Volume 1, Number 1, 2017, 99–112

Yokohama Publishers ISSN 2189-1664 Online Journal © Copyright 2017

FIXED POINTS AND COUPLED FIXED POINTS FOR MULTI-VALUED (φ, ψ)-CONTRACTIONS IN *b*-METRIC SPACES

GABRIELA PETRUŞEL, TANIA LAZĂR, AND VASILE L. LAZĂR

ABSTRACT. In this paper, we will study the coupled fixed point problem for multi-valued operators satisfying a nonlinear contraction condition. The approach is based on a fixed point theorem for multi-valued operators in a complete *b*-metric space.

1. INTRODUCTION

The context of the results given in this paper is that of a complete b-metric space.

Definition 1.1. Let X be a nonempty set and let $s \ge 1$ be a given real number. A functional $d: X \times X \to \mathbb{R}_+$ is said to be a *b*-metric if the following axioms are satisfied:

- i) if $x, y \in X$, then $d(x, y) = 0 \Leftrightarrow x = y$;
- ii) d(x,y) = d(y,x), for all $x, y \in X$;

iii) $d(x,z) \leq s [d(x,y) + d(y,z)]$, for all $x, y, z \in X$.

A pair (X, d) with the above properties is called a *b*-metric space.

For some examples of *b*-metric spaces see [1], [4], [7]. Let (X, d) be a *b*-metric space and $\mathcal{P}(X)$ be the set of all subset of *X*. In this paper, we will use the following notations:

 $P(X) = \{ Y \in \mathcal{P}(X) / Y \neq \emptyset \}; \ P_{cl}(X) = \{ Y \in \mathcal{P}(X) / Y \text{ is closed} \}.$

If $T: X \to P(X)$ is a multi-valued operator, then $x \in X$ is called fixed point for $T \Leftrightarrow x \in T(x)$.

 $Fix(T) = \{x \in X \mid x \in T(x)\}$ is the fixed point set of T.

and $SFix(T) = \{x \in X | T(x) = \{x\}\}$ is the set of all strict fixed points of T. Moreover, we will denote by

$$Graph(T) = \{(x, y) \in X \times X | y \in T(x)\}$$
 the graph of T.

Let (X, d) be a *b*-metric space with constant $s \ge 1$ and $Z = X \times X$. Then, the functional $\tilde{d} : Z \times Z \to \mathbb{R}_+$ defined by $\tilde{d}((x, y), (u, v)) = d(x, u) + d(y, v)$ for all $(x, y), (u, v) \in Z$ is a *b*-metric on Z with the same constant $s \ge 1$ and if (X, d) is a complete *b*-metric space, then (Z, \tilde{d}) is a complete *b*-metric space, too.

²⁰¹⁰ Mathematics Subject Classification. 47H10, 54H25.

Key words and phrases. b-metric space, multi-valued operator, fixed point, coupled fixed point, Hausdorff-Pompeiu metric, data dependence, well-posedness, Ulam-Hyers stability.

Moreover, for $x, y \in X, A, B, U, V \in P(X)$ we have:

$$D_{\tilde{d}}((x,y), U \times V) = D_d(x,U) + D_d(y,V);$$

$$\rho_{\tilde{d}}(A \times B, U \times V) = \rho_d(A, U) + \rho_d(B, V);$$

$$H_{\tilde{d}}(A \times B, U \times V) \le H_d(A, U) + H_d(B, V),$$

where the following notations are used:

(1) for the gap functional generated by $d "D_d$ ":

$$D_d: P(X) \times P(X) \to \mathbb{R}_+, \ D_d(A, B) = \inf\{d(a, b) / a \in A, b \in B\};$$

(2) for the excess generalized functional " ρ_d ":

$$\rho_d: P(X) \times P(X) \to \mathbb{R}_+ \cup \{+\infty\}, \ \rho_d(A, B) = \sup\{D_d(a, B) / a \in A\};$$

(3) for the Hausdorff-Pompeiu generalized functional " H_d ":

$$H_d: P(X) \times P(X) \to \mathbb{R}_+ \cup \{+\infty\}, \ H_d(A, B) = \max\{\rho_d(A, B), \rho_d(B, A)\}.$$

Additionally, by the properties of the gap functional D_d , if $(x, y) \in X \times X$ and $A, B \in P_{cl}(X)$, then

$$D_{\tilde{d}}((x,y), U \times V) = 0 \Leftrightarrow (x,y) \in U \times V.$$

Definition 1.2. Let (X, \leq) be a partially ordered set. Then, the partial order " \leq " induces on the product space $X \times X$ the following partial order relation:

for $(x, y), (u, v) \in X \times X$ $(x, y) \leq_p (u, v) \Leftrightarrow x \leq u, y \geq v.$

Definition 1.3. Let X be a nonempty set, let " \leq " be a partial order on X and d be a b-metric on X with constant $s \ge 1$. Then the triple (X, \le, d) is called an ordered *b*-metric space if:

- (i) " \leq " is a partially order on X;
- (ii) d is a b-metric on X with constant $s \ge 1$;
- (iii) if $(x_n)_{n \in \mathbb{N}}$ is a monotone increasing sequence in X and $\lim x_n = x^*$ then $x_n \leq x^*$ for all $n \in \mathbb{N}$;
- (iv) if $(y_n)_{n\in\mathbb{N}}$ is a monotone decreasing sequence in X and $\lim_{n\to\infty} y_n = y^*$ then $y_n \geq y^*$ for all $n \in \mathbb{N}$.

Definition 1.4. Let (X, \leq) be a partially ordered set and $A, B \in P(X)$. We will denote:

- a) $A \leq_{st} B \Leftrightarrow \forall a \in A, \forall b \in B$ we have $a \leq b$; b) $A \leq_{wk} B \Leftrightarrow \forall a \in A, \exists b \in B$ such that $a \leq b$.

Definition 1.5. Let (X, \leq) be a partially ordered set and $T : X \to P(X)$ be a multi-valued operator. We say that T is strong increasing (respectively strong decreasing) on X if for every $x, y \in X$ with $x \leq y$ we have that $T(x) \leq_{st} T(y)$ (respectively $T(x) \ge_{st} T(y)$).

Let (X, d) be a metric space and $T: X \times X \to P(X)$ be a multi-valued operator. Following [6] (where the single-valued case is treated), by definition, a coupled fixed

point problem for T means to find a pair $(x^*, y^*) \in X \times X$ satisfying

$$(P) \begin{cases} x^* \in T(x^*, y^*) \\ y^* \in T(y^*, x^*) \end{cases}$$

The purpose of this paper, is to study the coupled fixed point problem for multivalued operators satisfying a nonlinear contraction condition. The approach is based on some fixed point theorems for multi-valued operators in complete *b*-metric space. Several properties of the solution set of the coupled fixed point problem will be also discussed. Our results extend and complement some theorems given in [2], [8], [10], [11], [12].

2. Fixed point theorems for (φ, ψ) -contractions

We recall first the following auxiliary result.

Lemma 2.1. Let (X, d) be a b-metric space and $\epsilon > 0$. Let $A, B \in P(X)$. Then $\forall a \in A, \exists b \in B \text{ such that}$

$$d(a,b) \le H(A,B) + \epsilon$$

Let Φ denote the set of all function $\varphi: [0,\infty) \to [0,\infty)$ satisfying:

- $(i_{\varphi}) \varphi$ is continuous and (strictly) increasing;
- $(ii_{\varphi}) \ \varphi(t) < t \text{ for all } t > 0;$
- $(iii_{\varphi}) \varphi(a+b) \leq \varphi(a) + b, \forall a, b \in [0,\infty);$
- $(iv_{\varphi}) \ \varphi(st) \leq s\varphi(t), \text{ (where } s \geq 1), \forall t \in [0, \infty).$

We denote by Ψ the set of all functions $\psi: [0, \infty) \to [0, \infty)$ which satisfy:

- $\begin{array}{l} (i_{\psi}) \ \lim_{t \to r} \psi(t) > 0 \ \text{for all } r > 0; \\ (ii_{\psi}) \ \lim_{t \to 0_+} \psi(t) = 0. \end{array} \end{array}$

Theorem 2.2. Let (X, \leq, d) be a complete ordered b-metric space with constant $s \geq 1$. Let $T: X \to P_{cl}(X)$ be a multivalued operator strong increasing with respect to "<". Suppose that:

(i) there exist two functionals $\varphi \in \Phi$ and $\psi \in \Psi$ such that for all $(x, y) \in X \times X$ with $x \leq y$:

$$\varphi(H_d(T(x), T(y))) \le \varphi(d(x, y)) - \psi(d(x, y));$$

(ii) there exists an element $x_0 \in X$ such that $x_0 \leq_{wk} T(x_0)$.

Then $Fix(T) \neq \emptyset$ and there exists a sequence $(x_n)_{n \in \mathbb{N}}$ in X of successive approximation of T starting from $x_0 \in X$ which converges to a fixed point of T.

Proof. Let $x_0 \in X$ such that $x_0 \leq_{wk} T(x_0)$. Then, there exists $x_1 \in T(x_0)$ such that $x_0 \leq x_1$.

Suppose $x_0 \neq x_1$. Otherwise $x_0 \in T(x_0) \Rightarrow Fix(T) \neq \emptyset$. Let $\tilde{\varepsilon} > 0$. Using Lemma 2.1 for any $x_1 \in T(x_0)$ there exists $x_2 \in T(x_1)$ such that $d(x_1, x_2) \leq d(x_1, x_2)$

 $H_d(T(x_0), T(x_1)) + \tilde{\varepsilon}$

$$\Rightarrow \varphi\left(d(x_1, x_2)\right) \le \varphi\left(H_d\left(T(x_0), T(x_1)\right) + \tilde{\varepsilon}\right) \le \varphi\left(H_d\left(T(x_0), T(x_1)\right)\right) + \tilde{\varepsilon}.$$

Since $d(x_0, x_1) > 0 \Rightarrow \varphi(d(x_0, x_1)) > 0$. By our hypothesis, we have

$$\varphi(H_d(T(x_0), T(x_1))) \le \varphi(d(x_0, x_1)) - \psi(d(x_0, x_1)) < \varphi(d(x_0, x_1)) \le \varphi(d(x_0, x_1)) \ge \varphi(d(x_0, x_1)) \ge \varphi(d(x_0, x_1)) \ge \varphi(d(x_0, x_1)) \ge \varphi(d(x_0, x_1)$$

We choose

$$\tilde{\varepsilon} := \varphi\left(d(x_0, x_1)\right) - \varphi\left(H_d\left(T(x_0), T(x_1)\right)\right) > 0,$$

and we get

$$\varphi\left(d(x_1, x_2)\right) \le \varphi\left(d(x_0, x_1)\right).$$

Since φ is increasing, we get that $d(x_1, x_2) \leq d(x_0, x_1)$. Since $x_1 \in T(x_0), x_2 \in T(x_1), x_0 \leq x_1$ and because T is strong increasing $\Rightarrow x_1 \leq x_2$. Suppose $x_1 \neq x_2$. Otherwise $x_1 \in Fix(T) \Rightarrow Fix(T) \neq \emptyset$. Using Lemma 2.1 for any $x_2 \in T(x_1)$ there exists $x_3 \in T(x_2)$ such that $d(x_2, x_3) \leq H_d(T(x_1), T(x_2)) + \tilde{\varepsilon}$

$$\Rightarrow \varphi\left(d(x_2, x_3)\right) \le \varphi\left(H_d\left(T(x_1), T(x_2)\right) + \tilde{\varepsilon}\right) \le \varphi\left(H_d\left(T(x_1), T(x_2)\right)\right) + \tilde{\varepsilon}.$$

Since $d(x_1, x_2) > 0$ we get $\varphi(d(x_1, x_2)) > 0$. Thus

$$\varphi(H_d(T(x_1), T(x_2))) \le \varphi(d(x_1, x_2)) - \psi(d(x_1, x_2)) < \varphi(d(x_1, x_2)).$$

We choose

$$\tilde{\varepsilon} := \varphi\left(d(x_1, x_2)\right) - \varphi\left(H_d\left(T(x_1), T(x_2)\right)\right) > 0,$$

and we get

$$\varphi\left(d(x_2, x_3)\right) \le \varphi\left(d(x_1, x_2)\right)$$

By the monotonicity of φ , we get that $\varphi(d(x_2, x_3)) \leq \varphi(d(x_1, x_2)) \leq \varphi(d(x_0, x_1))$. By induction, we obtain a sequence $(x_n)_{n \in \mathbb{N}}$ in X with the following properties:

- (a) $x_{n+1} \in T(x_n)$, for all $n \in \mathbb{N}$;
- (b) $x_n \leq x_{n+1}$, for all $n \in \mathbb{N}$;
- (c) $\varphi(d(x_n, x_{n+1})) \leq \varphi(d(x_{n-1}, x_n))$, for all $n \in \mathbb{N}$, φ is increasing;
- (c') $d(x_n, x_{n+1}) \leq d(x_{n-1}, x_n), \forall n \in \mathbb{N};$
- (d) $\varphi(d(x_n, x_{n+1})) \leq \varphi(d(x_{n-1}, x_n)) \psi(d(x_{n-1}, x_n)) + \tilde{\varepsilon}, \ \forall \tilde{\varepsilon} > 0.$

Then by (c') we have: $0 \le \delta_{n+1} := d(x_n, x_{n+1})$ is decreasing. Thus $\lim_{n \to \infty} \delta_n = \delta \ge 0$.

We show that $\delta = 0$ (by contradiction).

Assume the contrary, that is $\delta > 0$. Then by letting $n \to \infty$ in (d) we get:

$$\varphi(\delta) = \lim_{n \to \infty} \varphi(\delta_{n+1}) \le \lim_{n \to \infty} \varphi(\delta_n) - \lim_{n \to \infty} \psi(\delta_n) + \tilde{\varepsilon} < \varphi(\delta) - \lim_{n \to \infty} \psi(\delta_n) + \tilde{\varepsilon}.$$

We choose $\tilde{\varepsilon} < \lim_{n \to \infty} \psi(\delta_n) > 0$. Then we obtain: $0 < -\lim_{n \to \infty} \psi(\delta_n) + \tilde{\varepsilon} < 0$ gives a contradiction. Follows that $\delta = 0$. Further, we proof by contradiction that $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence.

Suppose that $(x_n)_{n\in\mathbb{N}}$ is not a Cauchy sequence on $X \Rightarrow \exists \varepsilon > 0$ for which we can find two sub-sequences $(x_{n(k)})$ and $(x_{m(k)})$ of $(x_n)_{n\in\mathbb{N}}$ with $n(k) > m(k) \ge k$ such that

(2.1)
$$d(x_{n(k)}, x_{m(k)}) \ge s \cdot \varepsilon, \ k = 1, 2, \dots$$

We can choose n(k) to be the smallest integer with property $n(k) > m(k) \ge k$ and satisfying (2.1), follows that $d(x_{n(k)-1}, x_{m(k)}) < \varepsilon$.

By triangle inequality we have:

Letting $k \to \infty$ we get $\lim_{k \to \infty} r_k = s \cdot \varepsilon$. Since n(k) > m(k) we have, using the property (b) that $x_{n(k)} \ge x_{m(k)}$ or $x_{m(k)} \le c_{m(k)}$ $x_{n(k)}$, we put $x = x_{m(k)}$ and $y = x_{n(k)}$ in $(i) \Rightarrow$

$$\varphi(H_d(T(x_{m(k)}), T(x_{n(k)}))) \le \varphi(d(x_{m(k)}, x_{n(k)})) - \psi(d(x_{m(k)}, x_{n(k)})).$$

We have:

$$\Rightarrow \varphi\left(d(x_{m(k)+1}, x_{n(k)+1})\right) \le \varphi\left(H_d\left(T(x_{m(k)}), T(x_{n(k)})\right) + \tilde{\varepsilon}\right)$$

 $\leq \varphi \left(H_d \left(T(x_{m(k)}), T(x_{n(k)}) \right) \right) + \tilde{\varepsilon} \leq \varphi \left(d(x_{m(k)}, x_{n(k)}) \right) - \psi \left(d(x_{m(k)}, x_{n(k)}) \right) + \tilde{\varepsilon}.$ follows that

$$\begin{split} \varphi(r_{k+1}) &\leq \varphi(r_k) - \psi(r_k) + \tilde{\varepsilon} \text{ and letting } k \to \infty \Rightarrow \varphi(s\varepsilon) \leq \varphi(s\varepsilon) - \lim_{k \to \infty} \psi(r_k) + \tilde{\varepsilon} \\ &\Rightarrow 0 \leq -\lim_{k \to \infty} \psi(r_k) + \tilde{\varepsilon} \text{ and if we chose } \tilde{\varepsilon} < \lim_{k \to \infty} \psi(r_k) > 0 \end{split}$$

 $\Rightarrow 0 < 0$ which gives a contradiction.

Therefore $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence in a complete *b*-metric space $(X, d) \Rightarrow$ $\exists x^* \in X \text{ such that } \lim_{n \to \infty} x_n = x^*.$ Now, we show that $x^* \in T(x^*)$

$$\begin{aligned} D_d(x^*, T(x^*)) &\leq s[d(x^*, x_{n+1}) + D_d(x_{n+1}, T(x^*))] \\ &\leq s \cdot d(x^*, x_{n+1}) + s \cdot H_d(T(x_n), T(x^*)) \\ &\Rightarrow D_d(x^*, T(x^*)) - s \cdot d(x^*, x_{n+1}) \leq s \cdot H_d(T(x_n), T(x^*)) \\ &\Rightarrow \varphi \left(D_d(x^*, T(x^*)) - s \cdot d(x^*, x_{n+1}) \right) \leq s \cdot \varphi \left(H_d(T(x_n), T(x^*)) \right) \\ &\stackrel{x_n \leq x^*}{\leq} s \left[\varphi(d(x_n, x^*)) - \psi(d(x_n, x^*)) \right]. \end{aligned}$$

Letting $n \to \infty$ we obtain that:

$$\varphi\left(D_d(x^*, T(x^*)) - 0\right) \le s\left[\varphi(0) - 0\right]$$

On the other hand $\varphi(t) = 0 \Leftrightarrow t = 0$ and T has closed values, so $x^* \in T(x^*) \Rightarrow$ $Fix(T) \neq \emptyset.$

Our next result is a fixed point theorem for a multi-valued operator satisfying a (φ, ψ) -contraction type condition on the whole space.

Theorem 2.3. Let (X, d) be a complete b-metric space with constant $s \ge 1$ and $T: X \to P_{cl}(X)$ a multi-valued operator for which there exist two functionals $\varphi \in \Phi$ and $\psi \in \Psi$ such that for all $(x, y) \in X \times X$ we have:

$$\varphi\left(H_d(T(x), T(y))\right) \le \varphi(d(x, y)) - \psi(d(x, y)).$$

Then

- (a) $Fix(T) \neq \emptyset$ and there exists a sequence $(x_n)_{n \in \mathbb{N}}$ in X of successive approximations of T starting from any $(x_0, x_1) \in Graph(T)$ which converges to a fixed point x^* of T.
- (b) If additionally $SFix(T) \neq \emptyset$ and $\psi \in \Psi$ is a continuous mapping then $Fix(T) = SFix(T) = \{x^*\}.$

Proof. (a) is the same with the proof of Theorem 2.2.

(b) Let $y^* \in SFix(T)$. We consider $y \in SFix(T)$ such that $y \neq y^*$. Then $d(y, y^*) = H_d(T(y), T(y^*)) \Rightarrow$

$$\Rightarrow \varphi(d(y, y^*)) = \varphi(H_d(T(y), T(y^*))) \le \varphi(d(y, y^*)) - \psi(d(y, y^*)).$$

Since $y \neq y^* \Rightarrow \varphi(d(y, y^*)) > 0$ and since ψ is continuous mapping that means $\psi(d(y, y^*)) > 0$.

Thus $0 \leq -\psi(d(y, y^*))$ and we have a contradiction

$$\Rightarrow y = y^* \Rightarrow SFix(T) = \{y^*\}.$$

Let
$$x^* \in Fix(T)$$
 with $x^* \neq y^* \Rightarrow d(x^*, y^*) > 0 \Rightarrow \varphi(d(x^*, y^*)) > 0$.
We have $d(x^*, y^*) = D_d(x^*, T(y^*)) \leq H_d(T(x^*), T(y^*))$
 $\Rightarrow \varphi(d(x^*, y^*)) \leq \varphi(H_d(T(x^*), T(y^*))) \leq \varphi(d(x^*, y^*)) - \psi(d(x^*, y^*))$
 $\Rightarrow 0 \leq -\psi(d(x^*, y^*))$, which is a contradiction.

Finally we have $SFix(T) = Fix(T) = \{x^*\}.$

For related results see [3], [9].

3. Coupled fixed point theorems for multi-valued (φ, ψ) - contractions

We have the following useful definition.

Definition 3.1. Let (X, \leq) be a partially ordered set and $G : X \times X \to P(X)$. We say that G has the strict mixed monotone property with respect to the partial order " \leq " if the following implications hold:

- a) $x_0 \le x_1 \Rightarrow G(x_0, y) \le_{st} G(x_1, y), \ \forall y \in X$
- b) $y_0 \ge y_1 \Rightarrow G(x, y_0) \le_{st} G(x, y_1), \ \forall x \in X.$

We recall now the following theorem, which was the starting point in the coupled fixed point theory for single-valued operators.

Theorem 3.2 (Bhaskar and Lakshmikantham). Let (X, \leq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Let $F : X \times X \to X$ be a continuous mapping having the mixed monotone property on X. Assume that there exists a constant $k \in [0, 1)$ with

(3.1)
$$d(F(x,y),F(u,v)) \le \frac{k}{2}[d(x,u)+d(y,v)] \text{ for each } x \le u, y \ge v$$

If there exist $x_0, y_0 \in X$ such that

$$x_0 \le F(x_0, y_0), \ y_0 \ge F(y_0, x_0)$$

104

then there exist $x^*, y^* \in X$ such that

$$\begin{cases} x^* = F(x^*, y^*) \\ y^* = F(y^*, x^*) \end{cases}$$

Remark 3.3. The hypothesis $F : X \times X \to X$ is a continuous mapping can be replaced by **Assumption 1**: X has the property that:

- (a) if a non-decreasing sequence $(x_n)_{n \in \mathbb{N}}$ in X converges to x then $x_n \leq x$, for all $n \in \mathbb{N}$;
- (b) if a non-increasing sequence $(x_n)_{n \in \mathbb{N}}$ in X converges to x then $x_n \ge x$, for all $n \in \mathbb{N}$.

Later on, Luong and Thuan use a more general contraction type condition:

(3.2)
$$\varphi(d(F(x,y),F(u,v))) \le \frac{1}{2}\varphi(d(x,u)+d(y,v)) - \psi(d(x,u)+d(y,v)),$$

where $\varphi, \ \psi: [0, \infty) \to [0, \infty)$ are functions satisfying some appropriate conditions and $(x, y), (u, v) \in X \times X$ with $x \leq u, \ y \geq v$.

Remark 3.4. For $\varphi(t) = t$ and $\psi(t) = \frac{1-k}{2} \cdot t$ with $0 \leq k < 1$ condition (3.2) reduces to (3.1).

Another generalization of Bhaskar and Lakshmikantham's theorem was given by V. Berinde. In [2] the following class of mappings is introduced.

Remark 3.5. The functional $\varphi : [0, \infty) \to [0, \infty)$ belongs to $\tilde{\Phi}$ if it satisfy the following conditions:

 $(i_{\varphi}) \varphi$ is continuous and (strictly) increasing;

$$(ii_{\varphi}) \varphi(t) < t \text{ for all } t > 0$$

 $(iii_{\varphi}) \ \varphi(t+s) \leq \varphi(t) + \varphi(s), \ \forall t, s \in [0,\infty).$

As before, we recall that the functional $\psi : [0, \infty) \to [0, \infty)$ belongs to the set Ψ if it satisfy the following conditions:

$$\begin{array}{l} (i_{\psi}) \ \lim_{t \to r} \psi(t) > 0 \ \text{for all } r > 0; \\ (ii_{\psi}) \ \lim_{t \to 0_{+}} \psi(t) = 0. \end{array} \end{array}$$

Theorem 3.6 (V. Berinde [2]). Let (X, \leq) be a partially ordered set and suppose there is a metric d on X such that (X,d) is a complete metric space. Let F: $X \times X \to X$ be a mixed monotone mapping for which there exist $\varphi \in \tilde{\Phi}$ and $\psi \in \Psi$ such that for all $x, y, u, v \in X$ with $x \geq u, y \leq v$.

$$\begin{split} \varphi\left(\frac{d(F(x,y),F(u,v)) + d(F(y,x),F(v,u))}{2}\right) &\leq \\ &\leq \varphi\left(\frac{d(x,u) + d(y,v)}{2}\right) - \psi\left(\frac{d(x,u) + d(y,v)}{2}\right) \end{split}$$

Suppose either

- (a) F is continuous mapping, or
- (b) X satisfies Assumption 1.

If there exist $x_0, y_0 \in X$ such that

 $x_0 \leq F(x_0, y_0) \text{ and } y_0 \geq F(y_0, x_0)$

or

 $x_0 \ge F(x_0, y_0) \text{ and } y_0 \le F(y_0, x_0),$

then there exist $x^*, y^* \in X$ such that

$$\begin{cases} x^* = F(x^*, y^*) \\ y^* = F(y^*, x^*) \end{cases}$$

The first main result of this section is: the following generalization to the multivalued case of Theorem 3.6.

Theorem 3.7. Let (X, \leq, d) be an ordered b-metric space with constant $s \geq 1$ such that the b-metric d is complete. Let $F : X \times X \to P_{cl}(X)$ be a multi-valued operator having the strict mixed monotone property with respect to " \leq ". Assume that:

i) there exist two functionals $\varphi \in \Phi$ and $\psi \in \Psi$ such that

$$\varphi \left(H_d(F(x,y),F(u,v)) + H_d(F(y,x),F(v,u)) \right) \le$$

$$\le \varphi \left(d(x,u) + d(y,v) \right) - \psi \left(d(x,u) + d(y,v) \right)$$

- for all (x, y), $(u, v) \in X \times X$ with $x \le u, y \ge v$.
- ii) there exist $(x_0, y_0) \in X \times X$ and $(x_1, y_1) \in F(x_0, y_0) \times F(y_0, x_0)$ such that $x_0 \leq x_1$ and $y_0 \geq y_1$.

Then there exist a pair $(x^*, y^*) \in X \times X$ with

$$\begin{cases} x^* \in F(x^*, y^*) \\ y^* \in F(y^*, x^*) \end{cases}$$

and two sequences $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ in X with

$$\begin{cases} x_{n+1} \in F(x_n, y_n) \\ y_{n+1} \in F(y_n, x_n) \end{cases}$$

for all $n \in \mathbb{N}$, such that $x_n \to x^*$ and $y_n \to y^*$ as $n \to \infty$.

Proof. Let $Z = X \times X$ and consider on Z the partial order relation " \leq_p " generated by " \leq " and the metric $\tilde{d} : Z \times Z \to \mathbb{R}_+$ defined by:

$$d((x,y),(u,v)) = d(x,u) + d(y,v), \ \forall (x,y), \ (u,v) \in Z.$$

Then (Z, \leq_p, \tilde{d}) is an ordered complete *b*-metric space.

Consider $G: Z \to P(Z), G(x, y) = F(x, y) \times F(y, x)$, for all $(x, y) \in Z$.

Since F is strict mixed monotone multi-valued operator follow that G is strong increasing multi-valued operator with respect to " \leq_p ".

The multi-valued operator F has a closed value, so the multi-valued operator G has a closed value too.

Let $z = (x, y) \in Z$ and $w = (u, v) \in Z$. We have:

$$\begin{split} H_{\tilde{d}}(G(z),G(w)) &= H_{\tilde{d}}\big(F(x,y)\times F(y,x),F(u,v)\times F(v,u)\big) \leq \\ &\leq H_d\big(F(x,y),F(u,v)\big) + H_d\big(F(y,x),F(v,u)\big) \end{split}$$

Because φ is increasing we have that

$$\varphi \left(H_{\tilde{d}}(G(z), G(w)) \right) \leq \varphi \left(H_d \left(F(x, y), F(u, v) \right) + H_d \left(F(y, x), F(v, u) \right) \right)$$
$$\leq \varphi \left(d(x, u) + d(y, v) \right) - \psi \left(d(x, u) + d(y, v) \right)$$
$$= \varphi (\tilde{d}(z, w)) - \psi (\tilde{d}(z, w)).$$

Follow that G is (φ, ψ) -contraction with respect to \tilde{d} for all $z = (x, y) \in Z$ and $w = (u, v) \in Z$ with $z \leq_p w$.

By *ii*), there exist $z_0 = (x_0, y_0) \in Z$ and $z_1 = (x_1, y_1) \in F(x_0, y_0) \times F(y_0, x_0)$ such that $x_0 \leq x_1$ and $y_0 \geq y_1$, so $z_0 \leq_{wk} G(z_0)$.

We can apply Theorem 2.2 for the multi-valued operator G and we obtained that $Fix(G) \neq \emptyset$, i.e. there exists $(x^*, y^*) \in Z$ such that $(x^*, y^*) \in G(x^*, y^*) \Rightarrow (x^*, y^*) \in F(x^*, y^*) \times F(x^*, y^*)$ or

$$\begin{cases} x^* \in F(x^*, y^*) \\ y^* \in F(y^*, x^*) \end{cases}$$

and there exists sequence $z_n = (x_n, y_n) \in Z$ of successive approximation of G starting from $(x_0, y_0) \in Z$ such that $(x_n, y_n) \to (x^*, y^*)$ as $n \to \infty$.

The following result is a global existence and uniqueness theorem for a multivalued operator.

Theorem 3.8. Let (X,d) be a complete b-metric space with constant $s \ge 1$. Let $F: X \times X \to P_{cl}(X)$ be a multi-valued operator for which there exist two functionals $\varphi \in \Phi$ and $\psi \in \Psi$ such that

$$\varphi \left(H_d(F(x,y), F(u,v)) + H_d(F(y,x), F(v,u)) \right) \leq$$

$$\leq \varphi \left(d(x,u) + d(y,v) \right) - \psi \left(d(x,u) + d(y,v) \right)$$

for all (x, y), $(u, v) \in X \times X$. Then the following conclusions hold:

- a) there exist $(x^*, y^*) \in X \times X$ a solution of the coupled fixed point problem (P) and two sequences $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ in X with $x_{n+1} \in F(x_n, y_n)$, $y_{n+1} \in F(y_n, x_n)$ for all $n \in \mathbb{N}$, starting from the arbitrary point $(x_0, y_0) \in X \times X$ and $(x_1, y_1) \in F(x_0, y_0) \times F(y_0, x_0)$ such that $x_n \to x^*$ and $y_n \to y^*$ as $n \to \infty$.
- b) If, additionally, we suppose that there exists $(u^*, v^*) \in X \times X$ such that $F(u^*, v^*) = \{u^*\}$, $F(v^*, u^*) = \{v^*\}$ and the functional $\psi : [0, \infty) \to [0, \infty)$ is continuous, then $CFix(F) = \{(u^*, v^*)\}$.

Proof. Consider the functional $d: Z \times Z \to \mathbb{R}_+$, where $Z = X \times X$, defined by

$$d((x, y), (u, v)) = d(x, u) + d(y, v), \ \forall (x, y), \ (u, v) \in Z$$

and the operator $G: Z \to P(Z)$ defined by

$$G(x,y) = F(x,y) \times F(y,x), \forall (x,y) \in Z.$$

We can apply Theorem 2.3 of G and we obtain the conclusion a) of this theorem.

b) From the hypotheses $\begin{cases} F(u^*, v^*) = \{u^*\} \\ F(v^*, u^*) = \{v^*\} \end{cases}$ we have $SFix(G) \neq \emptyset$, and because

 $\psi \in \Psi$ is a continuous mapping, we can apply Theorem 2.3 b) of G and we obtain $SFix(G) = Fix(G) = \{(u^*, v^*)\}$ which means that the coupled fixed problem (P) of F has a unique solution $(u^*, v^*) \in Z$.

Corollary 3.9. Let (X, \leq, d) be an ordered b-metric space with constant $s \geq 1$ such that the b-metric d is complete. Let $F : X \times X \to P_{cl}(X)$ be a multi-valued operator having the strict mixed monotone property with respect to " \leq ". Assume that:

i) there exists a functional $\psi \in \Psi$ such that

$$H_d(F(x,y), F(u,v)) + H_d(F(y,x), F(v,u)) \le \le d(x,u) + d(y,v) - \psi (d(x,u) + d(y,v))$$

for all (x, y), $(u, v) \in X \times X$ with $x \leq u, y \geq v$.

ii) there exist $(x_0, y_0) \in X \times X$ and $(x_1, y_1) \in F(x_0, y_0) \times F(y_0, x_0)$ such that $x_0 \leq x_1$ and $y_0 \geq y_1$.

Then, there exist a pair $(x^*, y^*) \in X \times X$ with

$$\begin{cases} x^* \in F(x^*, y^*) \\ y^* \in F(y^*, x^*) \end{cases}$$

and two sequences $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ in X with

$$\begin{cases} x_{n+1} \in F(x_n, y_n) \\ y_{n+1} \in F(y_n, x_n) \end{cases}$$

for all $n \in \mathbb{N}$, such that $x_n \to x^*$ and $y_n \to y^*$ as $n \to \infty$.

Proof. In Theorem 3.7 we take $\varphi(t) = t$, $\forall t \in [0, \infty)$ and hence we get Corollary 3.9.

4. PROPERTIES OF THE SOLUTIONS OF THE COUPLED FIXED POINT PROBLEM

Theorem 4.1 (Data dependence). Let (X, d) be a complete b-metric space with constant $s \ge 1$. Let $F : X \times X \to P_{cl}(X)$ and $S : X \times X \to P_{cl}(X)$ be two multi-valued operators. Suppose that:

i) there exist two functionals $\varphi \in \Phi$ and $\psi \in \Psi$, ψ is continuous such that

$$\varphi \left(H_d(F(x,y), F(u,v)) + H_d(F(y,x), F(v,u)) \right) \le \\ \le \varphi \left(d(x,u) + d(y,v) \right) - \psi \left(d(x,u) + d(y,v) \right) \\ \text{for all } (x,y), \ (u,v) \in X \times X. \\ \text{ii) there exists } (x^*,y^*) \in X \times X \text{ such that} \\ \left\{ F(x^*,y^*) = \{x^*\} \right\}$$

$$\Big\langle F(y^*,x^*)=\{y^*\}$$

iii) there exists $(u^*, v^*) \in X \times X$ such that

$$\begin{cases} u^* \in S(u^*, v^*) \\ v^* \in S(v^*, u^*) \end{cases}$$

iv) there exists $\eta > 0$ such that $H_d(F(x,y), S(x,y)) \le \eta, \ \forall (x,y) \in X \times X.$ v)

$$\begin{cases} \varphi(t) - s\varphi(t) + s\psi(t) > 0, \ \forall t > 0\\ \varphi(t) - s\varphi(t) + s\psi(t) = 0 \Rightarrow t = 0 \end{cases}$$

Then, we have the following estimation:

$$\varphi_{\tilde{d}}\left(CFix(S), CFix(F)\right) \leq \sup\{t \in \mathbb{R}_+ / \varphi(t) - s\varphi(t) + s\psi(t) \leq 2s\eta\}$$

Proof. Let $(u^*, v^*) \in X \times X$ such that

$$\begin{cases} u^* \in S(u^*, v^*) \\ v^* \in S(v^*, u^*) \end{cases}$$

and $(x^*, y^*) \in X \times X$ such that

$$\begin{cases} F(x^*, y^*) = \{x^*\} \\ F(y^*, x^*) = \{y^*\} \end{cases}$$

We denote by $Z=X\times X$ and consider the following functional $\tilde{d}:Z\times Z\to \mathbb{R}_+$ defined by

$$d((x,y),(u,v)) = d(x,u) + d(y,v), \ \forall (x,y), (u,v) \in Z.$$

We have:

$$\begin{split} \tilde{d}((x^*,y^*),(u^*,v^*)) &= D_{\tilde{d}}((u^*,v^*),F(x^*,y^*)\times F(y^*,x^*)) \\ &= D_d(u^*,F(x^*,y^*)) + D_d(v^*,F(y^*,x^*)) \\ &\leq H_d(S(u^*,v^*),F(x^*,y^*)) + H_d(S(v^*,u^*),F(y^*,x^*)) \\ &\leq s\left[H_d(S(u^*,v^*),F(u^*,v^*)) + H_d(F(u^*,v^*),F(x^*,y^*))\right] \\ &+ s\left[H_d(S(v^*,u^*),F(v^*,u^*)) + H_d(F(v^*,u^*),F(y^*,x^*))\right] \\ &\leq 2s\eta + s\left[H_d(F(x^*,y^*),F(u^*,v^*)) + H_d(F(y^*,x^*),F(v^*,u^*))\right] \end{split}$$

On the other hand, φ is increasing, so:

$$\begin{aligned} \varphi(d((x^*, y^*), (u^*, v^*))) \\ &\leq 2s\eta + s\varphi(H_d(F(x^*, y^*), F(u^*, v^*)) + H_d(F(y^*, x^*), F(v^*, u^*)))) \\ &\leq 2s\eta + s\varphi(\tilde{d}((x^*, y^*), (u^*, v^*))) - s\psi(\tilde{d}((x^*, y^*), (u^*, v^*)))) \end{aligned}$$

 $\Rightarrow \varphi(\tilde{d}((x^*, y^*), (u^*, v^*))) - s\varphi(\tilde{d}((x^*, y^*), (u^*, v^*))) + s\psi(\tilde{d}((x^*, y^*), (u^*, v^*))) \le 2s\eta.$ That means

$$\begin{split} \tilde{d}((x^*, y^*), (u^*, v^*)) &\leq \sup\{t \in \mathbb{R}_+ / \varphi(t) - s\varphi(t) + s\psi(t) \leq 2s\eta\} \\ \Rightarrow D_{\tilde{d}}((u^*, v^*), CFix(F)) &\leq \sup\{t \in \mathbb{R}_+ / \varphi(t) - s\varphi(t) + s\psi(t) \leq 2s\eta\} \\ \Rightarrow \varphi_{\tilde{d}}(CFix(S), CFix(F)) &\leq \sup\{t \in \mathbb{R}_+ / \varphi(t) - s\varphi(t) + s\psi(t) \leq 2s\eta\} \end{split}$$

Consider the system of inclusions

(4.1)
$$\begin{cases} x \in F(x,y) \\ y \in F(y,x) \end{cases}$$

and $\tilde{d}: Z \times Z \to \mathbb{R}_+$, where $Z = X \times X$, defined by:

$$\vec{d}((x,y),(u,v)) = d(x,u) + d(y,v), \; \forall (x,y), \; (u,v) \in Z.$$

By definition, the system of inclusions (4.1) is well-posed with respect to $D_{\tilde{d}}$ if:

(i) there exists $w^* = (u^*, v^*) \in Z$ such that

$$\begin{cases} F(u^*, v^*) = \{u^*\} \\ F(v^*, u^*) = \{v^*\} \end{cases}$$

(ii) if $w_n = (u_n, v_n)_{n \in \mathbb{N}}$ is a sequence in Z with the following properties $D_d(u_n, F(u_n, v_n)) \to 0$ respectively $D_d(v_n, F(v_n, u_n)) \to 0$ as $n \to \infty$, then $d(u_n, u^*) + d(v_n, v^*) \to 0$ as $n \to \infty$ or $\tilde{d}((u_n, v_n), (u^*, v^*)) \to 0$ as $n \to \infty$.

Theorem 4.2 (Well-posedness). We suppose that all the hypotheses of Theorem 3.8 take place. If additionally we have:

$$\begin{cases} \varphi(t) - s\varphi(t) + s\psi(t) > 0, \forall t > 0 \ (*) \\ \varphi(t_n) - s\varphi(t_n) + s\psi(t_n) \to 0 \Rightarrow t_n \to 0 \ as \ n \to \infty \ (**) \end{cases}$$

Then, the system of inclusions (4.1) is well-posed with respect to D_d .

Proof. From Theorem 3.8 follows that the system of inclusions (4.1) has a unique solution $w^* = (u^*, v^*) \in \mathbb{Z}$.

Let $w_n = (u_n, v_n)_{n \in \mathbb{N}}$ in Z with $D_d(u_n, F(u_n, v_n)) \to 0$, respectively $D_d(v_n, F(v_n, u_n)) \to 0$ as $n \to \infty$. We have:

$$\begin{split} \tilde{d}((u_n, v_n), (u^*, v^*)) &= D_{\tilde{d}}((u_n, v_n), F(u^*, v^*) \times F(v^*, u^*)) \\ &= D_d(u_n, F(u^*, v^*)) + D_d(v_n, F(v^*, u^*)) \\ &\leq s \left[D_d(u_n, F(u_n, v_n)) + H_d(F(u_n, v_n), F(u^*, v^*)) \right] \\ &+ s \left[D_d(v_n, F(v_n, u_n)) + H_d(F(v_n, u_n), F(v^*, u^*)) \right] \end{split}$$

From φ is an increasing mapping follows that:

$$\begin{split} \varphi(d((u_n, v_n), (u^*, v^*))) &\leq sD_{\tilde{d}}((u_n, v_n), F(u_n, v_n) \times F(v_n, u_n)) + \\ &+ s\varphi(H_d(F(u_n, v_n), F(u^*, v^*)) + H_d(F(v_n, u_n), F(v^*, u^*))) \\ &\leq sD_{\tilde{d}}((u_n, v_n), F(u_n, v_n) \times F(v_n, u_n)) + \\ &+ s\varphi(\tilde{d}((u_n, v_n), (u^*, v^*))) - s\psi(\tilde{d}((u_n, v_n), (u^*, v^*))) \end{split}$$

We get

$$\begin{aligned} \varphi(\tilde{d}((u_n, v_n), (u^*, v^*))) &- s\varphi(\tilde{d}((u_n, v_n), (u^*, v^*))) + s\psi(\tilde{d}((u_n, v_n), (u^*, v^*))) \leq \\ &\leq sD_{\tilde{d}}((u_n, v_n), F(u_n, v_n) \times F(v_n, u_n)). \end{aligned}$$

Letting $n \to \infty$ we get

$$\lim_{n \to \infty} [\varphi(\tilde{d}((u_n, v_n), (u^*, v^*))) - s\varphi(\tilde{d}((u_n, v_n), (u^*, v^*))) + s\psi(\tilde{d}((u_n, v_n), (u^*, v^*)))] = 0$$

By the assumptions (*) and (**) we get that $\tilde{d}((u_n, v_n), (u^*, v^*)) \to 0$ as $n \to \infty$. \Box

In what follows we give an Ulam-Hyers stability property.

Definition 4.3. Let (X,d) be a *b*-metric space with constant $s \geq 1$ and $F: X \times X \to P(X)$ be a multi-valued operator. Let \tilde{d} be any *b*-metric on $Z = X \times X$ generated by *d*. By definition, the system of inclusions (4.1) is Ulam-Hayers stable if there exists an increasing operator $\gamma: \mathbb{R}_+ \to \mathbb{R}_+$ continuous in 0 with $\gamma(0) = 0$ such that for each $\varepsilon \in \mathbb{R}^*_+$ and for each solution $(\bar{x}, \bar{y}) \in Z$ of the inequality $D_{\tilde{d}}((x,y), F(x,y) \times F(y,x)) \leq \varepsilon$ there exists a solution $(x^*, y^*) \in Z$ of the system of inclusions (4.1) such that $\tilde{d}((x^*, y^*), (\bar{x}, \bar{y})) \leq \gamma(\varepsilon)$.

Theorem 4.4 (Ulam-Hyers stability). Consider the system of inclusions (4.1). Let us suppose that all the hypotheses of Theorem 3.8 take place. If additionally we have: $\varphi(t) - s\varphi(t) + s\psi(t) > 0, \ \forall t > 0$ $\varphi(t) - s\varphi(t) + s\psi(t) = 0 \Rightarrow t = 0,$ then, the system of inclusions (4.1) is Ulam-Hyers stable.

Proof. Using Theorem 3.8 we obtain that there exists a unique pair $(x^*, y^*) \in Z$ such that

 $\{x^*\} = F(x^*, y^*)$ $\{y^*\} = F(y^*, x^*).$ Consider the functional $\tilde{d}: Z \times Z \to \mathbb{R}_+$ defined by

$$\tilde{d}\left((x,y),(u,v)\right)=d(x,u)+d(y,v),\;\forall (x,y),(u,v)\in Z.$$

Then we get

$$d((\bar{x}, \bar{y}), (x^*, y^*)) = d(\bar{x}, x^*) + d(\bar{y}, y^*)$$

= $D_d(\bar{x}, F(x^*, y^*)) + D_d(\bar{y}, F(y^*, x^*))$
 $\leq s [D_d(\bar{x}, F(\bar{x}, \bar{y})) + H_d(F(\bar{x}, \bar{y}), F(x^*, y^*))]$
 $+ s [D_d(\bar{y}, F(\bar{y}, \bar{x})) + H_d(F(\bar{y}, \bar{x}), F(y^*, x^*))]$
 $\leq s\varepsilon + s [H_d(F(\bar{x}, \bar{y}), F(x^*, y^*)) + H_d(F(\bar{y}, \bar{x}), F(y^*, x^*))]$

Because φ is an increasing mapping we get that

$$\varphi(\tilde{d}((\bar{x},\bar{y}),(x^*,y^*))) \le s\varphi(\tilde{d}((\bar{x},\bar{y}),(x^*,y^*))) - s\psi(\tilde{d}((\bar{x},\bar{y}),(x^*,y^*))) + s\varepsilon,$$

and so

$$\tilde{d}((\bar{x},\bar{y}),(x^*,y^*)) \leq \sup\{t \in \mathbb{R}_+ / \varphi(t) - s\varphi(t) + s\psi(t) \leq s\varepsilon\} := \gamma(\varepsilon). \qquad \Box$$

References

- V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, 1993, pp. 3–9.
- [2] V. Berinde, Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces, Nonlinear Anal. 74 (2011), 7347–7355.
- [3] H. Covitz and S. B. Nadler, Multi-valued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5–11.
- [4] S. Czerwik, Nonlinear set-valued contraction mappings in B-metric spaces, Atti Sem. Mat. Univ. Modena 46 (1998), 263–276.
- [5] T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379–1393.
- [6] D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal. 11 (1987), 623–632.
- [7] W. A. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer Heidelberg, 2014.
- [8] V. Lakshmikantham, L. Cirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), 4341–4349.
- [9] A. Petruşel, Multi-valued weakly Picard operators and applications, Sci. Math. Japon. 59 (2004), 169–202.
- [10] A. Petruşel, G. Petruşel, B. Samet and J.-C. Yao, Coupled fixed point theorems for symmetric contractions in b-metric spaces with applications to operator equation systems, Fixed Point Theory 17 (2016), 457–476.
- [11] A. Petruşel, G. Petruşel, B. Samet and J.-C. Yao, Coupled fixed point theorems for symmetric multi-valued contractions in b-metric space with applications to systems of integral inclusions, J. Nonlinear Convex Anal. 17 (2016), 1265–1282.
- [12] R. Precup and A. Viorel, Existence results for systems of nonlinear evolution inclusions, Fixed Point Theory 11 (2010), 337–346.
- [13] C. Urs, Coupled fixed point theorems and applications, Miskolc Math. Notes 14 (2013), 323– 333.

Manuscript received 14 November 2016 revised 16 January 2017

G. Petruşel

Babeş-Bolyai University Cluj-Napoca, Romania *E-mail address:* gabi.petrusel@tbs.ubbcluj.ro

T. Lazăr

Technical University of Cluj-Napoca, Romania *E-mail address*: tanialazar@yahoo.com

V. L. LAZĂR

Vasile Goldiş University Arad, Romania *E-mail address:* vasilazar@yahoo.com