X x X and (z1,y1) € F(x0,v0) X F(yo0,20) such that
To < T and Yo > Y1-
Then there exist a pair (z*,y*) € X x X with

¥ e F(x*,y*)
y* € F(y*, x%)
and two sequences (Tp)nen and (Yn)nen in X with

Tptl € F(xnayn)
Yn+1 € F(yn’xn)

or all n € N, such that x, — x* and y, — y* as n — o0o.
Y Yy

Proof. Let Z = X x X and consider on Z the partial order relation “ <, ” generated
by “ <” and the metric d : Z x Z — R, defined by:

d((,y), (u,v)) = d(z,u) +d(y,v), Y(z,y), (u,v) € Z.

Then (Z, <,,d) is an ordered complete b-metric space.

Consider G : Z — P(Z), G(x,y) = F(z,y) X F(y,z), for all (z,y) € Z.

Since F' is strict mixed monotone multi-valued operator follow that G is strong
increasing multi-valued operator with respect to “ <, ”.

The multi-valued operator F' has a closed value, so the multi-valued operator GG
has a closed value too.

Let z = (z,y) € Z and w = (u,v) € Z. We have:

Hi(G(2),G(w)) = HJ(F(a:,y) x F(y,x), F(u,v) x F(v,u)) <
< Hy(F(z,y), F(u,v)) + Ha(F(y, ), F(v,u))
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Because ¢ is increasing we have that
@(HJ(G(Z% G(w))) < SO(Hd(F(xv y)’ F(ua U)) + Hd(F(yv $), F(Uv u)))

§§¢(d@;u)+d@hv»——¢(d@;u)+d@hv»
= p(d(z,w)) — ¢ (d(z,w)).

Follow that G is (¢, 1)-contraction with respect to d for all z = (x,y) € Z and
w = (u,v) € Z with z <, w.

By i), there exist zp = (x0,y0) € Z and z1 = (z1,y1) € F(z0,y0) X F(yo, o)
such that z¢g < z1 and yo > y1, 80 20 <wkr G(20).

We can apply Theorem 2.2 for the multi-valued operator G and we obtained
that Fiz(G) # 0, i.e. there exists (z*,y*) € Z such that (z*,y*) € G(a*,y*) =
(z%,y%) € F(a*,y*) x F(z",y") or

x* e F(z*,y")

y* e F(y*,z*)
and there exists sequence z, = (xn,yn) € Z of successive approximation of G
starting from (zo,yo) € Z such that (z,,y,) — (2%, y*) as n — co. O

The following result is a global existence and uniqueness theorem for a multi-
valued operator.

Theorem 3.8. Let (X,d) be a complete b-metric space with constant s > 1. Let
F: XxX — Py(X) be a multi-valued operator for which there exist two functionals
p €D and Y € ¥ such that

(P(Hd(F(xay)vF(u7U)) +Hd(F(y7x)7F(U7u))) <

for all (z,y), (u,v) € X x X. Then the following conclusions hold:

a) there exist (z*,y*) € X x X a solution of the coupled fized point problem
(P) and two sequences (Tp)nen and (Yn)nen in X with 41 € F(zn, yn),
Ynt+1 € F(yn,xn) for all n € N, starting from the arbitrary point (xo,yo) €
X x X and (z1,y1) € F(z0,y0) X F(yo,x0) such that z, — =* and y, — y*
as n — oo.

b) If, additionally, we suppose that there exists (u*,v*) € X x X such that
F(u*,v*) = {u*}, F(v*,u*) = {v*} and the functional ¢ : [0,00) — [0, c0)
is continuous, then CFix(F) = {(u*,v*)}.

Proof. Consider the functional d : Z x Z — R, where Z = X x X, defined by
and the operator G : Z — P(Z) defined by
Gz, y) = F(z,y) x F(y,2),¥(z,y) € Z.

We can apply Theorem 2.3 of G and we obtain the conclusion a) of this theorem.
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F * * — *
b) From the hypotheses (', 07) = {u'} we have SFiz(G) # (), and because
F(v*,u*) = {v*}

1 € W is a continuous mapping, we can apply Theorem 2.3 b) of G and we obtain
SFiz(G) = Fiz(G) = {(u*,v*)} which means that the coupled fixed problem (P)
of F has a unique solution (u*,v*) € Z. O

Corollary 3.9. Let (X, <,d) be an ordered b-metric space with constant s > 1 such
that the b-metric d is complete. Let F: X x X — Py(X) be a multi-valued operator
having the strict mized monotone property with respect to “ <7”. Assume that:

i) there exists a functional 1 € U such that
Hd(F(xv y)a F(“a U)) + Hd(F(ya ZL‘), F(Uv u)) <

<d(z,u) +d(y,v) — ¥ (d(z,u) + d(y,v))
for all (x,y), (u,v) € X x X withz <wu, y>wv.
ii) there exist (xo,y0) € X X X and (z1,y1) € F(x0,y0) X F(y0,20) such that
zo < w1 and Yo > Y1.

Then, there exist a pair (x*,y*) € X x X with
{x* € F(z*,y*)
yr e Py, z")
and two sequences (Tp)nen and (Yn)nen in X with

Int1 € F(xmyn)
Yn+1 € F(ymxn)
for all n € N, such that x,, — x* and y, — y* as n — oo.

Proof. In Theorem 3.7 we take p(t) = t, Vt € [0,00) and hence we get Corollary
3.9. U

4. PROPERTIES OF THE SOLUTIONS OF THE COUPLED FIXED POINT PROBLEM

Theorem 4.1 (Data dependence). Let (X,d) be a complete b-metric space with
constant s > 1. Let F : X x X — Py(X) and S : X x X — Py(X) be two
multi-valued operators. Suppose that:

i) there exist two functionals p € ® and Y € U, 1 is continuous such that
¢ (Ha(F(x,y), F(u,v)) + Hy(F(y, z), F(v,u))) <
< @ (d(z,u) + d(y,v)) — ¢ (d(x,u) +d(y, v))
for all (x,y), (u,v) € X x X.
ii) there exists (z*,y*) € X x X such that
F(z*,y") = {z"}
Fy*,z") ={y"}
iii) there exists (u*,v*) € X x X such that
{u* € S(u*,v*)

v* e S(v*,u¥)
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iv) there exists n > 0 such that Hq(F(z,y),S(z,y)) <n, V(z,y) € X x X.
v)

o(t) —sp(t) +sp(t) =0=1t=10

Then, we have the following estimation:

@i (CFiz(S), CFiz(F)) < sup{t € Ry /o(t) — sp(t) + sp(t) < 2sn}
Proof. Let (u*,v*) € X x X such that

u* e S(u*,v*)
v* e S(v*,u*)
and (z*,y*) € X x X such that

F(z*,y") = {z"}
Fy*,z") = {y"}
We denote by Z = X x X and consider the following functional

d:Z x Z — R, defined by

d((x,y), (u,0)) = d(z,u) +d(y,v), Y(z,y), (u,0) € Z.

{so(t) — sp(t) 4+ s¥(t) >0, ¥t >0

We have:

d((a*,y"), (u*,v*)) = D
D

)) + Hd( ( *)7 F(w*,y*))]

On the other hand, ¢ is increasing, so:
p(d((z*,y"), (u*,0")))
< 2sn+ sp(Hy(F(z*,y"), F(u*,v")) + Hg(F(y*,z*), F(v*,u")))
< 251+ sp(d((@*,y"), (u",0%))) = s(d((@*,y"), (u,0%)))

= p(d((@*,y"), (u*,0") = seld((a, y7), (1", 7)) + s (d((2", y"), (u”,v"))) < 280,

That means

d((2", "), (u,0")) < sup{t € Ry /(t) = sp(t) + s(t) < 2sn}
= D;((u",v"), CFiz(F)) <sup{t € Ry /o(t) — sp(t) + sy(t) < 2sn}

= @ (CFix(S),CFiz(F)) <sup{t € Ry /o(t) — sp(t) + sp(t) < 2sn} O
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Consider the system of inclusions

x € F(z,y)
b {y € F(y,x)

and d: Z x Z — Ry, where Z = X x X, defined by:

d((z,y), (u,v)) = d(z,u) +d(y,v), Y(z,y), (u,v) € Z.
By definition, the system of inclusions (4.1) is well-posed with respect to D; if:
(i) there exists w* = (u*,v*) € Z such that
F(u*,v*) = {u*}
F(v*,u*) = {v*}
(ii) if wy, = (Un,Vn)nen IS a sequence in Z with the following properties

Dg(up, F(up,v,)) — 0 respectively Dd(yn, F(vp,uy)) — 0 as n — oo, then
d(tp, u*) + d(vp,v*) = 0 as n — 00 or d((un,vy), (u*,v*)) — 0 as n — oo.

Theorem 4.2 (Well-posedness). We suppose that all the hypotheses of Theorem
3.8 take place. If additionally we have:

@(t) — sp(t) + spp(t) > 0,¥t > 0 (%)
o(tn) — sp(tn) + s(ty) - 0=1t, = 0 as n — 00 (k)

Then, the system of inclusions (4.1) is well-posed with respect to Dg.

Proof. From Theorem 3.8 follows that the system of inclusions (4.1) has a unique
solution w* = (u*,v*) € Z.
Let wy, = (Un, p)nen in Z with Dg(up, F(un,v,)) — 0, respectively
Dg(vn, F(vn,up)) — 0 as n — oo.
We have:
d((tn, vp), (u*,v*)) = D ;((tn, vn), F(u*,v*) x F(v",u"))
= Dg(tup, F(u*,v")) + Dg(vp, F(v*,u"))
< $[Dg(tn, F(tun,vy)) + Hg(F(up, vy), F(u*,v"))]
+s [Dd(vn7 F(Un7 un)) + Hd(F(Un7 un)v F(U*> U*))] :

From ¢ is an increasing mapping follows that:

o(d((un, vn), (U*7U*))) < SDJ((“nvvn)aF(umvn) X F(vp, un))+
+ so(Hg(F (tun,vp), F(u*,v")) + Hy(F(vp, un), F(v*,u")))
< 8D j((tun, vn), F(tn, vn) X F(vn, un))+
+ 50(d((tn, va), (u*,0%))) = s(d((un, vn), (u*,v*)))
We get
P(d((tn, vn), (W, 07))) = 50(d((n, vn), (W, 07))) + s9(d((tn, va), (0, 0%))) <
< 8D j((tn, vn), F(tn, vn) X F(vn, un)).
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Letting n — co we get

lim [p(d((n, vn), (u*,0%))) =s(d((un, vn), (u*,0%))) +80(d((un, vn), (u*,0%)))] = 0

n—oo

By the assumptions (*) and (**) we get that d((un, v,), (u*,v*)) = 0asn — co. [

In what follows we give an Ulam-Hyers stability property.

Definition 4.3. Let (X,d) be a b-metric space with constant s > 1 and
F : X x X - P(X) be a multi-valued operator. Let d be any b-metric on
Z = X x X generated by d. By definition, the system of inclusions (4.1) is Ulam-
Hayers stable if there exists an increasing operator v : Ry — Ry continuous in 0
with 7(0) = 0 such that for each e € R% and for each solution (z,7) € Z of the
inequality D;((x,y), F(z,y) x F(y,z)) < ¢ there exists a solution (z*,y*) € Z of
the system of inclusions (4.1) such that d((z*,y*), (Z,7)) < v(¢).

Theorem 4.4 (Ulam-Hyers stability). Consider the system of inclusions (4.1). Let
us suppose that all the hypotheses of Theorem 3.8 take place. If additionally we have:
o(t) — sp(t) + sy(t) >0, VE >0

() — splt) + s(t) = 0 = £ = 0,

then, the system of inclusions (4.1) is Ulam-Hyers stable.

Proof. Using Theorem 3.8 we obtain that there exists a unique pair (z*,y*) € Z
such that

{2} = F(a",y")
{y} = Fy", z7). .
Consider the functional d : Z x Z — R defined by

d((z,y), (u,v)) = d(z,u) + d(y,v), ¥(z,y), (u,v) € Z.
Then we get
d((z,9), («*,y")) = d(z,2*) + d(7,y")
= Dy(z, F(z*,y")) + Da(y, F(y*, 7))
< s[Da(z, F(Z,9)) + Ha(F(2,9), F(z",y"))]
+s[Da(y, F(9,7)) + Ha(F(9,7), F(y*, 2"))]
< se+s[Ha(F(z,9), F(2",y")) + Ho(F(y,2), F(y", z"))]

Because ¢ is an increasing mapping we get that

P(d((z,9). (2", y"))) < sp(d((Z,7), (%, y))) — s¥(d((Z, 7). (z",y"))) + se,

and so

d(z, ), (z%,y")) < sup{t € Ry /o(t) — sp(t) + syp(t) < se} = 7(e). O
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