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This model generalizes the classical vector optimization that corresponds to the
case in which K(y) ≡ K for all y ∈ Y , where K ⊂ Y is a proper, convex, closed
and pointed cone.

Recently, vector (as well as set) optimization problems with variable ordering
structure are studied intensively in the literature, see the book [16] and references
therein, [3, 7–11, 13–15, 24, 25] and [26]. Important applications of vector optimiza-
tion with variable domination structure appear in medical image registration, psy-
chological modeling, economics, portfolio optimization and location theory, see for
instance [1, 4, 12,17,30].

An interesting application of vector optimization with variable domination struc-
tures is given in the theory of consumer demand in economics by John [21, 22]. In
John [21, 22] and references therein (compare Eichfelder [16]) a local and a global
theory is presented in order to explain consumer behavior. In the local approach, it
is supposed that the consumer faces a nonempty set of feasible alternatives A ⊂ Rm
from which he is allowed to choose. By contrast, with the global approach, a local
preference only requires that the consumer is able to rank alternatives in a small
neighborhood of a given commodity bundle relative to that bundle. This idea can
be represented by an economical comparative function g : Rm → Rm such that y
belonging to a neighborhood of y is interpreted to be better than y if and only if
g(y)(y − y) < 0. For A ⊂ Rm, the choice set assigned to A in the local theory is
then characterized by (see [22])

C(A) := {y ∈ A : ∀y ∈ A : g(y)(y − y) ≥ 0}.
This leads us to a set-valued map K : Rm ⇒ Rm defined by (for y ∈ A):

K(y) := {d ∈ Rm : g(y)(d) ≥ 0}.
If the consumer is interested in an alternative y ∈ A such that

∀y ∈ A : g(y)(y − y) ≥ 0,

then y − y ∈ K(y) for all y ∈ A, i.e., A ⊂ {y}+K(y).
Furthermore, if the consumer is looking for alternatives y ∈ A such that

∀y ∈ A \ {y} : g(y)(y − y) < 0,

then, for all y ∈ A \ {y},
y − y /∈ K(y).

This means that the consumer is looking for alternatives y ∈ A such that

A ∩ (y −K(y)) = {y},
i.e., the consumer is looking for minimal points of a vector optimization problem
with variable domination structure in the sense of (1.1).

In this paper we consider the problem of finding minimal points of a set A with
respect to the variable domination structure given by the mapping K. Our aim is to
present a scalarization method that characterizes these minimal points as well as the
related weak concept with respect to a variable domination structure. Properties of
the scalarizing functional such as monotonicity, convexity and semi-continuity are
studied. The application of the scalarizing functional to the practical computation
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of weakly minimal points of a set A with respect to a variable domination structure
given by the mapping K is also discussed.

The paper is organized as follows. First, in Section 2, the solution concepts for
vector optimization problems with variable domination structure are introduced.
Section 3 is devoted to the presentation of the main results, especially we derive
continuity properties of the scalarizing functional. A descent algorithm for com-
puting minimal points of a set A is presented in Section 4. The paper ends with
a solution approach for the case in which A is the image set of a differentiable
function.

We end this section with some notations and concepts which will be useful for
the study of the scalarization functional.

From now on X and Y are Banach spaces, R := R ∪ {+∞,−∞} and, as usual,
−∞ + a = −∞ for all a ∈ R and a(−∞) = −∞, if a > 0. We denote as [a, z] the
set {u = αa + (1 − α)z : α ∈ [0, 1]}, B(a, ε) is the open ball centered in a with
radius ε and V (y) represents a neighborhood of y. Analogously if A ⊂ Y , V (A) is
a neighborhood of A. If y∗ ∈ Y , and A ⊂ Y , y∗ ±A := {y ∈ Y : y = y∗ ±A}. If Y
is a Hilbert space, ⟨·, ·⟩ represents the corresponding scalar product. Finally, if Y is
a finite dimensional space, we assume ∥ · ∥ is the Euclidean norm.

Let Φ : X ⇒ Y be a set-valued mapping. If D ⊂ X, the image of D by the
mapping Φ is denoted by Φ(D) (Φ(D) := ∪x∈DΦ(x)). We will use the following
definitions of semi-continuity and closedness, see [2] for more details.

Definition 1.1. Let Φ : X ⇒ Y be a set-valued map, where X and Y are Banach
spaces.

Φ is Berge-upper semi-continuous (B-usc) at x ∈ X if for each open subset
V of Y such that Φ(x) ⊂ V , there is a neighborhood U of x satisfying Φ(U) ⊂ V .

Φ is Berge-lower semi-continuous (B-lsc) at x ∈ X if for each open subset V
of Y such that Φ(x)∩V ̸= ∅ there is a neighborhood U of x satisfying Φ(U)∩V ̸= ∅
for all x ∈ U .

Φ is closed at x ∈ X if for all xn → x, yn → y, yn ∈ Φ(xn) implies that y ∈ Φ(x).
Φ is closed if it is closed at every x ∈ X, i.e., if gph(Φ) = {(x, y) ∈ X × Y : y ∈
Φ(x)} is a closed set.

More details on these concepts, as well as their relationships with other semicon-
tinuity definitions, can be found in [2].

In the following section, we introduce the model we will deal with and a useful
scalarization technique.

2. Solution concepts and scalarization methods

In this section, we will study the problem of finding the minimal points to a
subset A of Y with respect to a variable domination structure. Definitions and
some properties will be given. Unless something else is stated, we assume that

• Y is a Banach space and A is a nonempty subset of Y .
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• The variable domination structure is given by the set-valued mapping K :
Y ⇒ Y , where K(y) is a convex, closed, pointed set, K(y) ̸= {0} for all
y ∈ Y .

Recall that a set K ⊂ Y is pointed if K ∩ −K = {0}.
An important type of domination structure appears when the mapping K : Y ⇒

Y is such that K(y) is a cone for all y ∈ Y , i.e., K is a cone-valued mapping. If
K(y) is a proper, closed, convex and pointed cone for all y ∈ Y , the relation a ⪰y b
if and only if a− b ∈ K(y), defines a partial order, which is also stable with respect
to the sum and the positive scalar multiplication in Y . For this reason, we will
particularize the more generally obtained results to the cone valued ordering case.

Let a domination structure be given by a mapping K. This means that points on
Y are compared in the sense that y1 ⪰ y2 if and only if y1 − y2 ∈ K(y1). Using the
domination mapping K : Y ⇒ Y , for a given set A ⊂ Y , we can study the points
y ∈ A such that there exists no point y(̸= y) ∈ A, fulfilling y−y ∈ K(y). This leads
to the following concept of minimal elements of a set A (compare Eichfelder [16]):

Definition 2.1. Assume that A ⊂ Y and K : Y ⇒ Y is a set-valued mapping such
that K(y) is a closed, convex, pointed set, K(y) ̸= {0} for each y ∈ Y . An element
y ∈ A is a minimal point of A with respect to K, if

A ∩ (y −K(y)) = {y}.

The set of minimal points of A with respect to K is denoted by Min(A,K(·)).

Corresponding to this definition, we will denote the problem of finding minimal
points of a set A with respect to a variable domination structure given byK : Y ⇒ Y
as

(2.1) Min(A,K(·)).

This model will be called geometric vector optimization problem with variable
domination structure. The elements of Min(A,K(·)) are the solutions of (2.1).

As in the case in which K(·) ≡ K (that is K(·) is constant), weakly minimal
points of A with respect to K are very important from the theoretical as well as
practical viewpoint. We will introduce them in the following definition.

Definition 2.2. Assume that A ⊂ Y and K : Y ⇒ Y is a set-valued mapping such
that K(y) is a closed, convex, pointed set and int(K(y)) ̸= ∅ for each y ∈ Y . An
element y ∈ A is called weakly minimal point of A with respect to K if

A ∩ (y − int(K(y))) = ∅.

The set of weakly minimal points of A with respect to K is denoted by
WMin(A,K(·)).

For more details about solution concepts for vector optimization problems with
variable domination structures, see Eichfelder [16].

Let us illustrate these definitions in an example:
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Figure 1. The cones K1 and K2 defining the domination map K
in Example 2.3.

Figure 2. Elements y1, y2, y3 of A and the corresponding ordering
cones K(yi), i = 1, 2, 3, in Example 2.3.

Example 2.3. Consider A = [−1, 1]× [−1, 1] and the domination map

K(y) :=

{
K1 if y1 ≥ 0,
K2 otherwise,

where

K1 := {z ∈ R2 : z1 ≥ 0, z2 ≥ −z1},

K2 := R2
+ ∩ {z ∈ R2 : z1 − z2 ≤ 0}.

Figure 1 shows the cones K1 and K2 which define the domination map K.
Furthermore, Figure 2 depicts the sets A and y − K(y) for the points y1, y2

and y3. Evidently, y1 ∈ WMin(A,K(·)) \ Min(A,K(·)), y2 ∈ Min(A,K(·)) and
y3 /∈ WMin(A,K(·)).
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Figure 3. The scalarizing functional ψ(y, r) given by (3.1) for y = 0.

In fact the set of minimal points is

Min(A,K(·)) = {(y1,−1) ∈ R2 : y1 ∈ [−1, 0)},
and the set of weakly minimal elements is

WMin(A,K(·)) = {(−1, y2) ∈ R2 : y1 ∈ [−1, 0), y2 ∈ [−1, 1]} ∪ {(y1,−1) ∈ R2}.
It is clear after the definition that Min(A,K(·)) ⊆ WMin(A,K(·)). As in the case
of a classical vector optimization problem, there exist weakly minimal points of A
such as (−1, 1), which are not close to the set of Min(A,K(·)).

As in the classical case of vector optimization, an appealing approach is to use
scalar functionals for characterizing the elements of Min(A,K(·)) andWMin(A,K(·)).
A scalarization for model (2.1) is introduced in the next section.

3. A nonlinear scalarization method for vector optimization
problems with variable domination structure

In this section, the problem of finding (weakly) minimal points of the set A with
respect to the set-valued map K : Y ⇒ Y is considered. As already pointed out,
scalarizations are widely used in vector optimization models, see [20]. Also for
the case of variable domination structure, scalarization methods are studied in the
literature (see [9–11, 16, 24] and references therein). Our paper is devoted to the
study of a new nonlinear scalarization by means of a functional ψ : Y ×[Y \{0}] → R
defined by

(3.1) ψ(y, r) := inf{t ∈ R : y + tr ∈ A+K(y)},
where y ∈ Y, r ∈ Y \ {0}.

The example in Figure 3 shows the value of ψ(y, r) for y ∈ A and r ∈ K(y).
Furthermore, it holds that ψ(y, r) = 0 for all r ∈ K(y) at a minimal point y ∈ A,
which is a desirable property of this class of functionals.

In the first subsection, a characterization of minimal and weakly-minimal points
by means of the scalarizing functional ψ : Y × [Y \ {0}] → R will be derived.
Roughly speaking, we will present sufficient conditions for the property ψ(y, r) = 0
for y ∈ Min(A,K(·)) and for all r ∈ K(y) \ {0}. Furthermore, we will formulate
assumptions under which we can guarantee that the elements of the form y =
y + ψ(y, r)r − k ∈ A are weakly minimal points of A with respect to K. The



NONLIN. SCALARIZING FUNCT. FOR COMP. MINIMAL POINTS UNDER V.O.S. 73

second subsection includes the analysis of algebraic and topological properties of
the functional ψ : Y × [Y \ {0}] → R. Sufficient conditions for the semi-continuity
and the convexity of ψ are presented.

3.1. Characterization of (weakly) minimal points. In this part, we will study
the functional ψ : Y × [Y \ {0}] → R given by (3.1) and its relationship to weakly
minimal and minimal points of A ⊂ Y with respect to K : Y ⇒ Y . We use the
convention that ψ(y, r) = +∞ if {y + tr : t ∈ R} ∩ (A +K(y)) = ∅. As already
supposed, Y is a Banach space.

Before analyzing the finiteness of ψ, we introduce a related concept of bounded-
ness of a set A.

Definition 3.1. Let Y be a Banach space. A ⊂ Y is said to be bounded if there
exists M > 0 such that A ⊂ B(0,M).

Now, we present the result concerning the finiteness of the functional ψ.

Proposition 3.2. Let A ⊂ Y and K : Y ⇒ Y be a set-valued map such that K(y)
is a convex, closed and pointed set, K(y) ̸= {0} for all y ∈ Y . We consider the
functional ψ : Y × [Y \ {0}] → R, defined in (3.1). Then

(i) ψ(y, r) ≤ 0, for all y ∈ A, r ∈ K(y) \ {0}.
(ii) Suppose that either

(A1) A+K(y) is a bounded set,
or

(A2) dim(Y ) < +∞, A bounded.
Then for all fixed elements y ∈ A and for all r ∈ K(y) \ {0}, it holds that
ψ(y, r) ∈ R.

Proof. (i) Since K(y) is pointed, it holds that 0 ∈ K(y). So, due to y ∈ A, we have
that y ∈ A+K(y). Therefore, ψ(y, r) ≤ 0 < +∞ for all r ∈ K(y) \ {0}, y ∈ A.

(ii) By (i), we only need to prove that ψ(y, r) > −∞ for all fixed y ∈ A and
r ∈ K(y) \ {0}. Define the set

T (y, r) := {t ∈ R : y + tr ∈ A+K(y)}.
We consider two cases.

Case 1: If (A1) holds, it is clear that the set A +K(y) − y is bounded and, as
r ̸= 0, T (y, r) must be bounded. So, ψ(y, r) ∈ R is finite for all fixed y ∈ A and all
r ∈ K(y) \ {0}.

Case 2: Suppose that (A2) holds. Then we have that A is bounded and
dim(Y ) < +∞. So we can take ∥ · ∥ as the Euclidean norm. We consider a fixed
element y ∈ A and an arbitrary element r ∈ K(y) \ {0}. Then, since A is bounded,
the set {z ∈ A : z ∈ y + tr −K(y) for some t ∈ R}, is bounded.

Suppose that there are y ∈ A, fixed, and r ∈ K(y) \ {0} with ψ(y, r) = −∞.
Then there exist two sequences {tn}, tn → −∞, and {kn}, kn ∈ K(y) \ {0}, such
that for n = 1, 2, . . .

y + tnr − kn ∈ A.
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Since A is bounded, {tnr − kn} is a bounded sequence. This implies,

(3.2) ∥kn∥ → +∞,

since tn → −∞. W.l.o.g. we assume that ∥r∥ = 1. Now, we define un := kn
∥kn∥ ∈ Y ,

i.e., kn = αnun where αn := ∥kn∥ > 0. Hence, ∥un∥ = ∥r∥ = 1 and, by (3.2),
αn → +∞.

Note that, by the pointedness of K(y), we have 0 ∈ K(y). Since αnun = kn ∈
K(y) and for n large enough, αn > 1, un can be written as a convex combination
of these two elements of K(y) as follows:

un =
1

αn
(αnun) +

(
1− 1

αn

)
0.

Taking into account that K(y) is a convex set, it holds that un ∈ K(y).
Moreover, due to the closedness of K(y), for each limit point u of the sequence {un},
it holds that u ∈ K(y). Now, we consider an upper boundM > 0 of {∥−tnr+kn∥2}.
Then it holds that

M ≥ ∥ − tnr + kn∥2 = t2n − 2tnαn⟨r, un⟩+ α2
n

= (tn + αn)
2 − 2tnαn(1 + ⟨r, un⟩)

≥ −2tnαn(1 + ⟨r, un⟩).
Hence

(3.3) M ≥ −2tnαn(1 + ⟨r, un⟩).
This means that {−2tnαn(1 + ⟨r, un⟩)} is upper bounded. Since tn → −∞ and
αn → +∞, it holds that (−2tn)αn → +∞. Since ∥un∥ = ∥r∥ = 1, by the Cauchy-
Schwartz inequality, (1 + ⟨r, un⟩) ≥ 0. So, by (3.3)

lim
n→+∞

(1 + ⟨r, un⟩) = 0.

This means that ⟨r, u⟩ = −1. Since ∥r∥ = ∥u∥ = 1, we get u = −r ∈ −K(y) \ {0},
contradicting the pointedness of K(y). So, there exists no sequence {tn}, tn ∈
T (y, r), such that tn → −∞ and hence ψ(y, r) > −∞ for all fixed y ∈ A and for all
r ∈ K(y) \ {0}. □
Remark 3.3. If K is a cone-valued map, (A2) guarantees the finiteness of the
functional ψ at (y, r) ∈ A× [K(y) \ {0}].

Now, we will use the functional ψ, given by (3.1), to present a condition which
must be satisfied by minimal elements of A with respect to the variable domination
map K(·).

Lemma 3.4. Given y ∈ Y and the domination map K : Y ⇒ Y , where K(y) is a
convex, closed and pointed set, K(y) ̸= {0} for all y ∈ Y , suppose that either K(y)
is a cone, or A is a convex set.
If y ∈ Min(A,K(·)), then it holds that ψ(y, r) = 0 for all r ∈ K(y) \ {0}.

Proof. Consider y ∈ Min(A,K(·)), r ∈ K(y) \ {0}. By Proposition 3.2(i), we have
that ψ(y, r) ≤ 0 for y ∈ A and for all r ∈ K(y) \ {0}, since K(y) is pointed and
y ∈ A. Suppose that ψ(y, r) < 0, then there exist y ∈ A, y ̸= y and t < 0 such that

(3.4) y + tr = y + k, for some k ∈ K(y).
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Now, we consider two cases.
Case 1: If K(y) is a cone, as t < 0, we have that −tr ∈ K(y) \ {0}. But K(y)

is also convex and pointed, so −tr + k ∈ K(y) \ {0} for k ∈ K(y) and

y ∈ y +K(y) \ {0},
contradicting the assumption that y ∈ Min(A,K(·)).

Case 2: Here, we assume that A is convex. First, we take r, k, 0 ∈ K(y). By
the convexity of K(y), it is possible to chose α ∈ (0, 1) (depending from t < 0) such
that α(−tr + k) ∈ K(y). But, as A is convex and y ∈ A, we get that

[αy + (1− α)y] ∈ A.

Note that α ̸= 0 and so [αy+(1−α)y] ̸= y. Taking into account (3.4), it holds that

y = αy + (1− α)y + α(y − y) = [αy + (1− α)y] + α(−tr + k)
∈ (αy + (1− α)y) + (K(y) \ {0}),

implying the contradicting fact that y is not a minimal element of A. □

The next proposition shows hypotheses, under which we can guarantee that, for
y ∈ A, r ∈ K(y) \ {0}, k ∈ K(y), the element y := y + ψ(y, r)r − k ∈ A is a weakly
minimal point.

Proposition 3.5. Let A ⊂ Y , K : Y ⇒ Y , y ∈ A, r ∈ K(y) \ {0} and y :=
y + rψ(y, r)− k for some k ∈ K(y). Assume that

(a) For all r ∈ K(y) \ {0}, int(K(y − r)) ⊆ int(K(y)).
(b) K(y) is a pointed, closed and convex cone for each y ∈ Y .

If y ∈ A, then y ∈ WMin(A,K(·)).

Proof. First, note that as K(y) is pointed and y ∈ A, taking into account Proposi-
tion 3.2(i), it holds that:

ψ(y, r) ≤ 0.

Since K(y) is a convex cone, we have that

−ψ(y, r)r + k ∈ K(y) \ {0} for r, k ∈ K(y).

Assume that y = y + rψ(y, r) − k is not a weakly minimal point. Then there is
ŷ ∈ A such that

(3.5) y − ŷ ∈ int(K(y)).

Then, as −ψ(y, r)r + k ∈ K(y) \ {0}, by (a) the following holds

int(K(y − (−rψ(y, r) + k))) ⊆ int(K(y)).

This means that

(3.6) int(K(y)) ⊆ int(K(y)).

From (3.5) and (3.6) , we get y − ŷ ∈ int(K(y)). So, we conclude for some ε > 0
small enough

y − ŷ − εr ∈ K(y).

Substituting y and rearranging the expression, we obtain:
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Figure 4. The cones R2
− and −K1 defining the domination map K

at Example 3.7.

y + [ψ(y, r)− ϵ]r ∈ ŷ +K(y) ⊆ A+K(y).

Hence ψ(y, r) ≤ ψ(y, r)− ϵ, which is impossible. □

Remark 3.6. The proof of the previous proposition relies on the fulfillment of the
following two conditions

• 0 ∈ K(y).
• ∀λ ≥ 0 : λr + k ∈ K(y).

Since the vectors r, k are not known in advance, these two assumptions have to be
required for all r, k ∈ K(y). Then the hypotheses are evidently fulfilled if and only
if K(y) is a convex cone. So, unless the point y is given, this sufficient condition
has not too much practical use for variable domination mapping K : Y ⇒ Y which
are not cone-valued.

Although the hypotheses of the previous proposition are strong, there are non
constant maps fulfilling (a) in Proposition 3.5, as is shown at the next example.

Example 3.7. Let K1 := {z ∈ R2 : z2 ≥ −z1, z1 ≥ 0} and define the domination
map, see Figure 4, by:

K(y) :=

{
R2
−, if y ∈ R2

+,
−K1, otherwise.

If y ∈ R2
+, then K(y) = R2

−. We get K(y − r) = R2
− for all r ∈ R2

− \ {0}, since
y − r ∈ R2

+. This yields int(K(y − r)) ⊆ int(K(y)) for all r ∈ K(y) \ {0}.
Furthermore, if y /∈ R2

+, then K(y) = −K1. Since R2
− ⊂ −K1, it holds that

int(R2
−) ⊆ int(−K1). This yields int(K(y − r)) ⊆ int(−K1) = int(K(y)) for all

r ∈ K(y) \ {0}.

We have proven the relationships between the zeros of the functional and the
minimal elements of A. Now more properties will be studied.

3.2. Algebraic and topological properties of the scalarizing functional. In
this part, we will discuss the continuity, the convexity and the monotonicity of the
functional ψ : Y × [Y \ {0}] → R defined in (3.1). These properties are important
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for deriving the algorithm in Section 4. First, the lower semi-continuity and upper
semi-continuity of ψ are analyzed. As usual, Y is a Banach space.

Recall that a given functional f : Y → R is lower semi-continuous (lsc)
(upper semi-continuous (usc), respectively) at y∗ ∈ Y with f(y∗) is finite, if
lim infy→y∗ f(y) ≥ f(y∗), (lim supy→y∗ f(y) ≤ f(y∗), respectively).

Proposition 3.8. Assume that for all y ∈ Y , K(y) is a pointed set and A+K(y)
is convex. Let (y, r) ∈ A× [Y \{0}] be fixed and suppose that the mapping A+K(y)
is closed at y in the sense of Definition 1.1, and that ψ(y, r) is finite. Then the
functional ψ(y, r) : Y × [Y \ {0}] → R is lsc at (y, r).

Proof. Let (y, r) ∈ A × Y . Suppose that ψ(y, r) is finite, but ψ is not lsc at (y, r).
Then, there are sequences {yn}, yn ∈ Y , {rn}, rn ∈ Y and a real number ε > 0
such that (yn, rn) → (y, r) and

ψ(yn, rn) < ψ(y, r)− ε.

This means that there is a real number tn such that

(3.7) tn < ψ(y, r)− ε

and

yn + tnrn ∈ A+K(yn).

Since y ∈ A, it holds that ψ(y, r) ≤ 0. So, by (3.7), we get:

(3.8) tn < ψ(y, r)− ε < 0.

Defining αn := ψ(y,r)−ε
tn

, by (3.8), it is clear that α ∈ (0, 1).

Furthermore, it holds that 0 ∈ K(y), because K(y) is pointed. Therefore, y ∈ A
implies that y ∈ A+K(y) for all y ∈ Y . So, the convexity of A+K(y) for all y ∈ Y ,
leads us to

αn(yn + tnrn) + (1− αn)y ∈ A+K(yn).

Rearranging the terms, we get

αnyn + [ψ(y, r)− ε]rn + (1− αn)y ∈ A+K(yn).

Taking into account that

lim
n→+∞

αnyn + (1− αn)y = y,

lim
n→+∞

[ψ(y, r)− ε]rn = [ψ(y, r)− ε]r

and that A+K(y) is a closed set, we obtain

y + (ψ(y, r)− ε)r ∈ A+K(y),

contradicting the definition of ψ. So, ψ is lsc at (y, r). □

Remark 3.9. The convexity of A + K(y) can be substituted by the assumption
that there exist a bounded set U and a neighborhood V of y such that for all y ∈ V ,
A+K(y) ⊂ U . We again consider a sequence of the type {yn + tnrn}, yn + tnrn ∈
A + K(yn), where tn = ψ(y, r) − εn. By (3.7), it is clear that εn ≥ ε > 0. Since
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A+K(y) is bounded, so is εn and hence, after taking a convergent subsequence it
holds that εn → ε∗ ≥ ε > 0. Taking the limit, we have

y + (ψ(y, r)− ϵ)r ∈ A+K(y),

contradicting (3.1).

Remark 3.10. For a fixed element y ∈ Y , the lsc of ψ(y, r) as a functional of r in
r can be easily obtained, if A +K(y) is closed and star-shaped with respect to y,
that is, if y + r ∈ K(y), then y + αr ∈ K(y) for all α ∈ [0, 1].

Now, the upper semi-continuity of ψ : Y × [Y \ {0}] → R at (y, r) ∈ Y × [Y \ {0}]
is studied.

Proposition 3.11. Let Y = Rn, y ∈ Y and r ∈ Y \ {0}. Assume that:

(a) A+K(y) is a B-lsc map at y.
(b) A+K(y) is a convex set for all y ∈ Y .
(c) The functional ψ : Y × [Y \ {0}] → R (given by (3.1)) is finite at (y, r).
(d) There is ϵ0 > 0 such that y+tr ∈ int(A+K(y)) for all t ∈ (ψ(y, r), ψ(y, r)+

ϵ0).

Then the functional ψ : Y × [Y \ {0}] → R is usc at (y, r).

Proof. On the contrary, suppose that ψ is finite but not usc at (y, r). Then there
are a real number ε > 0 and sequences {yn}, yn ∈ Y, yn → y and {rn}, rn ∈ Y ,
rn → r, such that

ψ(yn, rn) > ψ(y, r) + ε.

Without loss of generality, we assume that ε < ε0.
Let z = y + tr, t ∈ [ψ(y, r) + ε/2, ψ(y, r) + ε). Because of (d) we have

z ∈ int(A+K(y)).

Note that for the elements of the sequence {zn} with zn := yn + trn, it holds that
zn /∈ A + K(yn) because otherwise the following (contradicting) inequality would
hold:

ψ(y, r) + ε < ψ(yn, rn) ≤ t < ψ(y, r) + ε.

As, by (b), A+K(yn) is convex and zn /∈ A+K(yn), by the classical separation
argument given in Theorem 2.4.4, [6], there exists a sequence {pn}, pn ∈ Y ∗ (under
the given assumptions, we have Y ∗ = Y ), pn ̸= 0, n = 1, 2, . . . such that

⟨pn, u⟩ ≤ ⟨pn, zn⟩ for all u ∈ A+K(yn).

Without loss of generality, we assume that ∥pn∥ = 1, and hence that pn → p.
By the B-lsc of A+K(·) given in (a), if u ∈ A+K(y), there is a sequence {un}

with un → u, such that un ∈ A+K(yn). This implies

(3.9) ⟨p, u⟩ ≤ ⟨p, z⟩ for all u ∈ A+K(y).

But since z ∈ int(A+K(y)), for some ε > 0 it holds that u = z+ εp ∈ A+K(y).
Hence, by (3.9),

⟨p, z⟩+ ε∥p∥2 ≤ ⟨p, z⟩,
and we get p = 0, a contradiction to ∥p∥ = lim ∥pn∥ = 1. So, ψ is an usc functional
at (y, r). □
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Now, we will provide sufficient conditions for the convexity and the monotonicity
of the functional ψ, given in (3.1). We start with the following auxiliary lemma,
useful for the analysis of Algorithm 1 in Section 4.

Lemma 3.12. Suppose that Y is a finite dimensional space, y ∈ Y and K : Y ⇒ Y ,
where K(y) is a convex, closed, pointed set, K(y) ̸= {0} for all y ∈ Y . If K is B-lsc
at y ∈ Y and k ∈ int(K(y)), then there is a neighborhood V (y) of y and a positive
number δ such that for all y ∈ V (y), it holds that B(k, δ) ⊂ int(K(y)).

Proof. We assume that dim(Y ) = ℓ and define

E := {e1, . . . , eℓ,−e1, . . .− eℓ},
where ei is the vector whose ith-component is 1 and the rest are 0.

Now, let k ∈ int(K(y)). For simplifying the notations, w.l.o.g. we assume that

(3.10) k + e ∈ K(y) for all e ∈ E.

Fix ε > 0 and consider the open ball B(k + e, ε) which, by (3.10), evidently
satisfies that

K(y) ∩B(k + e, ε) ̸= ∅.
Then, the B-lsc of K at y implies that there is a neighborhood V e

ε (y) of y such that
for all y ∈ V e

ε (y)

(3.11) K(y) ∩B(k + e, ε) ̸= ∅.
Define

(3.12) Vε := ∩e∈EV e
ε (y).

Since E is finite, Vε is an open neighborhood of y for all ε > 0.
Now, we will prove the existence of δ > 0 small enough, such that for all y ∈ Y

fulfilling ∥y − y∥ < δ, it holds that k ∈ intK(y). On the contrary, suppose that
there exist sequences {yn}, yn ∈ Y, yn → y and {kn}, kn ∈ Y , kn → k, such that
kn /∈ K(yn). W.l.o.g. we can assume that yn ∈ V1/n, for n = 1, 2, . . . where V1/n is
defined in (3.12) for ε = 1/n.

Since V1/n ⊂ V e
1/n(y) for all e ∈ E, by (3.11), we get

K(yn) ∩B
(
k + e,

1

n

)
̸= ∅.

Let k̂n(e) ∈ K(yn)∩B(k+e, 1/n). SinceK(yn) is closed and convex and kn /∈ K(yn),
by [6, Theorem 2.4.4], there exists a sequence {pn}, pn ∈ Y ∗ (recall that, since Y
is a finite dimensional space, we get Y ∗ = Y ), ∥pn∥ = 1 which separates kn from

k̂n(e) ∈ K(yn). That is, for all e ∈ E:

⟨pn, kn⟩ > ⟨pn, k̂n(e)⟩.
Since ∥pn∥ = 1, there is a convergent subsequence. So, we can assume that pn → p.

Since k̂n(e) → k + e for all e ∈ E, we get that

⟨p, k⟩ ≥ ⟨p, k + e⟩.
Taking into account the definition of E and the above inequality, it follows ⟨p, e⟩ =

0 for all e ∈ E, which implies that pi = 0 for i = 1, . . . , ℓ. Hence p = 0, contradicting
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the fact that ∥pn∥ = 1. Therefore, there exists δ > 0 such that for all y ∈ B(y, δ) it
holds that

k ∈ intK(y).

□
Now, the convexity of the functional ψ is analyzed.

Proposition 3.13. Let A ⊂ Y be a non-empty and closed set and K : Y ⇒ Y the
domination map, where K(y) is a pointed, convex and closed set, K ̸= {0} for all
y ∈ Y . Furthermore, consider the functional ψ : Y × [Y \ {0}] → R, defined by
(3.1).

(i) Suppose that A is a convex set and that αK(y1) + (1−α)K(y2) ⊆ K(αy1 +
(1 − α)y2) for all α ∈ [0, 1] and for all y1, y2 ∈ Y . Fix r ∈ Y \ {0} and
assume that ψ(y, r) < +∞ for all y ∈ Y . If A is convex, then ψ(·, r) is a
convex functional.

(ii) Assume that A is a convex set. For all fixed elements y ∈ A, ψ(y, ·) is a
quasi-convex functional of r (r ∈ K(y) \ {0}).

Proof. (i) Fix y1, y2 ∈ Y . Since ψ(yi, r) < +∞, for i = 1, 2, there exist sequences
{tin}, tin ∈ R, {ain}, ain ∈ A and {kin}, kin ∈ K(yi) (i = 1, 2) such that tin → ψ(yi, r)
and

y1 + t1nr − k1n = a1n,

y2 + t2nr − k2n = a2n.

So, for all α ∈ [0, 1] it holds that

(3.13) αy1 + (1−α)y2 + [αt1n+ (1−α)t2n]r = [αk1n+ (1−α)k2n] +αa1n+ (1−α)a2n.

Since A is convex, we have that αa1n + (1− α)a2n ∈ A. Taking into account that by
hypothesis

αK(yi) + (1− α)K(y2) ⊆ K(αy1 + (1− α)y2),

we obtain [αk1n+ (1−α)k2n] ∈ K(αy1 + (1−α)y2). This together with (3.13) imply
that

αy1 + (1− α)y2 + [αt1n + (1− α)t2n]r ∈ A+K(αy1 + (1− α)y2).

Therefore,

ψ(αy1 + (1− α)y2, r) ≤ [αt1n + (1− α)t2n].

So, for n→ +∞, we obtain

ψ(αy1 + (1− α)y2, r) ≤ αψ(y1, r) + (1− α)ψ(y2, r).

Hence, the convexity holds true.
(ii) Now, we consider a fixed element y ∈ A and r1, r2 ∈ Y \ {0} arbitrarily

chosen. Since K(y) is pointed and y ∈ A, it holds for all r ∈ Y that

(3.14) ψ(y, r) ≤ 0,

as already shown in Proposition 3.2. So,

ψ(y, r1), ψ(y, r2) < +∞.
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By the definition of ψ, this means that there exist two sequences {t1n} ∈ R and
{t2n} ∈ R such that tin → ψ(y, ri), i = 1, 2.

If ψ(y, ri) = 0 holds for some i, i = 1, 2, we obtain

ψ(y, αr1 + (1− α)r2) ≤ 0 = max{ψ(y, r1), ψ(y, r2)}

using (3.14).
Taking into account this inequality, we assume that ψ(y, r1), ψ(y, r2) < 0. and,
hence, w.l.o.g that tin < 0, for i = 1, 2. By the convexity of A and K(y) for all y ∈ A,
we get that A+K(y) is also a convex set for all y ∈ A. Since y + tinr

i ∈ A+K(y)
(i = 1, 2) and y ∈ A+K(y), we obtain:

y + αtinr
i ∈ A+K(y) for all α ∈ [0, 1].

Recalling that tin < 0, i = 1, 2, it holds that

max{t1n, t2n}
tin

∈ [0, 1].

So, for i = 1, 2 and for all y ∈ A we have

y +max{t1n, t2n}ri ∈ A+K(y).

Again, by the convexity of A+K(y) for all y ∈ A, we get

y +max{t1n, t2n}[αr1 + (1− α)r2] ∈ A+K(y)

for all α ∈ [0, 1]. Then, ψ(y, αr1 + (1 − α)r2) ≤ max{t1n, t2n} and, taking limits as
n→ +∞, we obtain

ψ(y, αr1 + (1− α)r2) ≤ max{ψ(y, r1), ψ(y, r2)},
as desired. □

Remark 3.14. If K(y) is a cone for all y ∈ Y , the hypothesis

αK(y1) + (1− α)K(y2) ⊆ K(αy1 + (1− α)y2)

supposed in Proposition 3.13(i) holds if and only if K(y) = K for all y ∈ Y , where
K ⊂ Y is a (fixed) cone.

We end this section with the study of the homogeneity and the monotonicity of
ψ(·, r) as a functional of y ∈ Y , for fixed r ∈ Y \ {0}.

Definition 3.15. We say that ψ : Y × [Y \ {0}] → R is a monotone functional
in y ∈ Y if for all k ∈ K(y), the inequality

ψ(y + k, r) ≤ ψ(y, r)

is satisfied for all r ∈ Y \ {0}.
Suppose that for all y ∈ Y , int(K(y)) ̸= ∅. The functional ψ is called strictly
monotone in y ∈ Y if for all r ∈ Y \ {0} and k ∈ int(K(y)), it holds that

ψ(y + k, r) < ψ(y, r).

Proposition 3.16. Consider a non-empty and closed set A ⊂ Y , the set-valued
map K : Y ⇒ Y and the functional ψ : Y × [Y \ {0}] → R defined by (3.1).
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(i) Let A be a cone. If for all y ∈ Y and λ > 0, K(λy) = λK(y), then for all
r ∈ Y \ {0} such that ψ(y, r) < +∞ for all y ∈ Y , it holds that

ψ(λy, r) = λψ(y, r)

for all λ > 0.
(ii) Suppose that ψ is finite-valued and that for all y ∈ Y and for all k ∈ K(y),

k +K(y) ⊆ K(y + k). Then, ψ is a monotone functional in y.
(iii) Furthermore, assume that int(K(y)) ̸= ∅ and r ∈ K(y) \ {0} for all y ∈ Y .

Suppose that the assumptions of (ii) are satisfied and in addition for all
y ∈ Y , k ∈ K(y), λ ≥ 0, K(y) ⊆ K(y + λk). Then, ψ(·, r) is strictly
monotone in y.

(iv) Suppose that ψ is finite-valued. For all y ∈ Y , assume that K(y+λr) = K(y)
for all r ∈ K(y) \ {0}, λ ∈ R. Then, the translation invariance

ψ(y + λr, r) = ψ(y, r)− λ

is satisfied for all y ∈ Y , r ∈ K(y) \ {0} and λ ∈ R.

Proof. (i) First, suppose that ψ(y, r) ∈ R. Furthermore, assume that λ > 0. By the
definition of ψ, there exist sequences {εn}, εn ∈ R, {yn}, yn ∈ A and {kn}, kn ∈
K(y) such that εn → 0, y = yn− [ψ(y, r)+εn]r+kn. Multiplying by λ > 0, it holds
that

λy = λyn − λ[ψ(y, r) + εn]r + λkn.

But the assumptions guarantee that λkn ∈ K(λy) and λyn ∈ A, hence ψ(λy, r) ≤
λ[ψ(y, r) + εn]. Taking limits when n→ +∞, it follows that

(3.15) ψ(λy, r) ≤ λψ(y, r).

On the other hand, for λ > 0 we consider sequences {ελn}, ελn ∈ R, ελn → 0,
{kλn}, kλn ∈ K(λy) and {yλn}, yλn ∈ A such that:

λy = yλn − [ψ(λy, r) + ελn]r + kλn.

Dividing by λ > 0,

(3.16) y =

[
yλn
λ

− [ψ(λy, r) + ελn]

λ
r +

kλn
λ

]
.

The facts kλn
λ ∈ K(y) and yλn

λ ∈ A, together with (3.16) yield to

ψ(y, r) ≤ ψ(λy, r)

λ
+
ελn
λ
.

So, for n→ +∞

(3.17) ψ(y, r) ≤ ψ(λy, r)

λ

Taking into account (3.15) and (3.17), we get

ψ(λy, r) = λψ(y, r),

for λ > 0.
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Now, if y ∈ Y is such that ψ(y, r) = −∞, there exist sequences {tn}, tn ∈
R, {yn}, yn ∈ A, and {kn}, kn ∈ K(y) such that tn → −∞ and

y = yn − tnr + kn.

As before, the multiplication by λ > 0 lead us to λy = λyn − λtnr + λkn, where
λyn ∈ A and λkn ∈ K(λy). Taking into account that tn → −∞ and λ > 0 is fixed,
it holds that λtn → −∞. So, ψ(λy, r) = −∞.

(ii) Consider y ∈ Y, r ∈ Y \ {0} and k ∈ K(y). By the definition of ψ, there are
sequences {tn}, tn ∈ R, tn → ψ(y, r), {yn}, yn ∈ A and {kn}, kn ∈ K(y), such that

y + tnr = yn + kn.

This yields

y + k + tnr = yn + kn + k.

Since k ∈ K(y) implies that k +K(y) ⊆ K(y + k) and kn ∈ K(y), it holds that
kn + k ∈ K(y + k). So,

y + k + tnr ∈ A+K(y + k)

and
ψ(y + k, r) ≤ tn.

Taking limits in the previous relation, for n→ +∞

ψ(y + k, r) ≤ ψ(y, r),

which means that ψ(·, k) is monotone in y, as desired.
(iii) First, we will prove that

(3.18) ψ(y + λr̂, r̂) ≤ ψ(y, r̂)− λ,

if λ > 0, r̂ ∈ K(y) for all y ∈ Y .
Indeed, since ψ is finite-valued, there exist sequences {tn}, tn ∈ R, tn → ψ(y, r),

{yn}, yn ∈ A, and {kn}, kn ∈ K(y) such that:

y + tnr̂ = yn + kn,

or, equivalently,
y + λr̂ + [tn − λ]r̂ = yn + kn.

Under the assumption K(y) ⊆ K(y + λr̂), it follows that

y + λr̂ + [tn − λ]r̂ ∈ A+K(y + λr̂).

This means that
ψ(y + λr̂, r̂) ≤ tn − λ.

Taking limits for n→ +∞, (3.18) is obtained.
Now, take k ∈ int(K(y)). So, there is ε > 0 such that k − εr ∈ int(K(y)). By

(ii), ψ is monotone. This means that

(3.19) ψ(y + k − εr, r) ≤ ψ(y, r)

holds.
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Figure 5. The cones R2
+ and K1 defining the domination map K

in Example 3.19.

Combining (3.18) and the monotonicity condition (3.19), we arrive at

ψ(y + k, r) ≤ ψ(y + k − εr, r)− ε ≤ ψ(y, r)− ε < ψ(y, r),

which is equivalent to the strict monotonicity of ψ(·, r) in y.
(iv) Under our assumptions, K(y+λr) = K(y) for all y ∈ Y , r ∈ K(y) \ {0} and

λ ∈ R. Following the proof of (iii), we obtain a relation analogous to (3.18). That
is, for all y ∈ Y , r ∈ K(y) \ {0} and λ ∈ R, the following inequality holds:

(3.20) ψ(y + λr, r) ≤ ψ(y, r)− λ.

Then
ψ(y − λr, r) = ψ(y + (−λ)r, r) ≤ ψ(y, r)− (−λ) = ψ(y, r) + λ,

and in particular as y = y + λr − λr,

(3.21) ψ(y, r) ≤ ψ(y + λr, r) + λ.

The combination of this inequality and (3.20) leads to the desired result. □
Remark 3.17. If K(y) is a convex cone for all y ∈ Y , the hypothesis of Proposition
3.16 (ii) is K(y) ⊆ K(y + r) for all r ∈ K(y). This is equivalent to the hypothesis
of (iii). In (iv), the equality between both sets must hold.

Now, we will present non-constant set-valued maps which fulfill the hypotheses
of Proposition 3.16. We start with (i).

Example 3.18. Let T : Y × [Y \ {0}] → R be a bi-linear operator and consider
the domination structure given by K(y) = {z ∈ Y : T (y, z) ≤ 0}. Evidently, we get
K(y) = K(λy) for all λ > 0.

Clearly, if K(y + r) = K(y) for all r ∈ K(y), the conditions supposed at Propo-
sition 3.16 (ii)-(iv) hold. Based on the close relationship between them, the next
example presents a domination structure which satisfies this stronger property.

Example 3.19. Let K1 :=
{
(r cos(θ), r sin(θ)) : r ≥ 0, θ ∈

[
π
2 ,

5π
4

]}
and

K(y) :=

{
R2
+, if y1 ≥ 0,

K1, otherwise.

Figure 5 shows the two cones which define the domination given in Example 3.19.
If y1 ≥ 0, and r ∈ K(y), then r ≥ 0 and, hence, r1 + y1 ≥ 0. So, K(y + r) =

R2
+ = K(y). In the other case, i.e., if y1 < 0, r ∈ K(y) implies that r1 ≤ 0. So,

y1 + r1 < 0 and again K(y + r) = K(y).
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Based the properties of the functional ψ : Y × [Y \ {0}] → R presented in this
section, we propose an algorithm for computing weakly minimal points of the geo-
metric vector optimization problem under variable domination structure introduced
in (2.1) (see Section 4).

4. An algorithm for solving geometric optimization problems under
variable domination structure

This part contains an algorithm that can be used for solving geometric vector
optimization problems with variable domination structure, see Section 2, i.e., to
find an element of WMin(A,K(·)) according to Definition 2.2. In this section we
assume Y = Rm. As before, we assume that the domination structure is given by
the set-valued map K : Y ⇒ Y and that K(y) is a convex, closed and pointed cone
with int(K(y)) ̸= ∅ for all y ∈ Y . As a measure which determines whether a point
is an element of WMin(A,K(·)) or not, we will use the scalarization defined in (3.1)
by the functional ψ : Y × [Y \ {0}] → R, ψ(y, r) = inf{t ∈ R : y+ tr ∈ A+K(y)}.
We define the algorithm as follows (where Z represents the set of integers):

Algorithm 1

Initial Step Find y0 ∈ A. n = 0.
Iterative Step

• If

(4.1) inf
∥r∥=1

ψ(yn, r) = 0,

EXIT, else take rn such that ψ(yn, rn) < 0 and ∥rn∥ = 1. Find jn ∈
Z, kn ∈ K(yn) such that

(4.2) jn := sup{j ∈ Z : yn − 2jrn − kn ∈ A, kn ∈ K(yn)}.
•

(4.3) yn+1 := yn − 2jnrn − kn,

n = n+ 1.

Remark 4.1. Under the assumptions of Proposition 3.2, the functional ψ : Y × [Y \
{0}] → R is finite-valued. So, we suppose in the following that the assumptions of
Proposition 3.2 are satisfied. Furthermore, if the hypothesis of Propositions 3.8 and
3.11 are fulfilled for y = yn and for all r with ∥r∥ = 1, the functional ψ is continuous
for all feasible elements of the auxiliary problem (4.1). Then the infimum is attained.

If ∥·∥ represents the Euclidean norm, the set of feasible solutions of problem (4.1)
is not convex. However another norm ∥ · ∥ such that {r ∈ Y : ∥r∥ = 1} is convex
can be considered. In this very restrictive case, that the assumptions of Proposition
3.13(ii) are fulfilled, the objective functional is quasiconvex.

Let us characterize the limit points of the sequence generated by Algorithm 1.

Proposition 4.2. Suppose that Y = Rm and that K : Y ⇒ Y is a set valued map,
where K(y) is a pointed, convex and closed cone with int(K(y)) ̸= ∅ for all y ∈ Y .
Furthermore, assume that K is a B-lsc and closed map at all y ∈ Y . If A ⊂ Y
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is a convex closed set with non-empty interior and the sequence {yn} generated by
Algorithm 1 converges to y, then its limit is a weakly minimal point of (2.1).

Proof. Let {yn} be the sequence generated by Algorithm 1 and y its limit. Suppose
that y /∈ WMin(A,K(·)). Then there is an element y0 ∈ A with y = y0 + k for a
certain k ∈ int(K(y)). We take δ > 0 such that B(k, δ) ⊂ int(K(y)). Since A is a
convex set with non-empty interior, there is an element ŷ ∈ int(A) ∩ B(y0, δ). So,
it holds that

y − ŷ − k = y0 − ŷ ∈ B(0, δ).

Hence, we get
y − ŷ ∈ B(k, δ) ⊂ intK(y).

This means that there is an element k̂ ∈ int(K(y)) with y = ŷ + k̂. Because of
ŷ ∈ int(A), we can find α > 0 such that

(4.4) B(ŷ, α) ⊂ A.

We consider

yn − (ŷ − αrn) = (−yn+1 + yn) + (yn+1 − y) + y − ŷ + αrn,(4.5)

= 2jnrn + kn + (yn+1 − y) + k̂ + αrn(4.6)

= (2jn + α)rn + k̂ + kn + (yn+1 − y),(4.7)

where {jn}, jn ∈ Z, {kn}, kn ∈ K(yn) and {rn}, rn ∈ Y, are the sequences
generated by Algorithm 1 for defining yn+1, see (4.3).

Note that k̂ ∈ int(K(y)) and K is a B-lsc map at y. So, by Lemma 3.12, there is

a neighborhood V of y and a real number ε > 0 such that for all y ∈ V , B(k̂, ε) ⊂
K(y). In particular, since yn → y, we get B(k̂, ε) ⊂ K(yn) for n large enough.
Taking into account that yn+1 − y → 0 for n large enough, it holds that

k̂ + yn+1 − y ∈ K(yn).

Since K(yn) is a convex cone, k̂ + yn+1 − y ∈ K(yn) and kn ∈ K(yn) imply k̂ +
yn+1 − y + kn ∈ K(yn). Then we get from (4.7) and (4.4):

yn − (2jn + α)rn = (ŷ − αrn) + (k̂ + yn+1 − y + kn) ∈ A+K(yn).

Using the definition of jn in equation (4.2), it holds that

2jn + α ≤ 2jn+1.

So, we get

(4.8) 0 < α < 2jn .

Note that since yn → y (so, of course, yn+1 → y), by (4.3)

(4.9) −2jnrn − kn → 0.

Then
lim

n→+∞
∥2jnrn + kn∥2 = 0,

which is equivalent to

lim
n→+∞

(2jn − ∥kn∥)2 + 2jn+1∥kn∥
(
⟨rn,

kn
∥kn∥

⟩+ 1

)
= 0,
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taking into account that ∥rn∥ = 1.
Since both terms are non-negative, we get

lim
n→+∞

(2jn − ∥kn∥)2 = lim
n→+∞

2jn+1∥kn∥
(
⟨rn,

kn
∥kn∥

⟩+ 1

)
= 0.

In particular, the second limit implies that either

(4.10)

(⟨
rn,

kn
∥kn∥

⟩
+ 1

)
→ 0

or

(4.11) 2jn+1∥kn∥ → 0.

Suppose that (4.10) holds. Due to {rn} and { kn
∥kn∥} are bounded, we can consider

that rn → r∗ and kn
∥kn∥ → k∗. It is clear that ∥r∗∥ = ∥k∗∥ = 1 and hence that

r∗ ̸= 0. This leads us to

r∗, k∗ ∈ K(y) \ {0}
taking into account that K(y) is closed.

But (4.10) implies

r∗ = −k∗ ∈ K(y) \ {0},
which contradicts the pointedness of K(y). So, 2jn∥kn∥ → 0.

Because of

lim
n→+∞

(2jn − ∥kn∥)2 = 0,

we obtain

lim
n→+∞

2jn = lim
n→+∞

∥kn∥ = 0.

Since α is fixed, for n large enough, (4.8) is not fulfilled. Hence y is a weakly
minimal point. □

Remark 4.3. Note that the condition that the variable domination mapping K :
Y ⇒ Y is cone-valued cannot be relaxed. Indeed, K(y)+K(y) ⊆ K(y) for all y ∈ Y
is needed. Since K(y) is pointed and convex, this implies that K(y) is a convex
cone.

We now prove the convergence of the algorithm.

Theorem 4.4. Suppose that

(a) Y = Rm.
(b) K : Y ⇒ Y is a B-lsc closed map such that K(y) is a pointed, convex and

closed cone with int(K(y)) ̸= ∅ for all y ∈ Y .
(c) There is a closed, convex and pointed cone K such that K(y) ⊂ K for all

y ∈ Y .
(d) A ⊂ Y is convex and int(A) ̸= ∅.

If the sequence {yn} generated by Algorithm 1 has an accumulation point y, then,
yn → y and y is a weakly minimal point of A with respect to the domination mapping
K.
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Proof. Let K be a closed convex and pointed cone such that K(y) ⊂ K for all
y ∈ Y . Note that K is proper because it is pointed and contains proper cones.
As K(y) ⊂ K, {yn} is a decreasing sequence with respect to K. Since {yn} has a
convergent subsequence, it converges. Proposition 4.2 guarantees that the limit is
a weakly minimal point. □

Corollary 4.5. If A ⊂ Y is bounded and the hypotheses of Theorem 4.4 hold,
Algorithm 1 converges.

Proof. The assertion follows evidently from Theorem 4.4, because yn ∈ A and A is
bounded. □

Although the algorithm is simple, at each iteration it must determine whether
certain points are elements of A or not. So, it can only be recommended in cases
when this step is not too expensive. However, in practical cases A may have a
more complex structure. If A is the image of C by a certain function F : C → Y ,
in general there does not exist an efficient algorithm which, for y ∈ Y , establishes
whether y ∈ A or not. In the next section, Algorithm 1 is adapted to this case.

5. Functional vector optimization problems with variable domination
structures

In this part we will assume that X and Y are finite dimensional spaces and that
the variable domination in Y is defined by a set-valued mapping K : Y ⇒ Y , where
K(y) is a convex, closed and pointed cone with int(K(y)) ̸= ∅ for all y ∈ Y . Given
a closed subset C of X and the C1-differentiable function F : X → Y , we consider
the optimization problem

(5.1) K(·)−minF (x) s.t. x ∈ C.

x∗ is a solution of Problem (5.1) with respect to K if for all x ∈ C, F (x) /∈
F (x∗)− (K(F (x∗)) \ {0}).

This model is clearly related with (2.1) because it is equivalent to finding the
elements of Min(F (C),K(·)). As already pointed out, Algorithm 1 is not an efficient
alternative. However, the structure of the set can be used. Suppose that F ∈ C1

and v ∈ C − x, then F (x+ v) can be approximated as follows:

F (x+ v) ≈ F (x) +∇F (x)v

and the set A as the image of this linear function. That is:

A(x) ≈ {F (x) +∇F (x)v : v ∈ C − x}.
So, we can solve the approximate linearized problemMin(A(x),K(·)) and the weakly
minimal elements of A(x) will be used as the next iteration point. The stopping
criterion reads ∇F (x)v /∈ − int(K(F (x))) which means that x is a weakly stationary
point. The formal definition is:

Definition 5.1. Let F ∈ C1. We say that x ∈ C is a weakly stationary point
of problem (5.1) if ∇F (x)v /∈ − int(K(F (x))) for all v ∈ C − x.
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As already pointed out in [7], weakly minimal points are also weakly stationary.
So, we expect that by solving at each step the linearized problemWMin(A(x),K(·)),
Algorithm 1 will compute a sequence which either stops after finitely many steps
or the accumulation points of the generated sequence are weakly stationary points.
Given x ∈ C, for A = A(x), the scalarizing functional is

(5.2) ψ(F (x), r) = inf{t : tr ∈ ∇F (x)v +K(F (x)), v ∈ C − x}.

It is clear that the linear term ∇F (x) may lead to the unboundedness of ψ. This
obstacle can be overcome by adding ∥v∥2/2. However, even with this new term, the
resulting functional is not convex in r. As proven in Proposition 3.13, ψ(F (x), ·)
is only a quasi-convex functional. So, the solution of the approximate problem
infv∈C−x ∥v∥2/2 + inf∥r∥=1 ψ(y, r) is not simple. Moreover, a point of the form
F (xn)− k = F (xk+1) for some k ∈ K(F (xn)) must be found. That is why we will
consider domination maps K : Y ⇒ Y such that it is easy to verify that k ∈ K(y)
and the scalarizing functional (5.2) enjoys good properties. In particular, we will
always assume that

(H1) l : Rm × [Rm \ {0}] → R is a continuous functional.
(H2) For all y ∈ Rm, l(y, ·) is a convex and positively homogeneous functional of

z.
(H3) The set {l(y, z) : y ∈ Rm, z ∈ Rm, ∥z∥ = 1} is bounded.
(H4) The cone K(y) is defined as

K(y) := {z ∈ Rm \ {0} : l(y, z) ≤ 0}

and

int(K(y)) = {z ∈ Rm \ {0} : l(y, z) < 0} ̸= ∅ for all y ∈ Y.

(H5) F ∈ C1.

Note that K is a closed map since l(y, z) is a continuous functional.
Given this representation of the cone, it is easier to use l(y, z) to define the

auxiliary functional

θ(x, v) := l(F (x),−∇F (x)v) (x, v ∈ X).

If C is unbounded, θ(x, v) can be unbounded. In this case infv∈C−x θ(x, v) = −∞
and the iterative step will be unsuccessful. As before, consider the problem

inf
v∈C−x

∥v∥2

2
+ θ(x, v).

In this framework, the algorithm for computing weakly stationary points of prob-
lem (5.1) is formulated as follows:

Algorithm 2

Initial Step Find x0 ∈ C. n = 0, σ ∈ (0, 1).
Iterative Step

• Find a solution vn of the problem

(Pn) arg min
v∈C−xn

∥v∥2/2 + l(F (xn),−∇F (xn)v).
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• If vn = 0, EXIT, else find jn ∈ Z such that

jn := sup{j ∈ Z : F (xn) + σ2j∇F (xn)vn − F (xn + 2jvn) ∈ K(F (xn))}.

• xn+1 := xn + 2jnvn, n = n+ 1.

Now, we will show that Algorithm 2 is well-defined.

Proposition 5.2. (i) The problem (Pn) has a unique minimizer vn.
(ii) vn = 0 is a unique solution of (Pn) if and only if xn is a weakly stationary

point.
(iii) There exists M > 0 such that ∥vn∥ ≤M∥∇F (xn)∥ for all n = 1, 2, . . ..
(iv) If vn ̸= 0, then there exists j ∈ Z such that F (xn) + 2j∇F (xn)vn − F (xn +

2jvn) ∈ K(F (xn)).

Proof. (i) By the positive homogeneity of l, ∥v∥2/2 + l(F (xn),−∇F (xn)v) → +∞
if ∥v∥ → +∞. This implies the existence of a solution of (Pn). On the other hand,
∥v∥2/2 is a strictly convex functional and l(F (xn),−∇F (xn)v) is convex in v due
to (H2). So, the objective function of (Pn) is strictly convex and, therefore, the
minimum is also unique.

(ii) It is clear that 0 is a feasible solution of problem (Pn), hence

(5.3) λn := min
v∈C−xn

∥v∥2/2 + l(F (xn),−∇F (xn)v) ≤ 0.

(a) If xn is a weakly stationary point, it holds that −∇F (xn)v /∈ int(K(F (xn))) for
all v ∈ C − xn, which means that

l(F (xn),−∇F (xn)v) ≥ 0 for all v ∈ C − xn.

Then, for all v ∈ C − xn it holds that

∥v∥2/2 + l(F (xn),−∇F (xn)v) ≥ 0.

Combining this inequality with (5.3), we obtain λn = 0.
(b) Now, we will prove that λn < 0, if xn is not a weakly stationary point.

Let v ∈ C −xn be such that −∇F (xn)v ∈ int(K(F (xn))). By (H4), it holds that

l(F (xn),−∇F (xn)v) < 0.

Recalling that l is a positively homogeneous map, for some α > 0 small enough, it
holds that

∥αv∥2/2 + l(F (xn),−∇F (xn)αv) = α2∥v∥2/2 + αl(F (xn),−∇F (xn)v) < 0.

Since C is convex, we have αv ∈ C − xn for all α ∈ [0, 1]. Then, as desired

λn ≤ α∥v∥2/2 + l(F (xn),−∇F (xn)αv) < 0.

By (a) and (b), it holds that λn = 0 if and only if xn is a weakly stationary point.
Since the objective function of (Pn) evaluated at v = 0 coincides with the minimal
value and, by (i), (Pn) has a unique solution, we obtain that vn = 0 is its unique
solution if and only if xn is a weakly stationary point.

(iii) By (5.3), we get for a solution vn of (Pn)

∥vn∥2/2 ≤ −l(F (xn),−∇F (xn)vn) = | − l(F (xn),−∇F (xn)vn)|.
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Again, since l is a continuous, positively homogeneous functional, we have

∥vn∥2/2 ≤ | − l(F (xn),−∇F (xn)vn)| ≤ max
∥r∥=1

|l(F (xn), r)|∥∇F (xn)vn∥.

By (H3), l(F (xn), r) is bounded for all r with ∥r∥ = 1. Hence, for

M = 2 max
∥r∥=1

|l(F (xn), r)|,

we obtain the relation ∥vn∥2 ≤M∥∇F (xn)vn∥ ≤M∥∇F (xn)∥∥vn∥ and, therefore,

∥vn∥ ≤M∥∇F (xn)∥.
(iv) vn ̸= 0 means that ∇F (xn)vn ∈ − int(K(F (xn))). Considering the Taylor

expansion of F (xn + 2jvn), we get

F (xn) + 2j∇F (xn)vn + o(2j) = F (xn + 2jvn)

and, equivalently,

F (xn) + 2jσ∇F (xn)vn − F (xn + 2jvn) = −2j(1− σ)∇F (xn)vn + o(2j).

Taking into account −∇F (xn)vn ∈ int(K(F (xn)) and σ < 1, we get

−(1− σ)∇F (xn)vn ∈ int(K(F (xn))).

So, there is j ∈ Z such that

−(1− σ)∇F (xn)vn +
o(2j)

2j
∈ int(K(F (xn))) ⊂ K(F (xn)),

which means that

−2j(1− σ)∇F (xn)vn + o(2j) ∈ int(K(F (xn))) ⊂ K(F (xn)).

□
Now, a simple sufficient condition for the convergence of {F (xn)} is obtained.

Proposition 5.3. Suppose that the conditions [H1]-[H5] hold and that there exists
a closed, convex and pointed cone K ⊂ Y , such that K(F (x)) ⊂ K for all x ∈ C.
If x∗ is an accumulation point of the sequence {xn} generated by Algorithm 2, then
F (xn) → F (x∗).

Proof. First, note that F (x∗) is a limit point of {F (xn)} since F is a continuous
function and x∗ is an accumulation point of the sequence {xn}. By the definition
of Algorithm 2, F (xn)+σ2jn∇F (xn)vn−F (xn+1) and −∇F (xn)vn are elements of
K(F (xn)). In particular, since K(F (xn)) is a convex cone, it holds that

(5.4) F (xn) + (σ2jn − α)∇F (xn)vn − F (xn+1) ∈ K(F (xn))

for all α > 0. Taking α := σ2jn ≥ 0, we obtain

F (xn)− F (xn+1) ∈ K(F (xn)) ⊂ K.
This implies that {F (xn)} is a decreasing sequence with an accumulation point.

Due to the fact that K is a closed, convex, pointed cone and K ̸= {0}, since {0} ̸=
K(y) ⊂ K for all y ∈ Y , it holds that

F (xn) → F (x∗).
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□

Now, we will analyze the properties of the accumulation points of the sequence
generated by Algorithm 2. We start with some preliminary results.

Lemma 5.4. Suppose that {xn} is a subsequence of points generated by Algorithm
2 which converges to x∗. Then the solution of the associated problem (Pn) has
a convergent subsequence {vnk

}, and if vnk
→ v∗, v∗ ∈ C − x∗. Moreover, if

l(F (x∗),−∇F (x∗)v∗) = 0, then x∗ is a weakly stationary point of F over C.

Proof. By Proposition 5.2, we get that ∥vn∥ is bounded since xn converges and
F ∈ C1. Hence, it has an accumulation point. For simplicity, we will assume that
the whole sequence {vn} converges to v∗. Since C is closed, the mapping C : X ⇒ X,
defined by C(x) := C−x is closed. Then, due to xn → x∗, vn → v∗ and vn ∈ C−xn,
it holds that v∗ ∈ C − x∗.

For the second part, note that, as xn → x∗ and vn → v∗, by the continuity of
∇F (x) we get

lim
n→+∞

l(F (xn),−∇F (xn)vn) = l(F (x∗),−∇F (x∗)v∗) = 0.

Suppose that x∗ is not a weakly stationary point. Then there exists v ∈ C − x∗

such that

l(F (x∗),−∇F (x∗)v) < 0.

Using the same ideas as in the proof of Proposition 5.2(iii) we can assume that

∥v∥2

2
+ l(F (x∗),−∇F (x∗)v) < 0.

In particular, consider (v+(x−xn)), which is evidently an element of C−xn. Since
vn is the solution of problem (Pn), we get

∥vn∥2

2
+ l(F (xn),−∇F (xn)vn) ≤

∥v + (x− xn)∥2

2
+ l(F (xn),−∇F (xn)+ (x− xn)).

Taking limits for n→ +∞, we conclude

0 ≤ ∥v∗∥2

2
+ l(F (x∗),−∇F (x∗)v∗) ≤ ∥v∥2

2
+ l(F (x∗),−∇F (x∗)v) < 0.

This contradiction implies that x∗ is a weakly stationary point. □

Corollary 5.5. Let {xn} be a subsequence of points generated by Algorithm 2 con-
verging to x∗ and vn be the solution of (Pn). Suppose that vn → v∗. If ∇F (x∗)v∗ =
0, then x∗ is a weakly stationary point of F with respect to C.

Proof. Note that l(F (x), 0) = 0. Therefore, l(F (x∗),−∇F (x∗)v∗) = 0. So, the
result follows directly from Lemma 5.4. □

Theorem 5.6. Let us assume that [H1]-[H5] are satisfied and that K(F (x)) ⊂ K
for all x ∈ C, where K is a closed, convex and pointed cone in Y . Then every
accumulation point of the sequence generated by Algorithm 2 is a weakly stationary
point.
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Proof. Let {xn} be a subsequence generated by Algorithm 2, such that xn → x∗.
As already proven in Proposition 5.3, F (xn) → F (x∗). Moreover, by Lemma 5.4,
without loss of generality, we can assume that vn → v∗. On the other hand, it holds
that

(5.5) F (xn) + σ2jn∇F (xn)vn − F (xn+1) ∈ K(F (xn)).

Now, we consider two cases:
Case 1: If {2jn} is upper bounded, then the sequence {2jn} is bounded since it

is non-negative. We consider a convergent subsequence {2jn} → t∗, and taking the
limit for n→ +∞ in (5.5), we obtain

(5.6) t∗∇F (x∗)v∗ ∈ K(F (x∗)).

By the definition of Algorithm 2, it holds that

−∇F (xn)vn ∈ K(F (xn))

and, since K(F (xn)) is a cone,

−2jn∇F (xn)vn ∈ K(F (xn)).

So, when n→ +∞
−t∗∇F (x∗)v∗ ∈ K(F (x∗)).

Taking into account (5.6) and the last inclusion, we get

−t∗∇F (x∗)v∗ ∈ K(F (x∗)) ∩ −K(F (x∗)).

Since K(F (x∗)) is pointed, it follows

t∗∇F (x∗)v∗ = 0.

Here we consider again two cases:
Case (1.a) If t∗ > 0, then ∇F (x∗)v∗ = 0. By Corollary 5.5, x∗ is a weakly

stationary point.
Case (1.b) Now, we assume that 2jn → 0 and fix q ∈ N. Then there exists kq ∈ N,
such that for all n > kq

F (xn) + σ2q∇F (xn)vn − F (xn + 2qvn) /∈ K(F (xn)),

or, equivalently,

l(F (xn), F (xn) + σ2q∇F (xn)vn − F (xn + 2qvn)) ≥ 0.

Using the fact that l is positively homogeneous, it follows

l

(
F (xn),

F (xn)− F (xn + 2qvn)

2q
+ σ∇F (xn)vn

)
≥ 0.

Taking the limits for q → +∞ and n→ +∞, we get

l(F (x∗), (σ − 1)∇F (x∗)v∗) ≥ 0

and, again by the positive homogeneity of l

(5.7) l(F (x∗),−∇F (x∗)v∗) ≥ 0.

On the other hand, by Proposition 5.2, either

vn = 0
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or

l(F (xn),−∇F (xn)vn) < 0.

So, it holds that

l(F (x∗),−∇F (x∗)v∗) ≤ 0.

Combining it with (5.7), the following equality is satisfied:

l(F (x∗),∇F (x∗)v) = 0

and, by Lemma 5.4, this implies that x∗ is a weakly stationary point.
Case 2: Finally, we suppose that {2jn} is unbounded. We fix ε > 0 and consider

the relation given in (5.4) for α > 0 such that {2jn −α} is bounded and 2jn −α > ε.
Then we have:

F (xn) + (σ2jn − α)∇F (xn)vn − F (xn+1) ∈ K(F (xn)).

Taking the limit for n → +∞, and following the ideas used in the first case, we
arrive at

(2jn − α)∇F (x∗)v∗ = 0.

Since (2jn − α) > ε > 0, the result is obtained as in Case (1.a). □
Remark 5.7. In particular, if the domination map K(·) is a Bishop-Phelps-cone of
the form {z ∈ Y : ∥z∥ ≤ a(y)z} for all y ∈ Y , the natural representation of l(y, z)
is ∥y∥ − a(x)y. Again, if F ∈ C1, the results are evidently valid.

We end this article with an illustration of Algorithm 2 by a numerical example.

Example 5.8. We consider the problem

min(x+ 1, x2 + 1)T s.t. x ∈ [0, 1]

with respect to K : Y ⇒ Y ,

K(y) := {z : z1 ≥ 0, y2z1 − y1z2 ≤ 0} .

For finding minimal solutions, first note that for fixed x∗ ∈ [0, 1], it is clear that
F (x) = F (x∗) if and only if x∗ = x. So, x∗ is a minimizer if and only if x∗ is the
unique solution of the system

(x∗ + 1, (x∗)2 + 1)− (x+ 1, x2 + 1) ∈ K(F (x∗)).

That is

x∗ − x ≥ 0(5.8)

((x∗)2 + 1)(x∗ − x)− (x∗ + 1)
[
(x∗)2 − x2

]
≤ 0.(5.9)

Rearranging the last condition, we obtain either x∗ = x or

(5.10) (x∗)2 + 1− (x∗ + 1)(x∗ + x) ≤ 0.

Note that (5.10) is a linear inequality in x. Since x∗+1 > x∗ ≥ 0, (5.10) is equivalent
to proving that the inequality holds for x = x∗ (recall (5.8)). Furthermore, as the
case x∗ = x was already analyzed, by the strict monotonicity of linear functions,
the equality can be discarded. So,

(5.11) (x∗)2 + 1− 2(x∗ + 1)x∗ < 0
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must be solved. The zeros of −(x∗)2+1− 2x∗ are −1±
√
2. Therefore, (5.11) holds

for all x∗ ∈ [0, 1]∩
(
(
√
2− 1,+∞) ∪ [−∞,−1−

√
2)
)
= (

√
2−1, 1). This means that

x∗ ∈ (
√
2 − 1, 1) are not minimal points and that for x∗ ∈ [0,

√
2 − 1], the unique

solution of (5.8)-(5.9) is x = x∗. Hence, we can conclude that the set of minimal
elements is [0,

√
2 − 1]. Figure 6 represents this. The values of F (x), x ∈ C, are

given by the dashed curve whose solid part corresponds with the minimal points of
F with respect to the domination structure given by K(·). The ordering cones for
x = 1 and x = 0.75 shows that the objective function values of these points are not
minimal points while at x = 0.4, x = 0.2, x = 0, the minimality condition holds.

Figure 6. F ([0, 1]) and its minimal solutions with respect to K(·)

The algorithm is implemented in MatLab R2012 and run on an Intel(R) Atom(TM)
CPU N270 at 1.6GHz. Using ten randomly generated starting points in [0, 1], the
obtained solutions are:

x =
0.3152, 0.3893, 0.3955, 0.3822, 0.2647,
0.2838, 0.4111, 0.4136, 0.3292, 0.3944

At most 4 iterations were needed and the largest cputime was .9828 seconds. □
The good behavior of the algorithm in this example provides an idea how this

algorithm can be used for other examples.

6. Conclusions

In this paper, we present an extension of a scalarizing functional for vector opti-
mization problems with variable domination structure induced by a set-valued map
K : Y ⇒ Y . We studied some important properties of the scalarizing functional
such as convexity, monotonicity and semi-continuity. Ordering structures given by
cone-valued maps were also discussed. The scalarizing functional is useful for a
characterization of (weakly) minimal points of vector optimization problems with
variable domination structure. It would be very interesting to discuss corresponding
results for nondominated elements (see Eichfelder [16]) of these problems.

The properties of the scalarizing functional derived in Section 3 can be used
for developing necessary optimality conditions. Furthermore, this scalarization is
a possible tool for implementing descent directions algorithms. Future research is
focused in these directions.
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