FIXED POINTS AND COUPLED FIXED POINTS FOR MULTI-VALUED (φ, ψ)-CONTRACTIONS IN b-METRIC SPACES

GABRIELA PETRUŞEL, TANIA LAZĂR, AND VASILE L. LAZĂR

Abstract

In this paper, we will study the coupled fixed point problem for multi-valued operators satisfying a nonlinear contraction condition. The approach is based on a fixed point theorem for multi-valued operators in a complete b-metric space.

1. Introduction

The context of the results given in this paper is that of a complete b-metric space.

Definition 1.1. Let X be a nonempty set and let $s \geq 1$ be a given real number. A functional $d: X \times X \rightarrow \mathbb{R}_{+}$is said to be a b-metric if the following axioms are satisfied:
i) if $x, y \in X$, then $d(x, y)=0 \Leftrightarrow x=y$;
ii) $d(x, y)=d(y, x)$, for all $x, y \in X$;
iii) $d(x, z) \leq s[d(x, y)+d(y, z)]$, for all $x, y, z \in X$.

A pair (X, d) with the above properties is called a b-metric space.
For some examples of b-metric spaces see [1], [4], [7].
Let (X, d) be a b-metric space and $\mathcal{P}(X)$ be the set of all subset of X.
In this paper, we will use the following notations:

$$
P(X)=\{Y \in \mathcal{P}(X) / Y \neq \emptyset\} ; P_{c l}(X)=\{Y \in \mathcal{P}(X) / Y \text { is closed }\}
$$

If $T: X \rightarrow P(X)$ is a multi-valued operator, then $x \in X$ is called fixed point for $T \Leftrightarrow x \in T(x)$.

$$
\operatorname{Fix}(T)=\{x \in X / x \in T(x)\} \text { is the fixed point set of } T .
$$

and $\operatorname{SFix}(T)=\{x \in X / T(x)=\{x\}\}$ is the set of all strict fixed points of T.
Moreover, we will denote by

$$
\operatorname{Graph}(T)=\{(x, y) \in X \times X / y \in T(x)\} \text { the graph of } T
$$

Let (X, d) be a b-metric space with constant $s \geq 1$ and $Z=X \times X$. Then, the functional $\tilde{d}: Z \times Z \rightarrow \mathbb{R}_{+}$defined by $\tilde{d}((x, y),(u, v))=d(x, u)+d(y, v)$ for all $(x, y),(u, v) \in Z$ is a b-metric on Z with the same constant $s \geq 1$ and if (X, d) is a complete b-metric space, then (Z, \tilde{d}) is a complete b-metric space, too.

[^0]Moreover, for $x, y \in X, A, B, U, V \in P(X)$ we have:

$$
\begin{aligned}
D_{\tilde{d}}((x, y), U \times V) & =D_{d}(x, U)+D_{d}(y, V) \\
\rho_{\tilde{d}}(A \times B, U \times V) & =\rho_{d}(A, U)+\rho_{d}(B, V) \\
H_{\tilde{d}}(A \times B, U \times V) & \leq H_{d}(A, U)+H_{d}(B, V),
\end{aligned}
$$

where the following notations are used:
(1) for the gap functional generated by d " D_{d} ":

$$
D_{d}: P(X) \times P(X) \rightarrow \mathbb{R}_{+}, D_{d}(A, B)=\inf \{d(a, b) / a \in A, b \in B\} ;
$$

(2) for the excess generalized functional " ρ_{d} ":

$$
\rho_{d}: P(X) \times P(X) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}, \rho_{d}(A, B)=\sup \left\{D_{d}(a, B) / a \in A\right\} ;
$$

(3) for the Hausdorff-Pompeiu generalized functional " H_{d} ":

$$
H_{d}: P(X) \times P(X) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}, H_{d}(A, B)=\max \left\{\rho_{d}(A, B), \rho_{d}(B, A)\right\}
$$

Additionally, by the properties of the gap functional D_{d}, if $(x, y) \in X \times X$ and $A, B \in P_{c l}(X)$, then

$$
D_{\tilde{d}}((x, y), U \times V)=0 \Leftrightarrow(x, y) \in U \times V .
$$

Definition 1.2. Let (X, \leq) be a partially ordered set. Then, the partial order " \leq " induces on the product space $X \times X$ the following partial order relation:

$$
\text { for }(x, y),(u, v) \in X \times X(x, y) \leq_{p}(u, v) \Leftrightarrow x \leq u, y \geq v .
$$

Definition 1.3. Let X be a nonempty set, let " \leq " be a partial order on X and d be a b-metric on X with constant $s \geq 1$. Then the triple (X, \leq, d) is called an ordered b-metric space if:
(i) " \leq " is a partially order on X;
(ii) d is a b-metric on X with constant $s \geq 1$;
(iii) if $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a monotone increasing sequence in X and $\lim _{n \rightarrow \infty} x_{n}=x^{*}$ then $x_{n} \leq x^{*}$ for all $n \in \mathbb{N}$;
(iv) if $\left(y_{n}\right)_{n \in \mathbb{N}}$ is a monotone decreasing sequence in X and $\lim _{n \rightarrow \infty} y_{n}=y^{*}$ then $y_{n} \geq y^{*}$ for all $n \in \mathbb{N}$.
Definition 1.4. Let (X, \leq) be a partially ordered set and $A, B \in P(X)$. We will denote:
a) $A \leq_{s t} B \Leftrightarrow \forall a \in A, \forall b \in B$ we have $a \leq b$;
b) $A \leq_{w k} B \Leftrightarrow \forall a \in A, \exists b \in B$ such that $a \leq b$.

Definition 1.5. Let (X, \leq) be a partially ordered set and $T: X \rightarrow P(X)$ be a multi-valued operator. We say that T is strong increasing (respectively strong decreasing) on X if for every $x, y \in X$ with $x \leq y$ we have that $T(x) \leq_{s t} T(y)$ (respectively $\left.T(x) \geq_{s t} T(y)\right)$.

Let (X, d) be a metric space and $T: X \times X \rightarrow P(X)$ be a multi-valued operator. Following [6] (where the single-valued case is treated), by definition, a coupled fixed
point problem for T means to find a pair $\left(x^{*}, y^{*}\right) \in X \times X$ satisfying

$$
(P)\left\{\begin{array}{l}
x^{*} \in T\left(x^{*}, y^{*}\right) \\
y^{*} \in T\left(y^{*}, x^{*}\right)
\end{array}\right.
$$

The purpose of this paper, is to study the coupled fixed point problem for multivalued operators satisfying a nonlinear contraction condition. The approach is based on some fixed point theorems for multi-valued operators in complete b-metric space. Several properties of the solution set of the coupled fixed point problem will be also discussed. Our results extend and complement some theorems given in [2], [8], [10], [11], [12].

2. Fixed point theorems for (φ, ψ)-CONTRACtions

We recall first the following auxiliary result.
Lemma 2.1. Let (X, d) be a b-metric space and $\epsilon>0$. Let $A, B \in P(X)$. Then $\forall a \in A, \exists b \in B$ such that

$$
d(a, b) \leq H(A, B)+\epsilon
$$

Let Φ denote the set of all function $\varphi:[0, \infty) \rightarrow[0, \infty)$ satisfying:
$\left(i_{\varphi}\right) \varphi$ is continuous and (strictly) increasing;
(ii $\left.i_{\varphi}\right) \varphi(t)<t$ for all $t>0$;
$\left(i i i_{\varphi}\right) \varphi(a+b) \leq \varphi(a)+b, \forall a, b \in[0, \infty)$;
$\left(i v_{\varphi}\right) \varphi(s t) \leq s \varphi(t)$, (where $\left.s \geq 1\right), \forall t \in[0, \infty)$.
We denote by Ψ the set of all functions $\psi:[0, \infty) \rightarrow[0, \infty)$ which satisfy:
$\left(i_{\psi}\right) \lim _{t \rightarrow r} \psi(t)>0$ for all $r>0$;
$\left(i i_{\psi}\right) \lim _{t \rightarrow 0_{+}} \psi(t)=0$.
Theorem 2.2. Let (X, \leq, d) be a complete ordered b-metric space with constant $s \geq 1$. Let $T: X \rightarrow P_{c l}(X)$ be a multivalued operator strong increasing with respect to " $\leq "$. Suppose that:
(i) there exist two functionals $\varphi \in \Phi$ and $\psi \in \Psi$ such that for all $(x, y) \in X \times X$ with $x \leq y$:

$$
\varphi\left(H_{d}(T(x), T(y))\right) \leq \varphi(d(x, y))-\psi(d(x, y))
$$

(ii) there exists an element $x_{0} \in X$ such that $x_{0} \leq_{w k} T\left(x_{0}\right)$.

Then $\operatorname{Fix}(T) \neq \emptyset$ and there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X of successive approximation of T starting from $x_{0} \in X$ which converges to a fixed point of T.

Proof. Let $x_{0} \in X$ such that $x_{0} \leq_{w k} T\left(x_{0}\right)$. Then, there exists $x_{1} \in T\left(x_{0}\right)$ such that $x_{0} \leq x_{1}$.
Suppose $x_{0} \neq x_{1}$. Otherwise $x_{0} \in T\left(x_{0}\right) \Rightarrow F i x(T) \neq \emptyset$.
Let $\tilde{\varepsilon}>0$.
Using Lemma 2.1 for any $x_{1} \in T\left(x_{0}\right)$ there exists $x_{2} \in T\left(x_{1}\right)$ such that $d\left(x_{1}, x_{2}\right) \leq$ $H_{d}\left(T\left(x_{0}\right), T\left(x_{1}\right)\right)+\tilde{\varepsilon}$
$\Rightarrow \varphi\left(d\left(x_{1}, x_{2}\right)\right) \leq \varphi\left(H_{d}\left(T\left(x_{0}\right), T\left(x_{1}\right)\right)+\tilde{\varepsilon}\right) \leq \varphi\left(H_{d}\left(T\left(x_{0}\right), T\left(x_{1}\right)\right)\right)+\tilde{\varepsilon}$.

Since $d\left(x_{0}, x_{1}\right)>0 \Rightarrow \varphi\left(d\left(x_{0}, x_{1}\right)\right)>0$. By our hypothesis, we have

$$
\varphi\left(H_{d}\left(T\left(x_{0}\right), T\left(x_{1}\right)\right)\right) \leq \varphi\left(d\left(x_{0}, x_{1}\right)\right)-\psi\left(d\left(x_{0}, x_{1}\right)\right)<\varphi\left(d\left(x_{0}, x_{1}\right)\right) .
$$

We choose

$$
\tilde{\varepsilon}:=\varphi\left(d\left(x_{0}, x_{1}\right)\right)-\varphi\left(H_{d}\left(T\left(x_{0}\right), T\left(x_{1}\right)\right)\right)>0
$$

and we get

$$
\varphi\left(d\left(x_{1}, x_{2}\right)\right) \leq \varphi\left(d\left(x_{0}, x_{1}\right)\right)
$$

Since φ is increasing, we get that $d\left(x_{1}, x_{2}\right) \leq d\left(x_{0}, x_{1}\right)$.
Since $x_{1} \in T\left(x_{0}\right), x_{2} \in T\left(x_{1}\right), x_{0} \leq x_{1}$ and because T is strong increasing $\Rightarrow x_{1} \leq x_{2}$.
Suppose $x_{1} \neq x_{2}$. Otherwise $x_{1} \in F i x(T) \Rightarrow F i x(T) \neq \emptyset$.
Using Lemma 2.1 for any $x_{2} \in T\left(x_{1}\right)$ there exists $x_{3} \in T\left(x_{2}\right)$ such that $d\left(x_{2}, x_{3}\right) \leq$ $H_{d}\left(T\left(x_{1}\right), T\left(x_{2}\right)\right)+\tilde{\varepsilon}$

$$
\Rightarrow \varphi\left(d\left(x_{2}, x_{3}\right)\right) \leq \varphi\left(H_{d}\left(T\left(x_{1}\right), T\left(x_{2}\right)\right)+\tilde{\varepsilon}\right) \leq \varphi\left(H_{d}\left(T\left(x_{1}\right), T\left(x_{2}\right)\right)\right)+\tilde{\varepsilon}
$$

Since $d\left(x_{1}, x_{2}\right)>0$ we get $\varphi\left(d\left(x_{1}, x_{2}\right)\right)>0$.
Thus

$$
\varphi\left(H_{d}\left(T\left(x_{1}\right), T\left(x_{2}\right)\right)\right) \leq \varphi\left(d\left(x_{1}, x_{2}\right)\right)-\psi\left(d\left(x_{1}, x_{2}\right)\right)<\varphi\left(d\left(x_{1}, x_{2}\right)\right) .
$$

We choose

$$
\tilde{\varepsilon}:=\varphi\left(d\left(x_{1}, x_{2}\right)\right)-\varphi\left(H_{d}\left(T\left(x_{1}\right), T\left(x_{2}\right)\right)\right)>0,
$$

and we get

$$
\varphi\left(d\left(x_{2}, x_{3}\right)\right) \leq \varphi\left(d\left(x_{1}, x_{2}\right)\right)
$$

By the monotonicity of φ, we get that $\varphi\left(d\left(x_{2}, x_{3}\right)\right) \leq \varphi\left(d\left(x_{1}, x_{2}\right)\right) \leq \varphi\left(d\left(x_{0}, x_{1}\right)\right)$. By induction, we obtain a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X with the following properties:
(a) $x_{n+1} \in T\left(x_{n}\right)$, for all $n \in \mathbb{N}$;
(b) $x_{n} \leq x_{n+1}$, for all $n \in \mathbb{N}$;
(c) $\varphi\left(d\left(x_{n}, x_{n+1}\right)\right) \leq \varphi\left(d\left(x_{n-1}, x_{n}\right)\right)$, for all $n \in \mathbb{N}, \varphi$ is increasing;
(c') $d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n-1}, x_{n}\right), \forall n \in \mathbb{N}$;
(d) $\varphi\left(d\left(x_{n}, x_{n+1}\right)\right) \leq \varphi\left(d\left(x_{n-1}, x_{n}\right)\right)-\psi\left(d\left(x_{n-1}, x_{n}\right)\right)+\tilde{\varepsilon}, \forall \tilde{\varepsilon}>0$.

Then by $\left(c^{\prime}\right)$ we have: $0 \leq \delta_{n+1}:=d\left(x_{n}, x_{n+1}\right)$ is decreasing.
Thus $\lim _{n \rightarrow \infty} \delta_{n}=\delta \geq 0$.
We show that $\delta=0$ (by contradiction).
Assume the contrary, that is $\delta>0$. Then by letting $n \rightarrow \infty$ in (d) we get:

$$
\varphi(\delta)=\lim _{n \rightarrow \infty} \varphi\left(\delta_{n+1}\right) \leq \lim _{n \rightarrow \infty} \varphi\left(\delta_{n}\right)-\lim _{n \rightarrow \infty} \psi\left(\delta_{n}\right)+\tilde{\varepsilon}<\varphi(\delta)-\lim _{n \rightarrow \infty} \psi\left(\delta_{n}\right)+\tilde{\varepsilon}
$$

We choose $\tilde{\varepsilon}<\lim _{n \rightarrow \infty} \psi\left(\delta_{n}\right)>0$. Then we obtain: $0<-\lim _{n \rightarrow \infty} \psi\left(\delta_{n}\right)+\tilde{\varepsilon}<0$ gives a contradiction. Follows that $\delta=0$. Further, we proof by contradiction that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence.
Suppose that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is not a Cauchy sequence on $X \Rightarrow \exists \varepsilon>0$ for which we can find two sub-sequences $\left(x_{n(k)}\right)$ and $\left(x_{m(k)}\right)$ of $\left(x_{n}\right)_{n \in \mathbb{N}}$ with $n(k)>m(k) \geq k$ such that

$$
\begin{equation*}
d\left(x_{n(k)}, x_{m(k)}\right) \geq s \cdot \varepsilon, k=1,2, \ldots \tag{2.1}
\end{equation*}
$$

We can choose $n(k)$ to be the smallest integer with property $n(k)>m(k) \geq k$ and satisfying (2.1), follows that $d\left(x_{n(k)-1}, x_{m(k)}\right)<\varepsilon$.

By triangle inequality we have:

$$
\begin{gathered}
s \varepsilon \leq r_{k}=d\left(x_{n(k)}, x_{m(k)}\right) \leq s\left[d\left(x_{n(k)}, x_{n(k)-1}\right)+d\left(x_{n(k)-1}, x_{m(k)}\right)\right]< \\
<s \cdot d\left(x_{n(k)}, x_{n(k)-1}\right)+s \cdot \varepsilon .
\end{gathered}
$$

Letting $k \rightarrow \infty$ we get $\lim _{k \rightarrow \infty} r_{k}=s \cdot \varepsilon$.
Since $n(k)>m(k)$ we have, using the property (b) that $x_{n(k)} \geq x_{m(k)}$ or $x_{m(k)} \leq$ $x_{n(k)}$, we put $x=x_{m(k)}$ and $y=x_{n(k)}$ in $(i) \Rightarrow$

$$
\varphi\left(H_{d}\left(T\left(x_{m(k)}\right), T\left(x_{n(k)}\right)\right)\right) \leq \varphi\left(d\left(x_{m(k)}, x_{n(k)}\right)\right)-\psi\left(d\left(x_{m(k)}, x_{n(k)}\right)\right) .
$$

We have:

$$
\begin{gathered}
\Rightarrow \varphi\left(d\left(x_{m(k)+1}, x_{n(k)+1}\right)\right) \leq \varphi\left(H_{d}\left(T\left(x_{m(k)}\right), T\left(x_{n(k)}\right)\right)+\tilde{\varepsilon}\right) \\
\leq \varphi\left(H_{d}\left(T\left(x_{m(k)}\right), T\left(x_{n(k)}\right)\right)\right)+\tilde{\varepsilon} \leq \varphi\left(d\left(x_{m(k)}, x_{n(k)}\right)\right)-\psi\left(d\left(x_{m(k)}, x_{n(k)}\right)\right)+\tilde{\varepsilon}
\end{gathered}
$$

follows that

$$
\begin{gathered}
\varphi\left(r_{k+1}\right) \leq \varphi\left(r_{k}\right)-\psi\left(r_{k}\right)+\tilde{\varepsilon} \text { and letting } k \rightarrow \infty \Rightarrow \varphi(s \varepsilon) \leq \varphi(s \varepsilon)-\lim _{k \rightarrow \infty} \psi\left(r_{k}\right)+\tilde{\varepsilon} \\
\Rightarrow 0 \leq-\lim _{k \rightarrow \infty} \psi\left(r_{k}\right)+\tilde{\varepsilon} \text { and if we chose } \tilde{\varepsilon}<\lim _{k \rightarrow \infty} \psi\left(r_{k}\right)>0
\end{gathered}
$$

$\Rightarrow 0<0$ which gives a contradiction.
Therefore $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in a complete b-metric space $(X, d) \Rightarrow$ $\exists x^{*} \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x^{*}$.

Now, we show that $x^{*} \in T\left(x^{*}\right)$

$$
\begin{aligned}
D_{d}\left(x^{*}, T\left(x^{*}\right)\right) & \leq s\left[d\left(x^{*}, x_{n+1}\right)+D_{d}\left(x_{n+1}, T\left(x^{*}\right)\right)\right] \\
& \leq s \cdot d\left(x^{*}, x_{n+1}\right)+s \cdot H_{d}\left(T\left(x_{n}\right), T\left(x^{*}\right)\right) \\
& \Rightarrow D_{d}\left(x^{*}, T\left(x^{*}\right)\right)-s \cdot d\left(x^{*}, x_{n+1}\right) \leq s \cdot H_{d}\left(T\left(x_{n}\right), T\left(x^{*}\right)\right) \\
& \Rightarrow \varphi\left(D_{d}\left(x^{*}, T\left(x^{*}\right)\right)-s \cdot d\left(x^{*}, x_{n+1}\right)\right) \leq s \cdot \varphi\left(H_{d}\left(T\left(x_{n}\right), T\left(x^{*}\right)\right)\right) \\
& x_{n} \leq x^{*} \\
& \frac{<}{(i)} s\left[\varphi\left(d\left(x_{n}, x^{*}\right)\right)-\psi\left(d\left(x_{n}, x^{*}\right)\right)\right] .
\end{aligned}
$$

Letting $n \rightarrow \infty$ we obtain that:

$$
\varphi\left(D_{d}\left(x^{*}, T\left(x^{*}\right)\right)-0\right) \leq s[\varphi(0)-0] .
$$

On the other hand $\varphi(t)=0 \Leftrightarrow t=0$ and T has closed values, so $x^{*} \in T\left(x^{*}\right) \Rightarrow$ $F i x(T) \neq \emptyset$.

Our next result is a fixed point theorem for a multi-valued operator satisfying a (φ, ψ)-contraction type condition on the whole space.

Theorem 2.3. Let (X, d) be a complete b-metric space with constant $s \geq 1$ and $T: X \rightarrow P_{c l}(X)$ a multi-valued operator for which there exist two functionals $\varphi \in \Phi$ and $\psi \in \Psi$ such that for all $(x, y) \in X \times X$ we have:

$$
\varphi\left(H_{d}(T(x), T(y))\right) \leq \varphi(d(x, y))-\psi(d(x, y)) .
$$

Then
(a) $\operatorname{Fix}(T) \neq \emptyset$ and there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X of successive approximations of T starting from any $\left(x_{0}, x_{1}\right) \in G r a p h(T)$ which converges to a fixed point x^{*} of T.
(b) If additionally $\operatorname{SFix}(T) \neq \emptyset$ and $\psi \in \Psi$ is a continuous mapping then $\operatorname{Fix}(T)=\operatorname{SFix}(T)=\left\{x^{*}\right\}$.

Proof. (a) is the same with the proof of Theorem 2.2.
(b) Let $y^{*} \in \operatorname{SFix}(T)$. We consider $y \in \operatorname{SFix}(T)$ such that $y \neq y^{*}$.

Then $d\left(y, y^{*}\right)=H_{d}\left(T(y), T\left(y^{*}\right)\right) \Rightarrow$

$$
\Rightarrow \varphi\left(d\left(y, y^{*}\right)\right)=\varphi\left(H_{d}\left(T(y), T\left(y^{*}\right)\right)\right) \leq \varphi\left(d\left(y, y^{*}\right)\right)-\psi\left(d\left(y, y^{*}\right)\right)
$$

Since $y \neq y^{*} \Rightarrow \varphi\left(d\left(y, y^{*}\right)\right)>0$ and since ψ is continuous mapping that means $\psi\left(d\left(y, y^{*}\right)\right)>0$.

Thus $0 \leq-\psi\left(d\left(y, y^{*}\right)\right)$ and we have a contradiction

$$
\Rightarrow y=y^{*} \Rightarrow \operatorname{SFix}(T)=\left\{y^{*}\right\} .
$$

Let $x^{*} \in \operatorname{Fix}(T)$ with $x^{*} \neq y^{*} \Rightarrow d\left(x^{*}, y^{*}\right)>0 \Rightarrow \varphi\left(d\left(x^{*}, y^{*}\right)\right)>0$.
We have $d\left(x^{*}, y^{*}\right)=D_{d}\left(x^{*}, T\left(y^{*}\right)\right) \leq H_{d}\left(T\left(x^{*}\right), T\left(y^{*}\right)\right)$

$$
\begin{gathered}
\Rightarrow \varphi\left(d\left(x^{*}, y^{*}\right)\right) \leq \varphi\left(H_{d}\left(T\left(x^{*}\right), T\left(y^{*}\right)\right)\right) \leq \varphi\left(d\left(x^{*}, y^{*}\right)\right)-\psi\left(d\left(x^{*}, y^{*}\right)\right) \\
\Rightarrow 0 \leq-\psi\left(d\left(x^{*}, y^{*}\right)\right), \text { which is a contradiction. }
\end{gathered}
$$

Finally we have $\operatorname{SFix}(T)=\operatorname{Fix}(T)=\left\{x^{*}\right\}$.
For related results see [3], [9].

3. Coupled fixed point theorems for multi-valued (φ, ψ) CONTRACTIONS

We have the following useful definition.
Definition 3.1. Let (X, \leq) be a partially ordered set and $G: X \times X \rightarrow P(X)$. We say that G has the strict mixed monotone property with respect to the partial order " \leq " if the following implications hold:
a) $x_{0} \leq x_{1} \Rightarrow G\left(x_{0}, y\right) \leq_{s t} G\left(x_{1}, y\right), \forall y \in X$
b) $y_{0} \geq y_{1} \Rightarrow G\left(x, y_{0}\right) \leq_{s t} G\left(x, y_{1}\right), \forall x \in X$.

We recall now the following theorem, which was the starting point in the coupled fixed point theory for single-valued operators.

Theorem 3.2 (Bhaskar and Lakshmikantham). Let (X, \leq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Let $F: X \times X \rightarrow X$ be a continuous mapping having the mixed monotone property on X. Assume that there exists a constant $k \in[0,1)$ with

$$
\begin{equation*}
d(F(x, y), F(u, v)) \leq \frac{k}{2}[d(x, u)+d(y, v)] \text { for each } x \leq u, y \geq v \tag{3.1}
\end{equation*}
$$

If there exist $x_{0}, y_{0} \in X$ such that

$$
x_{0} \leq F\left(x_{0}, y_{0}\right), y_{0} \geq F\left(y_{0}, x_{0}\right)
$$

then there exist $x^{*}, y^{*} \in X$ such that

$$
\left\{\begin{array}{l}
x^{*}=F\left(x^{*}, y^{*}\right) \\
y^{*}=F\left(y^{*}, x^{*}\right)
\end{array}\right.
$$

Remark 3.3. The hypothesis $F: X \times X \rightarrow X$ is a continuous mapping can be replaced by Assumption 1: X has the property that:
(a) if a non-decreasing sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X converges to x then $x_{n} \leq x$, for all $n \in \mathbb{N}$;
(b) if a non-increasing sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X converges to x then $x_{n} \geq x$, for all $n \in \mathbb{N}$.

Later on, Luong and Thuan use a more general contraction type condition:

$$
\begin{equation*}
\varphi(d(F(x, y), F(u, v))) \leq \frac{1}{2} \varphi(d(x, u)+d(y, v))-\psi(d(x, u)+d(y, v)) \tag{3.2}
\end{equation*}
$$

where $\varphi, \psi:[0, \infty) \rightarrow[0, \infty)$ are functions satisfying some appropriate conditions and $(x, y),(u, v) \in X \times X$ with $x \leq u, y \geq v$.

Remark 3.4. For $\varphi(t)=t$ and $\psi(t)=\frac{1-k}{2} \cdot t$ with $0 \leq k<1$ condition (3.2) reduces to (3.1).

Another generalization of Bhaskar and Lakshmikantham's theorem was given by V. Berinde. In [2] the following class of mappings is introduced.

Remark 3.5. The functional $\varphi:[0, \infty) \rightarrow[0, \infty)$ belongs to $\tilde{\Phi}$ if it satisfy the following conditions:

$$
\begin{aligned}
& \left(i_{\varphi}\right) \varphi \text { is continuous and (strictly) increasing; } \\
& \left(i i_{\varphi}\right) \varphi(t)<t \text { for all } t>0 \\
& \left(i i i_{\varphi}\right) \varphi(t+s) \leq \varphi(t)+\varphi(s), \forall t, s \in[0, \infty)
\end{aligned}
$$

As before, we recall that the functional $\psi:[0, \infty) \rightarrow[0, \infty)$ belongs to the set Ψ if it satisfy the following conditions:

$$
\begin{aligned}
& \left(i_{\psi}\right) \lim _{t \rightarrow r} \psi(t)>0 \text { for all } r>0 \\
& \left(i i_{\psi}\right) \lim _{t \rightarrow 0_{+}} \psi(t)=0
\end{aligned}
$$

Theorem 3.6 (V. Berinde [2]). Let (X, \leq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Let F : $X \times X \rightarrow X$ be a mixed monotone mapping for which there exist $\varphi \in \tilde{\Phi}$ and $\psi \in \Psi$ such that for all $x, y, u, v \in X$ with $x \geq u, y \leq v$.

$$
\begin{aligned}
& \varphi\left(\frac{d(F(x, y), F(u, v))+d(F(y, x), F(v, u))}{2}\right) \leq \\
& \leq \varphi\left(\frac{d(x, u)+d(y, v)}{2}\right)-\psi\left(\frac{d(x, u)+d(y, v)}{2}\right)
\end{aligned}
$$

Suppose either
(a) F is continuous mapping, or
(b) X satisfies Assumption 1.

If there exist $x_{0}, y_{0} \in X$ such that

$$
x_{0} \leq F\left(x_{0}, y_{0}\right) \text { and } y_{0} \geq F\left(y_{0}, x_{0}\right)
$$

or

$$
x_{0} \geq F\left(x_{0}, y_{0}\right) \text { and } y_{0} \leq F\left(y_{0}, x_{0}\right)
$$

then there exist $x^{*}, y^{*} \in X$ such that

$$
\left\{\begin{array}{l}
x^{*}=F\left(x^{*}, y^{*}\right) \\
y^{*}=F\left(y^{*}, x^{*}\right)
\end{array}\right.
$$

The first main result of this section is: the following generalization to the multivalued case of Theorem 3.6.

Theorem 3.7. Let (X, \leq, d) be an ordered b-metric space with constant $s \geq 1$ such that the b-metric d is complete. Let $F: X \times X \rightarrow P_{c l}(X)$ be a multi-valued operator having the strict mixed monotone property with respect to " \leq ". Assume that:
i) there exist two functionals $\varphi \in \Phi$ and $\psi \in \Psi$ such that

$$
\begin{aligned}
& \varphi\left(H_{d}(F(x, y), F(u, v))+H_{d}(F(y, x), F(v, u))\right) \leq \\
& \quad \leq \varphi(d(x, u)+d(y, v))-\psi(d(x, u)+d(y, v))
\end{aligned}
$$

for all $(x, y),(u, v) \in X \times X$ with $x \leq u, y \geq v$.
ii) there exist $\left(x_{0}, y_{0}\right) \in X \times X$ and $\left(x_{1}, y_{1}\right) \in F\left(x_{0}, y_{0}\right) \times F\left(y_{0}, x_{0}\right)$ such that $x_{0} \leq x_{1}$ and $y_{0} \geq y_{1}$.
Then there exist a pair $\left(x^{*}, y^{*}\right) \in X \times X$ with

$$
\left\{\begin{array}{l}
x^{*} \in F\left(x^{*}, y^{*}\right) \\
y^{*} \in F\left(y^{*}, x^{*}\right)
\end{array}\right.
$$

and two sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ in X with

$$
\left\{\begin{array}{l}
x_{n+1} \in F\left(x_{n}, y_{n}\right) \\
y_{n+1} \in F\left(y_{n}, x_{n}\right)
\end{array}\right.
$$

for all $n \in \mathbb{N}$, such that $x_{n} \rightarrow x^{*}$ and $y_{n} \rightarrow y^{*}$ as $n \rightarrow \infty$.
Proof. Let $Z=X \times X$ and consider on Z the partial order relation " \leq_{p} " generated by " \leq " and the metric $\tilde{d}: Z \times Z \rightarrow \mathbb{R}_{+}$defined by:

$$
\tilde{d}((x, y),(u, v))=d(x, u)+d(y, v), \forall(x, y), \quad(u, v) \in Z
$$

Then $\left(Z, \leq_{p}, \tilde{d}\right)$ is an ordered complete b-metric space.
Consider $G: Z \rightarrow P(Z), G(x, y)=F(x, y) \times F(y, x)$, for all $(x, y) \in Z$.
Since F is strict mixed monotone multi-valued operator follow that G is strong increasing multi-valued operator with respect to " \leq_{p} ".

The multi-valued operator F has a closed value, so the multi-valued operator G has a closed value too.

Let $z=(x, y) \in Z$ and $w=(u, v) \in Z$. We have:

$$
\begin{gathered}
H_{\tilde{d}}(G(z), G(w))=H_{\tilde{d}}(F(x, y) \times F(y, x), F(u, v) \times F(v, u)) \leq \\
\leq H_{d}(F(x, y), F(u, v))+H_{d}(F(y, x), F(v, u))
\end{gathered}
$$

Because φ is increasing we have that

$$
\begin{gathered}
\varphi\left(H_{\tilde{d}}(G(z), G(w))\right) \leq \varphi\left(H_{d}(F(x, y), F(u, v))+H_{d}(F(y, x), F(v, u))\right) \\
\frac{\leq}{(i)} \varphi(d(x, u)+d(y, v))-\psi(d(x, u)+d(y, v)) \\
=\varphi(\tilde{d}(z, w))-\psi(\tilde{d}(z, w))
\end{gathered}
$$

Follow that G is (φ, ψ)-contraction with respect to \tilde{d} for all $z=(x, y) \in Z$ and $w=(u, v) \in Z$ with $z \leq_{p} w$.

By $i i)$, there exist $z_{0}=\left(x_{0}, y_{0}\right) \in Z$ and $z_{1}=\left(x_{1}, y_{1}\right) \in F\left(x_{0}, y_{0}\right) \times F\left(y_{0}, x_{0}\right)$ such that $x_{0} \leq x_{1}$ and $y_{0} \geq y_{1}$, so $z_{0} \leq_{w k} G\left(z_{0}\right)$.

We can apply Theorem 2.2 for the multi-valued operator G and we obtained that $\operatorname{Fix}(G) \neq \emptyset$, i.e. there exists $\left(x^{*}, y^{*}\right) \in Z$ such that $\left(x^{*}, y^{*}\right) \in G\left(x^{*}, y^{*}\right) \Rightarrow$ $\left(x^{*}, y^{*}\right) \in F\left(x^{*}, y^{*}\right) \times F\left(x^{*}, y^{*}\right)$ or

$$
\left\{\begin{array}{l}
x^{*} \in F\left(x^{*}, y^{*}\right) \\
y^{*} \in F\left(y^{*}, x^{*}\right)
\end{array}\right.
$$

and there exists sequence $z_{n}=\left(x_{n}, y_{n}\right) \in Z$ of successive approximation of G starting from $\left(x_{0}, y_{0}\right) \in Z$ such that $\left(x_{n}, y_{n}\right) \rightarrow\left(x^{*}, y^{*}\right)$ as $n \rightarrow \infty$.

The following result is a global existence and uniqueness theorem for a multivalued operator.

Theorem 3.8. Let (X, d) be a complete b-metric space with constant $s \geq 1$. Let $F: X \times X \rightarrow P_{c l}(X)$ be a multi-valued operator for which there exist two functionals $\varphi \in \Phi$ and $\psi \in \Psi$ such that

$$
\begin{gathered}
\varphi\left(H_{d}(F(x, y), F(u, v))+H_{d}(F(y, x), F(v, u))\right) \leq \\
\leq \varphi(d(x, u)+d(y, v))-\psi(d(x, u)+d(y, v))
\end{gathered}
$$

for all $(x, y),(u, v) \in X \times X$. Then the following conclusions hold:
a) there exist $\left(x^{*}, y^{*}\right) \in X \times X$ a solution of the coupled fixed point problem (P) and two sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ in X with $x_{n+1} \in F\left(x_{n}, y_{n}\right)$, $y_{n+1} \in F\left(y_{n}, x_{n}\right)$ for all $n \in \mathbb{N}$, starting from the arbitrary point $\left(x_{0}, y_{0}\right) \in$ $X \times X$ and $\left(x_{1}, y_{1}\right) \in F\left(x_{0}, y_{0}\right) \times F\left(y_{0}, x_{0}\right)$ such that $x_{n} \rightarrow x^{*}$ and $y_{n} \rightarrow y^{*}$ as $n \rightarrow \infty$.
b) If, additionally, we suppose that there exists $\left(u^{*}, v^{*}\right) \in X \times X$ such that $F\left(u^{*}, v^{*}\right)=\left\{u^{*}\right\}, F\left(v^{*}, u^{*}\right)=\left\{v^{*}\right\}$ and the functional $\psi:[0, \infty) \rightarrow[0, \infty)$ is continuous, then CFix $(F)=\left\{\left(u^{*}, v^{*}\right)\right\}$.

Proof. Consider the functional $\tilde{d}: Z \times Z \rightarrow \mathbb{R}_{+}$, where $Z=X \times X$, defined by

$$
\tilde{d}((x, y),(u, v))=d(x, u)+d(y, v), \forall(x, y), \quad(u, v) \in Z
$$

and the operator $G: Z \rightarrow P(Z)$ defined by

$$
G(x, y)=F(x, y) \times F(y, x), \forall(x, y) \in Z
$$

We can apply Theorem 2.3 of G and we obtain the conclusion a) of this theorem.
b) From the hypotheses $\left\{\begin{array}{l}F\left(u^{*}, v^{*}\right)=\left\{u^{*}\right\} \\ F\left(v^{*}, u^{*}\right)=\left\{v^{*}\right\}\end{array}\right.$ we have $S F i x(G) \neq \emptyset$, and because $\psi \in \Psi$ is a continuous mapping, we can apply Theorem 2.3 b) of G and we obtain $\operatorname{SFix}(G)=\operatorname{Fix}(G)=\left\{\left(u^{*}, v^{*}\right)\right\}$ which means that the coupled fixed problem (P) of F has a unique solution $\left(u^{*}, v^{*}\right) \in Z$.
Corollary 3.9. Let (X, \leq, d) be an ordered b-metric space with constant $s \geq 1$ such that the b-metric d is complete. Let $F: X \times X \rightarrow P_{c l}(X)$ be a multi-valued operator having the strict mixed monotone property with respect to " \leq ". Assume that:
i) there exists a functional $\psi \in \Psi$ such that

$$
\begin{aligned}
& H_{d}(F(x, y), F(u, v))+H_{d}(F(y, x), F(v, u)) \leq \\
& \quad \leq d(x, u)+d(y, v)-\psi(d(x, u)+d(y, v))
\end{aligned}
$$

for all $(x, y),(u, v) \in X \times X$ with $x \leq u, y \geq v$.
ii) there exist $\left(x_{0}, y_{0}\right) \in X \times X$ and $\left(x_{1}, y_{1}\right) \in F\left(x_{0}, y_{0}\right) \times F\left(y_{0}, x_{0}\right)$ such that $x_{0} \leq x_{1}$ and $y_{0} \geq y_{1}$.
Then, there exist a pair $\left(x^{*}, y^{*}\right) \in X \times X$ with

$$
\left\{\begin{array}{l}
x^{*} \in F\left(x^{*}, y^{*}\right) \\
y^{*} \in F\left(y^{*}, x^{*}\right)
\end{array}\right.
$$

and two sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ in X with

$$
\left\{\begin{array}{l}
x_{n+1} \in F\left(x_{n}, y_{n}\right) \\
y_{n+1} \in F\left(y_{n}, x_{n}\right)
\end{array}\right.
$$

for all $n \in \mathbb{N}$, such that $x_{n} \rightarrow x^{*}$ and $y_{n} \rightarrow y^{*}$ as $n \rightarrow \infty$.
Proof. In Theorem 3.7 we take $\varphi(t)=t, \forall t \in[0, \infty)$ and hence we get Corollary 3.9.

4. Properties of the solutions of the coupled fixed point problem

Theorem 4.1 (Data dependence). Let (X, d) be a complete b-metric space with constant $s \geq 1$. Let $F: X \times X \rightarrow P_{c l}(X)$ and $S: X \times X \rightarrow P_{c l}(X)$ be two multi-valued operators. Suppose that:
i) there exist two functionals $\varphi \in \Phi$ and $\psi \in \Psi, \psi$ is continuous such that

$$
\begin{gathered}
\varphi\left(H_{d}(F(x, y), F(u, v))+H_{d}(F(y, x), F(v, u))\right) \leq \\
\quad \leq \varphi(d(x, u)+d(y, v))-\psi(d(x, u)+d(y, v))
\end{gathered}
$$

for all $(x, y),(u, v) \in X \times X$.
ii) there exists $\left(x^{*}, y^{*}\right) \in X \times X$ such that

$$
\left\{\begin{array}{l}
F\left(x^{*}, y^{*}\right)=\left\{x^{*}\right\} \\
F\left(y^{*}, x^{*}\right)=\left\{y^{*}\right\}
\end{array}\right.
$$

iii) there exists $\left(u^{*}, v^{*}\right) \in X \times X$ such that

$$
\left\{\begin{array}{l}
u^{*} \in S\left(u^{*}, v^{*}\right) \\
v^{*} \in S\left(v^{*}, u^{*}\right)
\end{array}\right.
$$

iv) there exists $\eta>0$ such that $H_{d}(F(x, y), S(x, y)) \leq \eta, \forall(x, y) \in X \times X$.
v)

$$
\left\{\begin{array}{l}
\varphi(t)-s \varphi(t)+s \psi(t)>0, \forall t>0 \\
\varphi(t)-s \varphi(t)+s \psi(t)=0 \Rightarrow t=0
\end{array}\right.
$$

Then, we have the following estimation:

$$
\varphi_{\tilde{d}}(C F i x(S), C F i x(F)) \leq \sup \left\{t \in \mathbb{R}_{+} / \varphi(t)-s \varphi(t)+s \psi(t) \leq 2 s \eta\right\}
$$

Proof. Let $\left(u^{*}, v^{*}\right) \in X \times X$ such that

$$
\left\{\begin{array}{l}
u^{*} \in S\left(u^{*}, v^{*}\right) \\
v^{*} \in S\left(v^{*}, u^{*}\right)
\end{array}\right.
$$

and $\left(x^{*}, y^{*}\right) \in X \times X$ such that

$$
\left\{\begin{array}{l}
F\left(x^{*}, y^{*}\right)=\left\{x^{*}\right\} \\
F\left(y^{*}, x^{*}\right)=\left\{y^{*}\right\}
\end{array}\right.
$$

We denote by $Z=X \times X$ and consider the following functional $\tilde{d}: Z \times Z \rightarrow \mathbb{R}_{+}$defined by

$$
\tilde{d}((x, y),(u, v))=d(x, u)+d(y, v), \forall(x, y),(u, v) \in Z .
$$

We have:

$$
\begin{aligned}
\tilde{d}\left(\left(x^{*}, y^{*}\right),\left(u^{*}, v^{*}\right)\right) & =D_{\tilde{d}}\left(\left(u^{*}, v^{*}\right), F\left(x^{*}, y^{*}\right) \times F\left(y^{*}, x^{*}\right)\right) \\
& =D_{d}\left(u^{*}, F\left(x^{*}, y^{*}\right)\right)+D_{d}\left(v^{*}, F\left(y^{*}, x^{*}\right)\right) \\
& \leq H_{d}\left(S\left(u^{*}, v^{*}\right), F\left(x^{*}, y^{*}\right)\right)+H_{d}\left(S\left(v^{*}, u^{*}\right), F\left(y^{*}, x^{*}\right)\right) \\
& \leq s\left[H_{d}\left(S\left(u^{*}, v^{*}\right), F\left(u^{*}, v^{*}\right)\right)+H_{d}\left(F\left(u^{*}, v^{*}\right), F\left(x^{*}, y^{*}\right)\right)\right] \\
& +s\left[H_{d}\left(S\left(v^{*}, u^{*}\right), F\left(v^{*}, u^{*}\right)\right)+H_{d}\left(F\left(v^{*}, u^{*}\right), F\left(y^{*}, x^{*}\right)\right)\right] \\
& \leq 2 s \eta+s\left[H_{d}\left(F\left(x^{*}, y^{*}\right), F\left(u^{*}, v^{*}\right)\right)+H_{d}\left(F\left(y^{*}, x^{*}\right), F\left(v^{*}, u^{*}\right)\right)\right]
\end{aligned}
$$

On the other hand, φ is increasing, so:

$$
\begin{aligned}
& \varphi\left(\tilde{d}\left(\left(x^{*}, y^{*}\right),\left(u^{*}, v^{*}\right)\right)\right) \\
& \leq 2 s \eta+s \varphi\left(H_{d}\left(F\left(x^{*}, y^{*}\right), F\left(u^{*}, v^{*}\right)\right)+H_{d}\left(F\left(y^{*}, x^{*}\right), F\left(v^{*}, u^{*}\right)\right)\right) \\
& \leq 2 s \eta+s \varphi\left(\tilde{d}\left(\left(x^{*}, y^{*}\right),\left(u^{*}, v^{*}\right)\right)\right)-s \psi\left(\tilde{d}\left(\left(x^{*}, y^{*}\right),\left(u^{*}, v^{*}\right)\right)\right) \\
& \Rightarrow \varphi\left(\tilde{d}\left(\left(x^{*}, y^{*}\right),\left(u^{*}, v^{*}\right)\right)\right)-s \varphi\left(\tilde{d}\left(\left(x^{*}, y^{*}\right),\left(u^{*}, v^{*}\right)\right)\right)+s \psi\left(\tilde{d}\left(\left(x^{*}, y^{*}\right),\left(u^{*}, v^{*}\right)\right)\right) \leq 2 s \eta .
\end{aligned}
$$

That means

$$
\begin{aligned}
& \tilde{d}\left(\left(x^{*}, y^{*}\right),\left(u^{*}, v^{*}\right)\right) \leq \sup \left\{t \in \mathbb{R}_{+} / \varphi(t)-s \varphi(t)+s \psi(t) \leq 2 s \eta\right\} \\
\Rightarrow & D_{\tilde{d}}\left(\left(u^{*}, v^{*}\right), C F i x(F)\right) \leq \sup \left\{t \in \mathbb{R}_{+} / \varphi(t)-s \varphi(t)+s \psi(t) \leq 2 s \eta\right\} \\
\Rightarrow & \varphi_{\tilde{d}}(C F i x(S), C F i x(F)) \leq \sup \left\{t \in \mathbb{R}_{+} / \varphi(t)-s \varphi(t)+s \psi(t) \leq 2 s \eta\right\}
\end{aligned}
$$

Consider the system of inclusions

$$
\left\{\begin{array}{l}
x \in F(x, y) \tag{4.1}\\
y \in F(y, x)
\end{array}\right.
$$

and $\tilde{d}: Z \times Z \rightarrow \mathbb{R}_{+}$, where $Z=X \times X$, defined by:

$$
\tilde{d}((x, y),(u, v))=d(x, u)+d(y, v), \forall(x, y),(u, v) \in Z
$$

By definition, the system of inclusions (4.1) is well-posed with respect to $D_{\tilde{d}}$ if:
(i) there exists $w^{*}=\left(u^{*}, v^{*}\right) \in Z$ such that

$$
\left\{\begin{array}{l}
F\left(u^{*}, v^{*}\right)=\left\{u^{*}\right\} \\
F\left(v^{*}, u^{*}\right)=\left\{v^{*}\right\}
\end{array}\right.
$$

(ii) if $w_{n}=\left(u_{n}, v_{n}\right)_{n \in \mathbb{N}}$ is a sequence in Z with the following properties $D_{d}\left(u_{n}, F\left(u_{n}, v_{n}\right)\right) \rightarrow 0$ respectively $D_{d}\left(v_{n}, F\left(v_{n}, u_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$, then $d\left(u_{n}, u^{*}\right)+d\left(v_{n}, v^{*}\right) \rightarrow 0$ as $n \rightarrow \infty$ or $\tilde{d}\left(\left(u_{n}, v_{n}\right),\left(u^{*}, v^{*}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$.

Theorem 4.2 (Well-posedness). We suppose that all the hypotheses of Theorem 3.8 take place. If additionally we have:

$$
\left\{\begin{array}{l}
\varphi(t)-s \varphi(t)+s \psi(t)>0, \forall t>0(*) \\
\varphi\left(t_{n}\right)-s \varphi\left(t_{n}\right)+s \psi\left(t_{n}\right) \rightarrow 0 \Rightarrow t_{n} \rightarrow 0 \text { as } n \rightarrow \infty(* *)
\end{array}\right.
$$

Then, the system of inclusions (4.1) is well-posed with respect to D_{d}.
Proof. From Theorem 3.8 follows that the system of inclusions (4.1) has a unique solution $w^{*}=\left(u^{*}, v^{*}\right) \in Z$.

Let $w_{n}=\left(u_{n}, v_{n}\right)_{n \in \mathbb{N}}$ in Z with $D_{d}\left(u_{n}, F\left(u_{n}, v_{n}\right)\right) \rightarrow 0$, respectively $D_{d}\left(v_{n}, F\left(v_{n}, u_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$.

We have:

$$
\begin{aligned}
\tilde{d}\left(\left(u_{n}, v_{n}\right),\left(u^{*}, v^{*}\right)\right) & =D_{\tilde{d}}\left(\left(u_{n}, v_{n}\right), F\left(u^{*}, v^{*}\right) \times F\left(v^{*}, u^{*}\right)\right) \\
& =D_{d}\left(u_{n}, F\left(u^{*}, v^{*}\right)\right)+D_{d}\left(v_{n}, F\left(v^{*}, u^{*}\right)\right) \\
& \leq s\left[D_{d}\left(u_{n}, F\left(u_{n}, v_{n}\right)\right)+H_{d}\left(F\left(u_{n}, v_{n}\right), F\left(u^{*}, v^{*}\right)\right)\right] \\
& +s\left[D_{d}\left(v_{n}, F\left(v_{n}, u_{n}\right)\right)+H_{d}\left(F\left(v_{n}, u_{n}\right), F\left(v^{*}, u^{*}\right)\right)\right] .
\end{aligned}
$$

From φ is an increasing mapping follows that:

$$
\begin{aligned}
\varphi\left(\tilde{d}\left(\left(u_{n}, v_{n}\right),\left(u^{*}, v^{*}\right)\right)\right) & \leq s D_{\tilde{d}}\left(\left(u_{n}, v_{n}\right), F\left(u_{n}, v_{n}\right) \times F\left(v_{n}, u_{n}\right)\right)+ \\
& +s \varphi\left(H_{d}\left(F\left(u_{n}, v_{n}\right), F\left(u^{*}, v^{*}\right)\right)+H_{d}\left(F\left(v_{n}, u_{n}\right), F\left(v^{*}, u^{*}\right)\right)\right) \\
& \leq s D_{\tilde{d}}\left(\left(u_{n}, v_{n}\right), F\left(u_{n}, v_{n}\right) \times F\left(v_{n}, u_{n}\right)\right)+ \\
& +s \varphi\left(\tilde{d}\left(\left(u_{n}, v_{n}\right),\left(u^{*}, v^{*}\right)\right)\right)-s \psi\left(\tilde{d}\left(\left(u_{n}, v_{n}\right),\left(u^{*}, v^{*}\right)\right)\right)
\end{aligned}
$$

We get

$$
\begin{gathered}
\varphi\left(\tilde{d}\left(\left(u_{n}, v_{n}\right),\left(u^{*}, v^{*}\right)\right)\right)-s \varphi\left(\tilde{d}\left(\left(u_{n}, v_{n}\right),\left(u^{*}, v^{*}\right)\right)\right)+s \psi\left(\tilde{d}\left(\left(u_{n}, v_{n}\right),\left(u^{*}, v^{*}\right)\right)\right) \leq \\
\leq s D_{\tilde{d}}\left(\left(u_{n}, v_{n}\right), F\left(u_{n}, v_{n}\right) \times F\left(v_{n}, u_{n}\right)\right)
\end{gathered}
$$

Letting $n \rightarrow \infty$ we get
$\lim _{n \rightarrow \infty}\left[\varphi\left(\tilde{d}\left(\left(u_{n}, v_{n}\right),\left(u^{*}, v^{*}\right)\right)\right)-s \varphi\left(\tilde{d}\left(\left(u_{n}, v_{n}\right),\left(u^{*}, v^{*}\right)\right)\right)+s \psi\left(\tilde{d}\left(\left(u_{n}, v_{n}\right),\left(u^{*}, v^{*}\right)\right)\right)\right]=0$
By the assumptions $\left(^{*}\right)$ and $\left({ }^{* *}\right)$ we get that $\tilde{d}\left(\left(u_{n}, v_{n}\right),\left(u^{*}, v^{*}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$.
In what follows we give an Ulam-Hyers stability property.
Definition 4.3. Let (X, d) be a b-metric space with constant $s \geq 1$ and $F: X \times X \rightarrow P(X)$ be a multi-valued operator. Let \tilde{d} be any b-metric on $Z=X \times X$ generated by d. By definition, the system of inclusions (4.1) is UlamHayers stable if there exists an increasing operator $\gamma: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$continuous in 0 with $\gamma(0)=0$ such that for each $\varepsilon \in \mathbb{R}_{+}^{*}$ and for each solution $(\bar{x}, \bar{y}) \in Z$ of the inequality $D_{\tilde{d}}((x, y), F(x, y) \times F(y, x)) \leq \varepsilon$ there exists a solution $\left(x^{*}, y^{*}\right) \in Z$ of the system of inclusions (4.1) such that $\tilde{d}\left(\left(x^{*}, y^{*}\right),(\bar{x}, \bar{y})\right) \leq \gamma(\varepsilon)$.

Theorem 4.4 (Ulam-Hyers stability). Consider the system of inclusions (4.1). Let us suppose that all the hypotheses of Theorem 3.8 take place. If additionally we have:
$\varphi(t)-s \varphi(t)+s \psi(t)>0, \forall t>0$
$\varphi(t)-s \varphi(t)+s \psi(t)=0 \Rightarrow t=0$,
then, the system of inclusions (4.1) is Ulam-Hyers stable.
Proof. Using Theorem 3.8 we obtain that there exists a unique pair $\left(x^{*}, y^{*}\right) \in Z$ such that
$\left\{x^{*}\right\}=F\left(x^{*}, y^{*}\right)$
$\left\{y^{*}\right\}=F\left(y^{*}, x^{*}\right)$.
Consider the functional $\tilde{d}: Z \times Z \rightarrow \mathbb{R}_{+}$defined by

$$
\tilde{d}((x, y),(u, v))=d(x, u)+d(y, v), \forall(x, y),(u, v) \in Z .
$$

Then we get

$$
\begin{aligned}
\tilde{d}\left((\bar{x}, \bar{y}),\left(x^{*}, y^{*}\right)\right) & =d\left(\bar{x}, x^{*}\right)+d\left(\bar{y}, y^{*}\right) \\
& =D_{d}\left(\bar{x}, F\left(x^{*}, y^{*}\right)\right)+D_{d}\left(\bar{y}, F\left(y^{*}, x^{*}\right)\right) \\
& \leq s\left[D_{d}(\bar{x}, F(\bar{x}, \bar{y}))+H_{d}\left(F(\bar{x}, \bar{y}), F\left(x^{*}, y^{*}\right)\right)\right] \\
& +s\left[D_{d}(\bar{y}, F(\bar{y}, \bar{x}))+H_{d}\left(F(\bar{y}, \bar{x}), F\left(y^{*}, x^{*}\right)\right)\right] \\
& \leq s \varepsilon+s\left[H_{d}\left(F(\bar{x}, \bar{y}), F\left(x^{*}, y^{*}\right)\right)+H_{d}\left(F(\bar{y}, \bar{x}), F\left(y^{*}, x^{*}\right)\right)\right]
\end{aligned}
$$

Because φ is an increasing mapping we get that

$$
\varphi\left(\tilde{d}\left((\bar{x}, \bar{y}),\left(x^{*}, y^{*}\right)\right)\right) \leq s \varphi\left(\tilde{d}\left((\bar{x}, \bar{y}),\left(x^{*}, y^{*}\right)\right)\right)-s \psi\left(\tilde{d}\left((\bar{x}, \bar{y}),\left(x^{*}, y^{*}\right)\right)\right)+s \varepsilon
$$

and so

$$
\tilde{d}\left((\bar{x}, \bar{y}),\left(x^{*}, y^{*}\right)\right) \leq \sup \left\{t \in \mathbb{R}_{+} / \varphi(t)-s \varphi(t)+s \psi(t) \leq s \varepsilon\right\}:=\gamma(\varepsilon)
$$

References

[1] V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, 1993, pp. 3-9.
[2] V. Berinde, Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces, Nonlinear Anal. 74 (2011), 7347-7355.
[3] H. Covitz and S. B. Nadler, Multi-valued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5-11.
[4] S. Czerwik, Nonlinear set-valued contraction mappings in B-metric spaces, Atti Sem. Mat. Univ. Modena 46 (1998), 263-276.
[5] T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379-1393.
[6] D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal. 11 (1987), 623-632.
[7] W. A. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer Heidelberg, 2014.
[8] V. Lakshmikantham, L. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), 4341-4349.
[9] A. Petruşel, Multi-valued weakly Picard operators and applications, Sci. Math. Japon. 59 (2004), 169-202.
[10] A. Petruşel, G. Petruşel, B. Samet and J.-C. Yao, Coupled fixed point theorems for symmetric contractions in b-metric spaces with applications to operator equation systems, Fixed Point Theory 17 (2016), 457-476.
[11] A. Petruşel, G. Petruşel, B. Samet and J.-C. Yao, Coupled fixed point theorems for symmetric multi-valued contractions in b-metric space with applications to systems of integral inclusions, J. Nonlinear Convex Anal. 17 (2016), 1265-1282.
[12] R. Precup and A. Viorel, Existence results for systems of nonlinear evolution inclusions, Fixed Point Theory 11 (2010), 337-346.
[13] C. Urs, Coupled fixed point theorems and applications, Miskolc Math. Notes 14 (2013), 323333.

G. Petruşel

Babeş-Bolyai University Cluj-Napoca, Romania
E-mail address: gabi.petrusel@tbs.ubbcluj.ro
T. LAZĂR

Technical University of Cluj-Napoca, Romania
E-mail address: tanialazar@yahoo.com
V. L. LAZĂR

Vasile Goldiş University Arad, Romania
E-mail address: vasilazar@yahoo.com

[^0]: 2010 Mathematics Subject Classification. 47H10, 54H25.
 Key words and phrases. b-metric space, multi-valued operator, fixed point, coupled fixed point, Hausdorff-Pompeiu metric, data dependence, well-posedness, Ulam-Hyers stability.

