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Moreover, for x, y ∈ X, A,B,U, V ∈ P (X) we have:

Dd̃ ((x, y), U × V ) = Dd(x,U) +Dd(y, V );

ρd̃(A×B,U × V ) = ρd(A,U) + ρd(B, V );

Hd̃(A×B,U × V ) ≤ Hd(A,U) +Hd(B, V ),

where the following notations are used:

(1) for the gap functional generated by d “Dd”:

Dd : P (X)× P (X) → R+, Dd(A,B) = inf{d(a, b)/ a ∈ A, b ∈ B};

(2) for the excess generalized functional “ρd”:

ρd : P (X)× P (X) → R+ ∪ {+∞}, ρd(A,B) = sup{Dd(a,B)/ a ∈ A};

(3) for the Hausdorff-Pompeiu generalized functional “Hd”:

Hd : P (X)× P (X) → R+ ∪ {+∞}, Hd(A,B) = max{ρd(A,B), ρd(B,A)}.

Additionally, by the properties of the gap functional Dd, if (x, y) ∈ X × X and
A,B ∈ Pcl(X), then

Dd̃ ((x, y), U × V ) = 0 ⇔ (x, y) ∈ U × V.

Definition 1.2. Let (X,≤) be a partially ordered set. Then, the partial order
“ ≤ ” induces on the product space X ×X the following partial order relation:

for (x, y), (u, v) ∈ X ×X (x, y) ≤p (u, v) ⇔ x ≤ u, y ≥ v.

Definition 1.3. Let X be a nonempty set, let “ ≤ ” be a partial order on X and
d be a b-metric on X with constant s ≥ 1. Then the triple (X,≤, d) is called an
ordered b-metric space if:

(i) “ ≤ ” is a partially order on X;
(ii) d is a b-metric on X with constant s ≥ 1;
(iii) if (xn)n∈N is a monotone increasing sequence in X and lim

n→∞
xn = x∗ then

xn ≤ x∗ for all n ∈ N;
(iv) if (yn)n∈N is a monotone decreasing sequence in X and lim

n→∞
yn = y∗ then

yn ≥ y∗ for all n ∈ N.

Definition 1.4. Let (X,≤) be a partially ordered set and A,B ∈ P (X). We will
denote:

a) A ≤st B ⇔ ∀a ∈ A,∀b ∈ B we have a ≤ b;
b) A ≤wk B ⇔ ∀a ∈ A,∃b ∈ B such that a ≤ b.

Definition 1.5. Let (X,≤) be a partially ordered set and T : X → P (X) be
a multi-valued operator. We say that T is strong increasing (respectively strong
decreasing) on X if for every x, y ∈ X with x ≤ y we have that T (x) ≤st T (y)
(respectively T (x) ≥st T (y)).

Let (X, d) be a metric space and T : X ×X → P (X) be a multi-valued operator.
Following [6] (where the single-valued case is treated), by definition, a coupled fixed
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point problem for T means to find a pair (x∗, y∗) ∈ X ×X satisfying

(P )

{
x∗ ∈ T (x∗, y∗)

y∗ ∈ T (y∗, x∗)

The purpose of this paper, is to study the coupled fixed point problem for multi-
valued operators satisfying a nonlinear contraction condition. The approach is based
on some fixed point theorems for multi-valued operators in complete b-metric space.
Several properties of the solution set of the coupled fixed point problem will be also
discussed. Our results extend and complement some theorems given in [2], [8], [10],
[11], [12].

2. Fixed point theorems for (φ,ψ)-contractions

We recall first the following auxiliary result.

Lemma 2.1. Let (X, d) be a b-metric space and ϵ > 0. Let A,B ∈ P (X). Then
∀a ∈ A,∃b ∈ B such that

d(a, b) ≤ H(A,B) + ϵ

Let Φ denote the set of all function φ : [0,∞) → [0,∞) satisfying:

(iφ) φ is continuous and (strictly) increasing;
(iiφ) φ(t) < t for all t > 0;
(iiiφ) φ(a+ b) ≤ φ(a) + b, ∀a, b ∈ [0,∞);
(ivφ) φ(st) ≤ sφ(t), (where s ≥ 1), ∀t ∈ [0,∞).

We denote by Ψ the set of all functions ψ : [0,∞) → [0,∞) which satisfy:

(iψ) lim
t→r

ψ(t) > 0 for all r > 0;

(iiψ) lim
t→0+

ψ(t) = 0.

Theorem 2.2. Let (X,≤, d) be a complete ordered b-metric space with constant
s ≥ 1. Let T : X → Pcl(X) be a multivalued operator strong increasing with respect
to “ ≤ ”. Suppose that:

(i) there exist two functionals φ ∈ Φ and ψ ∈ Ψ such that for all (x, y) ∈ X×X
with x ≤ y:

φ(Hd(T (x), T (y))) ≤ φ(d(x, y))− ψ(d(x, y));

(ii) there exists an element x0 ∈ X such that x0 ≤wk T (x0).

Then Fix(T ) ̸= ∅ and there exists a sequence (xn)n∈N in X of successive approxi-
mation of T starting from x0 ∈ X which converges to a fixed point of T .

Proof. Let x0 ∈ X such that x0 ≤wk T (x0). Then, there exists x1 ∈ T (x0) such
that x0 ≤ x1.
Suppose x0 ̸= x1. Otherwise x0 ∈ T (x0) ⇒ Fix(T ) ̸= ∅.
Let ε̃ > 0.
Using Lemma 2.1 for any x1 ∈ T (x0) there exists x2 ∈ T (x1) such that d(x1, x2) ≤
Hd (T (x0), T (x1)) + ε̃

⇒ φ (d(x1, x2)) ≤ φ (Hd (T (x0), T (x1)) + ε̃) ≤ φ (Hd (T (x0), T (x1))) + ε̃.
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Since d(x0, x1) > 0 ⇒ φ (d(x0, x1)) > 0. By our hypothesis, we have

φ (Hd (T (x0), T (x1))) ≤ φ (d(x0, x1))− ψ (d(x0, x1)) < φ (d(x0, x1)) .

We choose
ε̃ := φ (d(x0, x1))− φ (Hd (T (x0), T (x1))) > 0,

and we get
φ (d(x1, x2)) ≤ φ (d(x0, x1)) .

Since φ is increasing, we get that d(x1, x2) ≤ d(x0, x1).
Since x1 ∈ T (x0), x2 ∈ T (x1), x0 ≤ x1 and because T is strong increasing⇒ x1 ≤ x2.
Suppose x1 ̸= x2. Otherwise x1 ∈ Fix(T ) ⇒ Fix(T ) ̸= ∅.
Using Lemma 2.1 for any x2 ∈ T (x1) there exists x3 ∈ T (x2) such that d(x2, x3) ≤
Hd (T (x1), T (x2)) + ε̃

⇒ φ (d(x2, x3)) ≤ φ (Hd (T (x1), T (x2)) + ε̃) ≤ φ (Hd (T (x1), T (x2))) + ε̃.

Since d(x1, x2) > 0 we get φ (d(x1, x2)) > 0.
Thus

φ (Hd (T (x1), T (x2))) ≤ φ (d(x1, x2))− ψ (d(x1, x2)) < φ (d(x1, x2)) .

We choose
ε̃ := φ (d(x1, x2))− φ (Hd (T (x1), T (x2))) > 0,

and we get
φ (d(x2, x3)) ≤ φ (d(x1, x2)) .

By the monotonicity of φ, we get that φ (d(x2, x3)) ≤ φ (d(x1, x2)) ≤ φ (d(x0, x1)).
By induction, we obtain a sequence (xn)n∈N in X with the following properties:

(a) xn+1 ∈ T (xn), for all n ∈ N;
(b) xn ≤ xn+1, for all n ∈ N;
(c) φ (d(xn, xn+1)) ≤ φ (d(xn−1, xn)), for all n ∈ N, φ is increasing;
(c’) d(xn, xn+1) ≤ d(xn−1, xn), ∀n ∈ N;
(d) φ (d(xn, xn+1)) ≤ φ (d(xn−1, xn))− ψ (d(xn−1, xn)) + ε̃, ∀ε̃ > 0.

Then by (c′) we have: 0 ≤ δn+1 := d(xn, xn+1) is decreasing.
Thus lim

n→∞
δn = δ ≥ 0.

We show that δ = 0 (by contradiction).
Assume the contrary, that is δ > 0. Then by letting n→ ∞ in (d) we get:

φ(δ) = lim
n→∞

φ(δn+1) ≤ lim
n→∞

φ(δn)− lim
n→∞

ψ(δn) + ε̃ < φ(δ)− lim
n→∞

ψ(δn) + ε̃.

We choose ε̃ < lim
n→∞

ψ(δn) > 0. Then we obtain: 0 < − lim
n→∞

ψ(δn) + ε̃ < 0 gives a

contradiction. Follows that δ = 0. Further, we proof by contradiction that (xn)n∈N
is a Cauchy sequence.
Suppose that (xn)n∈N is not a Cauchy sequence on X ⇒ ∃ε > 0 for which we can
find two sub-sequences (xn(k)) and (xm(k)) of (xn)n∈N with n(k) > m(k) ≥ k such
that

(2.1) d(xn(k), xm(k)) ≥ s · ε, k = 1, 2, ...

We can choose n(k) to be the smallest integer with property n(k) > m(k) ≥ k and
satisfying (2.1), follows that d(xn(k)−1, xm(k)) < ε.
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By triangle inequality we have:

sε ≤ rk = d(xn(k), xm(k)) ≤ s[d(xn(k), xn(k)−1) + d(xn(k)−1, xm(k))] <

< s · d(xn(k), xn(k)−1) + s · ε.
Letting k → ∞ we get lim

k→∞
rk = s · ε.

Since n(k) > m(k) we have, using the property (b) that xn(k) ≥ xm(k) or xm(k) ≤
xn(k), we put x = xm(k) and y = xn(k) in (i) ⇒

φ(Hd(T (xm(k)), T (xn(k)))) ≤ φ(d(xm(k), xn(k)))− ψ(d(xm(k), xn(k))).

We have:

⇒ φ
(
d(xm(k)+1, xn(k)+1)

)
≤ φ

(
Hd

(
T (xm(k)), T (xn(k))

)
+ ε̃

)
≤ φ

(
Hd

(
T (xm(k)), T (xn(k))

))
+ ε̃ ≤ φ

(
d(xm(k), xn(k))

)
− ψ

(
d(xm(k), xn(k))

)
+ ε̃.

follows that

φ(rk+1) ≤ φ(rk)− ψ(rk) + ε̃ and letting k → ∞ ⇒ φ(sε) ≤ φ(sε)− lim
k→∞

ψ(rk) + ε̃

⇒ 0 ≤ − lim
k→∞

ψ(rk) + ε̃ and if we chose ε̃ < lim
k→∞

ψ(rk) > 0

⇒ 0 < 0 which gives a contradiction.
Therefore (xn)n∈N is a Cauchy sequence in a complete b-metric space (X, d) ⇒

∃x∗ ∈ X such that lim
n→∞

xn = x∗.

Now, we show that x∗ ∈ T (x∗)

Dd(x
∗, T (x∗)) ≤ s[d(x∗, xn+1) +Dd(xn+1, T (x

∗))]

≤ s · d(x∗, xn+1) + s ·Hd(T (xn), T (x
∗))

⇒ Dd(x
∗, T (x∗))− s · d(x∗, xn+1) ≤ s ·Hd(T (xn), T (x

∗))

⇒ φ (Dd(x
∗, T (x∗))− s · d(x∗, xn+1)) ≤ s · φ (Hd(T (xn), T (x

∗)))

xn≤x∗
≤
(i)

s [φ(d(xn, x
∗))− ψ(d(xn, x

∗))] .

Letting n→ ∞ we obtain that:

φ (Dd(x
∗, T (x∗))− 0) ≤ s [φ(0)− 0] .

On the other hand φ(t) = 0 ⇔ t = 0 and T has closed values, so x∗ ∈ T (x∗) ⇒
Fix(T ) ̸= ∅. □

Our next result is a fixed point theorem for a multi-valued operator satisfying a
(φ,ψ)-contraction type condition on the whole space.

Theorem 2.3. Let (X, d) be a complete b-metric space with constant s ≥ 1 and
T : X → Pcl(X) a multi-valued operator for which there exist two functionals φ ∈ Φ
and ψ ∈ Ψ such that for all (x, y) ∈ X ×X we have:

φ (Hd(T (x), T (y))) ≤ φ(d(x, y))− ψ(d(x, y)).

Then
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(a) Fix(T ) ̸= ∅ and there exists a sequence (xn)n∈N in X of successive approx-
imations of T starting from any (x0, x1) ∈ Graph(T ) which converges to a
fixed point x∗ of T .

(b) If additionally SFix(T ) ̸= ∅ and ψ ∈ Ψ is a continuous mapping then
Fix(T ) = SFix(T ) = {x∗}.

Proof. (a) is the same with the proof of Theorem 2.2.
(b) Let y∗ ∈ SFix(T ). We consider y ∈ SFix(T ) such that y ̸= y∗.

Then d(y, y∗) = Hd(T (y), T (y
∗)) ⇒

⇒ φ
(
d(y, y∗)

)
= φ

(
Hd(T (y), T (y

∗))
)
≤ φ(d(y, y∗))− ψ(d(y, y∗)).

Since y ̸= y∗ ⇒ φ(d(y, y∗)) > 0 and since ψ is continuous mapping that means
ψ(d(y, y∗)) > 0.

Thus 0 ≤ −ψ(d(y, y∗)) and we have a contradiction

⇒ y = y∗ ⇒ SFix(T ) = {y∗}.
Let x∗ ∈ Fix(T ) with x∗ ̸= y∗ ⇒ d(x∗, y∗) > 0 ⇒ φ(d(x∗, y∗)) > 0.

We have d(x∗, y∗) = Dd(x
∗, T (y∗)) ≤ Hd(T (x

∗), T (y∗))

⇒ φ
(
d(x∗, y∗)

)
≤ φ

(
Hd(T (x

∗), T (y∗))
)
≤ φ(d(x∗, y∗))− ψ(d(x∗, y∗))

⇒ 0 ≤ −ψ(d(x∗, y∗)), which is a contradiction.

Finally we have SFix(T ) = Fix(T ) = {x∗}. □

For related results see [3], [9].

3. Coupled fixed point theorems for multi-valued (φ,ψ) -
contractions

We have the following useful definition.

Definition 3.1. Let (X,≤) be a partially ordered set and G : X × X → P (X).
We say that G has the strict mixed monotone property with respect to the partial
order “ ≤ ” if the following implications hold:

a) x0 ≤ x1 ⇒ G(x0, y) ≤st G(x1, y), ∀y ∈ X
b) y0 ≥ y1 ⇒ G(x, y0) ≤st G(x, y1), ∀x ∈ X.

We recall now the following theorem, which was the starting point in the coupled
fixed point theory for single-valued operators.

Theorem 3.2 (Bhaskar and Lakshmikantham). Let (X,≤) be a partially ordered
set and suppose there is a metric d on X such that (X, d) is a complete metric space.
Let F : X ×X → X be a continuous mapping having the mixed monotone property
on X. Assume that there exists a constant k ∈ [0, 1) with

(3.1) d
(
F (x, y), F (u, v)

)
≤ k

2
[d(x, u) + d(y, v)] for each x ≤ u, y ≥ v

If there exist x0, y0 ∈ X such that

x0 ≤ F (x0, y0), y0 ≥ F (y0, x0)
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then there exist x∗, y∗ ∈ X such that{
x∗ = F (x∗, y∗)

y∗ = F (y∗, x∗)
.

Remark 3.3. The hypothesis F : X × X → X is a continuous mapping can be
replaced by Assumption 1: X has the property that:

(a) if a non-decreasing sequence (xn)n∈N in X converges to x then xn ≤ x, for
all n ∈ N;

(b) if a non-increasing sequence (xn)n∈N in X converges to x then xn ≥ x, for
all n ∈ N.

Later on, Luong and Thuan use a more general contraction type condition:

(3.2) φ
(
d(F (x, y), F (u, v))

)
≤ 1

2
φ(d(x, u) + d(y, v))− ψ(d(x, u) + d(y, v)),

where φ, ψ : [0,∞) → [0,∞) are functions satisfying some appropriate conditions
and (x, y), (u, v) ∈ X ×X with x ≤ u, y ≥ v.

Remark 3.4. For φ(t) = t and ψ(t) = 1−k
2 · t with 0 ≤ k < 1 condition (3.2)

reduces to (3.1).

Another generalization of Bhaskar and Lakshmikantham’s theorem was given by
V. Berinde. In [2] the following class of mappings is introduced.

Remark 3.5. The functional φ : [0,∞) → [0,∞) belongs to Φ̃ if it satisfy the
following conditions:

(iφ) φ is continuous and (strictly) increasing;
(iiφ) φ(t) < t for all t > 0;
(iiiφ) φ(t+ s) ≤ φ(t) + φ(s), ∀t, s ∈ [0,∞).

As before, we recall that the functional ψ : [0,∞) → [0,∞) belongs to the set Ψ if
it satisfy the following conditions:

(iψ) lim
t→r

ψ(t) > 0 for all r > 0;

(iiψ) lim
t→0+

ψ(t) = 0.

Theorem 3.6 (V. Berinde [2]). Let (X,≤) be a partially ordered set and suppose
there is a metric d on X such that (X, d) is a complete metric space. Let F :

X ×X → X be a mixed monotone mapping for which there exist φ ∈ Φ̃ and ψ ∈ Ψ
such that for all x, y, u, v ∈ X with x ≥ u, y ≤ v.

φ

(
d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))

2

)
≤

≤ φ

(
d(x, u) + d(y, v)

2

)
− ψ

(
d(x, u) + d(y, v)

2

)
.

Suppose either

(a) F is continuous mapping, or
(b) X satisfies Assumption 1.
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If there exist x0, y0 ∈ X such that

x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0)

or
x0 ≥ F (x0, y0) and y0 ≤ F (y0, x0),

then there exist x∗, y∗ ∈ X such that{
x∗ = F (x∗, y∗)

y∗ = F (y∗, x∗)
.

The first main result of this section is: the following generalization to the multi-
valued case of Theorem 3.6.

Theorem 3.7. Let (X,≤, d) be an ordered b-metric space with constant s ≥ 1 such
that the b-metric d is complete. Let F : X×X → Pcl(X) be a multi-valued operator
having the strict mixed monotone property with respect to “ ≤ ”. Assume that:

i) there exist two functionals φ ∈ Φ and ψ ∈ Ψ such that

φ (Hd(F (x, y), F (u, v)) +Hd(F (y, x), F (v, u))) ≤
≤ φ (d(x, u) + d(y, v))− ψ (d(x, u) + d(y, v))

for all (x, y), (u, v) ∈ X ×X with x ≤ u, y ≥ v.
ii) there exist (x0, y0) ∈ X ×X and (x1, y1) ∈ F (x0, y0) × F (y0, x0) such that

x0 ≤ x1 and y0 ≥ y1.

Then there exist a pair (x∗, y∗) ∈ X ×X with{
x∗ ∈ F (x∗, y∗)

y∗ ∈ F (y∗, x∗)

and two sequences (xn)n∈N and (yn)n∈N in X with{
xn+1 ∈ F (xn, yn)

yn+1 ∈ F (yn, xn)

for all n ∈ N, such that xn → x∗ and yn → y∗ as n→ ∞.

Proof. Let Z = X×X and consider on Z the partial order relation “ ≤p ” generated

by “ ≤ ” and the metric d̃ : Z × Z → R+ defined by:

d̃((x, y), (u, v)) = d(x, u) + d(y, v), ∀(x, y), (u, v) ∈ Z.

Then (Z,≤p, d̃) is an ordered complete b-metric space.
Consider G : Z → P (Z), G(x, y) = F (x, y)× F (y, x), for all (x, y) ∈ Z.
Since F is strict mixed monotone multi-valued operator follow that G is strong

increasing multi-valued operator with respect to “ ≤p ”.
The multi-valued operator F has a closed value, so the multi-valued operator G

has a closed value too.
Let z = (x, y) ∈ Z and w = (u, v) ∈ Z. We have:

Hd̃(G(z), G(w)) = Hd̃

(
F (x, y)× F (y, x), F (u, v)× F (v, u)

)
≤

≤ Hd

(
F (x, y), F (u, v)

)
+Hd

(
F (y, x), F (v, u)

)
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Because φ is increasing we have that

φ
(
Hd̃(G(z), G(w))

)
≤ φ

(
Hd

(
F (x, y), F (u, v)

)
+Hd

(
F (y, x), F (v, u)

))
≤
(i)
φ (d(x, u) + d(y, v))− ψ (d(x, u) + d(y, v))

= φ(d̃(z, w))− ψ(d̃(z, w)).

Follow that G is (φ,ψ)-contraction with respect to d̃ for all z = (x, y) ∈ Z and
w = (u, v) ∈ Z with z ≤p w.

By ii), there exist z0 = (x0, y0) ∈ Z and z1 = (x1, y1) ∈ F (x0, y0) × F (y0, x0)
such that x0 ≤ x1 and y0 ≥ y1, so z0 ≤wk G(z0).

We can apply Theorem 2.2 for the multi-valued operator G and we obtained
that Fix(G) ̸= ∅, i.e. there exists (x∗, y∗) ∈ Z such that (x∗, y∗) ∈ G(x∗, y∗) ⇒
(x∗, y∗) ∈ F (x∗, y∗)× F (x∗, y∗) or{

x∗ ∈ F (x∗, y∗)

y∗ ∈ F (y∗, x∗)

and there exists sequence zn = (xn, yn) ∈ Z of successive approximation of G
starting from (x0, y0) ∈ Z such that (xn, yn) → (x∗, y∗) as n→ ∞. □

The following result is a global existence and uniqueness theorem for a multi-
valued operator.

Theorem 3.8. Let (X, d) be a complete b-metric space with constant s ≥ 1. Let
F : X×X → Pcl(X) be a multi-valued operator for which there exist two functionals
φ ∈ Φ and ψ ∈ Ψ such that

φ (Hd(F (x, y), F (u, v)) +Hd(F (y, x), F (v, u))) ≤

≤ φ (d(x, u) + d(y, v))− ψ (d(x, u) + d(y, v))

for all (x, y), (u, v) ∈ X ×X. Then the following conclusions hold:

a) there exist (x∗, y∗) ∈ X × X a solution of the coupled fixed point problem
(P ) and two sequences (xn)n∈N and (yn)n∈N in X with xn+1 ∈ F (xn, yn),
yn+1 ∈ F (yn, xn) for all n ∈ N, starting from the arbitrary point (x0, y0) ∈
X ×X and (x1, y1) ∈ F (x0, y0)× F (y0, x0) such that xn → x∗ and yn → y∗

as n→ ∞.
b) If, additionally, we suppose that there exists (u∗, v∗) ∈ X × X such that

F (u∗, v∗) = {u∗}, F (v∗, u∗) = {v∗} and the functional ψ : [0,∞) → [0,∞)
is continuous, then CFix(F ) = {(u∗, v∗)}.

Proof. Consider the functional d̃ : Z × Z → R+, where Z = X ×X, defined by

d̃((x, y), (u, v)) = d(x, u) + d(y, v), ∀(x, y), (u, v) ∈ Z

and the operator G : Z → P (Z) defined by

G(x, y) = F (x, y)× F (y, x), ∀(x, y) ∈ Z.

We can apply Theorem 2.3 of G and we obtain the conclusion a) of this theorem.
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b) From the hypotheses

{
F (u∗, v∗) = {u∗}
F (v∗, u∗) = {v∗}

we have SFix(G) ̸= ∅, and because

ψ ∈ Ψ is a continuous mapping, we can apply Theorem 2.3 b) of G and we obtain
SFix(G) = Fix(G) = {(u∗, v∗)} which means that the coupled fixed problem (P)
of F has a unique solution (u∗, v∗) ∈ Z. □
Corollary 3.9. Let (X,≤, d) be an ordered b-metric space with constant s ≥ 1 such
that the b-metric d is complete. Let F : X×X → Pcl(X) be a multi-valued operator
having the strict mixed monotone property with respect to “ ≤ ”. Assume that:

i) there exists a functional ψ ∈ Ψ such that

Hd(F (x, y), F (u, v)) +Hd(F (y, x), F (v, u)) ≤
≤ d(x, u) + d(y, v)− ψ (d(x, u) + d(y, v))

for all (x, y), (u, v) ∈ X ×X with x ≤ u, y ≥ v.
ii) there exist (x0, y0) ∈ X ×X and (x1, y1) ∈ F (x0, y0) × F (y0, x0) such that

x0 ≤ x1 and y0 ≥ y1.

Then, there exist a pair (x∗, y∗) ∈ X ×X with{
x∗ ∈ F (x∗, y∗)

y∗ ∈ F (y∗, x∗)

and two sequences (xn)n∈N and (yn)n∈N in X with{
xn+1 ∈ F (xn, yn)

yn+1 ∈ F (yn, xn)

for all n ∈ N, such that xn → x∗ and yn → y∗ as n→ ∞.

Proof. In Theorem 3.7 we take φ(t) = t, ∀t ∈ [0,∞) and hence we get Corollary
3.9. □

4. Properties of the solutions of the coupled fixed point problem

Theorem 4.1 (Data dependence). Let (X, d) be a complete b-metric space with
constant s ≥ 1. Let F : X × X → Pcl(X) and S : X × X → Pcl(X) be two
multi-valued operators. Suppose that:

i) there exist two functionals φ ∈ Φ and ψ ∈ Ψ, ψ is continuous such that

φ (Hd(F (x, y), F (u, v)) +Hd(F (y, x), F (v, u))) ≤
≤ φ (d(x, u) + d(y, v))− ψ (d(x, u) + d(y, v))

for all (x, y), (u, v) ∈ X ×X.
ii) there exists (x∗, y∗) ∈ X ×X such that{

F (x∗, y∗) = {x∗}
F (y∗, x∗) = {y∗}

iii) there exists (u∗, v∗) ∈ X ×X such that{
u∗ ∈ S(u∗, v∗)

v∗ ∈ S(v∗, u∗)
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iv) there exists η > 0 such that Hd(F (x, y), S(x, y)) ≤ η, ∀(x, y) ∈ X ×X.
v) {

φ(t)− sφ(t) + sψ(t) > 0, ∀t > 0

φ(t)− sφ(t) + sψ(t) = 0 ⇒ t = 0

Then, we have the following estimation:

φd̃ (CFix(S), CF ix(F )) ≤ sup{t ∈ R+/φ(t)− sφ(t) + sψ(t) ≤ 2sη}

Proof. Let (u∗, v∗) ∈ X ×X such that{
u∗ ∈ S(u∗, v∗)

v∗ ∈ S(v∗, u∗)

and (x∗, y∗) ∈ X ×X such that{
F (x∗, y∗) = {x∗}
F (y∗, x∗) = {y∗}

We denote by Z = X × X and consider the following functional
d̃ : Z × Z → R+ defined by

d̃ ((x, y), (u, v)) = d(x, u) + d(y, v), ∀(x, y), (u, v) ∈ Z.

We have:

d̃((x∗, y∗), (u∗, v∗)) = Dd̃((u
∗, v∗), F (x∗, y∗)× F (y∗, x∗))

= Dd(u
∗, F (x∗, y∗)) +Dd(v

∗, F (y∗, x∗))

≤ Hd(S(u
∗, v∗), F (x∗, y∗)) +Hd(S(v

∗, u∗), F (y∗, x∗))

≤ s [Hd(S(u
∗, v∗), F (u∗, v∗)) +Hd(F (u

∗, v∗), F (x∗, y∗))]

+ s [Hd(S(v
∗, u∗), F (v∗, u∗)) +Hd(F (v

∗, u∗), F (y∗, x∗))]

≤ 2sη + s [Hd(F (x
∗, y∗), F (u∗, v∗)) +Hd(F (y

∗, x∗), F (v∗, u∗))]

On the other hand, φ is increasing, so:

φ(d̃((x∗, y∗), (u∗, v∗)))

≤ 2sη + sφ(Hd(F (x
∗, y∗), F (u∗, v∗)) +Hd(F (y

∗, x∗), F (v∗, u∗)))

≤ 2sη + sφ(d̃((x∗, y∗), (u∗, v∗)))− sψ(d̃((x∗, y∗), (u∗, v∗)))

⇒ φ(d̃((x∗, y∗), (u∗, v∗)))− sφ(d̃((x∗, y∗), (u∗, v∗)))+ sψ(d̃((x∗, y∗), (u∗, v∗))) ≤ 2sη.

That means

d̃((x∗, y∗), (u∗, v∗)) ≤ sup{t ∈ R+/φ(t)− sφ(t) + sψ(t) ≤ 2sη}

⇒ Dd̃((u
∗, v∗), CF ix(F )) ≤ sup{t ∈ R+/φ(t)− sφ(t) + sψ(t) ≤ 2sη}

⇒ φd̃(CFix(S), CF ix(F )) ≤ sup{t ∈ R+/φ(t)− sφ(t) + sψ(t) ≤ 2sη} □
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Consider the system of inclusions

(4.1)

{
x ∈ F (x, y)

y ∈ F (y, x)

and d̃ : Z × Z → R+, where Z = X ×X, defined by:

d̃((x, y), (u, v)) = d(x, u) + d(y, v), ∀(x, y), (u, v) ∈ Z.

By definition, the system of inclusions (4.1) is well-posed with respect to Dd̃ if:

(i) there exists w∗ = (u∗, v∗) ∈ Z such that{
F (u∗, v∗) = {u∗}
F (v∗, u∗) = {v∗}

(ii) if wn = (un, vn)n∈N is a sequence in Z with the following properties
Dd(un, F (un, vn)) → 0 respectively Dd(vn, F (vn, un)) → 0 as n → ∞, then

d(un, u
∗) + d(vn, v

∗) → 0 as n→ ∞ or d̃((un, vn), (u
∗, v∗)) → 0 as n→ ∞.

Theorem 4.2 (Well-posedness). We suppose that all the hypotheses of Theorem
3.8 take place. If additionally we have:{

φ(t)− sφ(t) + sψ(t) > 0,∀t > 0 (∗)
φ(tn)− sφ(tn) + sψ(tn) → 0 ⇒ tn → 0 as n→ ∞ (∗∗)

Then, the system of inclusions (4.1) is well-posed with respect to Dd.

Proof. From Theorem 3.8 follows that the system of inclusions (4.1) has a unique
solution w∗ = (u∗, v∗) ∈ Z.

Let wn = (un, vn)n∈N in Z with Dd(un, F (un, vn)) → 0, respectively
Dd(vn, F (vn, un)) → 0 as n→ ∞.

We have:

d̃((un, vn), (u
∗, v∗)) = Dd̃((un, vn), F (u

∗, v∗)× F (v∗, u∗))

= Dd(un, F (u
∗, v∗)) +Dd(vn, F (v

∗, u∗))

≤ s [Dd(un, F (un, vn)) +Hd(F (un, vn), F (u
∗, v∗))]

+ s [Dd(vn, F (vn, un)) +Hd(F (vn, un), F (v
∗, u∗))] .

From φ is an increasing mapping follows that:

φ(d̃((un, vn), (u
∗, v∗))) ≤ sDd̃((un, vn), F (un, vn)× F (vn, un))+

+ sφ(Hd(F (un, vn), F (u
∗, v∗)) +Hd(F (vn, un), F (v

∗, u∗)))

≤ sDd̃((un, vn), F (un, vn)× F (vn, un))+

+ sφ(d̃((un, vn), (u
∗, v∗)))− sψ(d̃((un, vn), (u

∗, v∗)))

We get

φ(d̃((un, vn), (u
∗, v∗)))− sφ(d̃((un, vn), (u

∗, v∗))) + sψ(d̃((un, vn), (u
∗, v∗))) ≤

≤ sDd̃((un, vn), F (un, vn)× F (vn, un)).
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Letting n→ ∞ we get

lim
n→∞

[φ(d̃((un, vn), (u
∗, v∗)))−sφ(d̃((un, vn), (u∗, v∗)))+sψ(d̃((un, vn), (u∗, v∗)))] = 0

By the assumptions (*) and (**) we get that d̃((un, vn), (u
∗, v∗)) → 0 as n→ ∞. □

In what follows we give an Ulam-Hyers stability property.

Definition 4.3. Let (X, d) be a b-metric space with constant s ≥ 1 and

F : X × X → P (X) be a multi-valued operator. Let d̃ be any b-metric on
Z = X ×X generated by d. By definition, the system of inclusions (4.1) is Ulam-
Hayers stable if there exists an increasing operator γ : R+ → R+ continuous in 0
with γ(0) = 0 such that for each ε ∈ R∗

+ and for each solution (x̄, ȳ) ∈ Z of the
inequality Dd̃((x, y), F (x, y) × F (y, x)) ≤ ε there exists a solution (x∗, y∗) ∈ Z of

the system of inclusions (4.1) such that d̃((x∗, y∗), (x̄, ȳ)) ≤ γ(ε).

Theorem 4.4 (Ulam-Hyers stability). Consider the system of inclusions (4.1). Let
us suppose that all the hypotheses of Theorem 3.8 take place. If additionally we have:
φ(t)− sφ(t) + sψ(t) > 0, ∀t > 0
φ(t)− sφ(t) + sψ(t) = 0 ⇒ t = 0,
then, the system of inclusions (4.1) is Ulam-Hyers stable.

Proof. Using Theorem 3.8 we obtain that there exists a unique pair (x∗, y∗) ∈ Z
such that
{x∗} = F (x∗, y∗)
{y∗} = F (y∗, x∗).

Consider the functional d̃ : Z × Z → R+ defined by

d̃ ((x, y), (u, v)) = d(x, u) + d(y, v), ∀(x, y), (u, v) ∈ Z.

Then we get

d̃((x̄, ȳ), (x∗, y∗)) = d(x̄, x∗) + d(ȳ, y∗)

= Dd(x̄, F (x
∗, y∗)) +Dd(ȳ, F (y

∗, x∗))

≤ s [Dd(x̄, F (x̄, ȳ)) +Hd(F (x̄, ȳ), F (x
∗, y∗))]

+ s [Dd(ȳ, F (ȳ, x̄)) +Hd(F (ȳ, x̄), F (y
∗, x∗))]

≤ sε+ s [Hd(F (x̄, ȳ), F (x
∗, y∗)) +Hd(F (ȳ, x̄), F (y

∗, x∗))]

Because φ is an increasing mapping we get that

φ(d̃((x̄, ȳ), (x∗, y∗))) ≤ sφ(d̃((x̄, ȳ), (x∗, y∗)))− sψ(d̃((x̄, ȳ), (x∗, y∗))) + sε,

and so

d̃((x̄, ȳ), (x∗, y∗)) ≤ sup{t ∈ R+/φ(t)− sφ(t) + sψ(t) ≤ sε} := γ(ε). □
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