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a continuous framework, need to be handled in a discrete manner concerning com-
putations. Therefore, given a finite discrete family of sets, in this paper we propose
several numerical methods that sort out non-minimal elements and determine all
minimal elements of the family of sets. Numerical tests justify that our approaches
are useful and the numerical effort is drastically reduced.

2. Preliminaries

Throughout this manuscript, let Y be a linear topological space, and denote the
power set of Y without the empty set by

P(Y ) := {A ⊆ Y | A is nonempty}.
We assume that D ∈ P(Y ) is a closed proper (i.e., D ̸= {0}, and D ̸= Y ) set
satisfying the inclusion

(2.1) D + [0,+∞) · k ⊆ D

for some k ∈ Y \ {0}. In R2, a set D (that is not necessarily a cone) satisfying (2.1)
for k = (1, 1) is, for instance, the set R2

+ − {(0, 1)}. If the relation (2.1) is fulfilled,

the functional zD,k : Y → R ∪ {±∞} defined by

(2.2) zD,k(y) := inf{t ∈ R | y ∈ tk −D}
is well-defined. We call zD,k nonlinear scalarizing functional, as it plays an impor-
tant role in scalarization methods for obtaining efficient solutions of a vector-valued
optimization problem. It can be shown that for a given vector k ∈ Y \ {0} and by a
variation of the set D satisfying the property (2.1), all efficient elements of a vector
optimization problem without any convexity assumptions can be found. The func-
tional zD,k was used to obtain separation theorems for not necessarily convex sets,
see [5]. Additionally, numerous applications of zD,k are known in the literature, for
instance, coherent risk measures in financial mathematics (see [7]) and uncertain
optimization (in particular, in robustness theory, compare [14]). Many properties
of zD,k can be found in [5, 6, 23,24].

Definition 2.1. Let Y be a linear topological space and D̃ ∈ P(Y ). A functional

z : Y → R ∪ {±∞} is D̃-monotone if

y1, y2 ∈ Y : y1 ∈ y2 − D̃ ⇒ z(y1) ≤ z(y2).

Important properties of the functional zD,k which will be used in this paper are
given in the following theorem.

Theorem 2.2 ([5,6]). Let Y be a linear topological space, D ∈ P(Y ) a closed proper

set, D̃ ∈ P(Y ) and let k ∈ Y \{0} be such that (2.1) is satisfied. Then the following
properties hold for z = zD,k:

(a) z is lower semi-continuous.
(b) (i) z is convex ⇐⇒ D is convex,

(ii) [∀ y ∈ Y, ∀ r > 0 : z(ry) = rz(y)] ⇐⇒ D is a cone.
(c) z is proper ⇐⇒ D does not contain lines parallel to k, i.e., ∀ y ∈ Y ∃ r ∈

R : y + rk /∈ D.

(d) z is D̃-monotone ⇐⇒ D + D̃ ⊂ D.
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(e) z is subadditive ⇐⇒ D +D ⊂ D.
(f) ∀ y ∈ Y, ∀ r ∈ R : z(y) ≤ r ⇐⇒ y ∈ rk −D.
(g) ∀ y ∈ Y, ∀ r ∈ R : z(y + rk) = z(y) + r.
(h) z is finite-valued ⇐⇒ D does not contain lines parallel to k and Rk−D = Y .
(i) Let furthermore D + (0,+∞) · k ⊂ intD. Then z is continuous.

The following examples illustrate the choice concerning the set D and the vector
k in the formulation of the functional zD,k.

Example 2.3. (a) Pascoletti, Serafini [21] use the functional zD,k in the special
case Y = Rn. Given a function f : Ω → Rn, where Ω ⊂ Rm, a closed convex
cone D ⊂ Rn with nonempty interior, parameters a ∈ Rn, r ∈ intD, they
propose the problem

min t

s.t. x ∈ Ω

f(x) ∈ a+ tr −D

t ∈ R.

(b) Many well known concepts of proper efficiency (compare [13, Chapter 2.4])
also fit into the general approach of the nonlinear scalarizing concept with
the functional zD,k. Since many of them are based on a certain kind of
generalized linear scalarization, they are endowed with a polyhedral struc-
ture: In [25], Weidner characterizes properly efficient elements in the sense
of Geoffrion by solutions of the auxiliary problem

min
y∈Rn

max
i=1,...,n

(⟨vi, y⟩ − νi)

with vi ∈ intRn
+,
∑n

j=1 v
j
i = 1, νi ∈ R, i = 1, . . . , n. Without effort, we can

verify that these auxiliary problems coincide with the problem miny∈Rn zD,k

for D := {y ∈ Rn : ∀ i = 1, . . . , n : ⟨vi, y⟩ − νi ≥ 0} and k := (1, . . . , 1)T ∈
Rn.

(c) Kaliszewski [12] characterizes efficiency in vector optimization with respect
to polyhedral cones by some inconsistency assertions. He uses a polyhedral
cone D given by

D := {y ∈ Rn : ⟨−bi, y⟩ ≥ 0, i = 1, ...,m}
with bi ∈ Rn, i = 1, . . . ,m. The inconsistency notions he uses can equiv-
alently be represented by means of the functional zD,k, as was shown by
Tammer and Winkler in [22].

3. Generalized set order relations

In this section, we introduce generalized set order relations in order to formulate
the solution concepts in Section 4. Our intention is to study set-valued optimization
problems with general set order relations and to derive corresponding algorithms.
In the following definition, we introduce a generalized set order relation w.r.t. a
nonempty subset D of Y . The following set order relation generalizes the upper set
less order relation by Kuroiwa [17,18], where the involved set D is a convex cone.
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Definition 3.1 (Generalized Upper Set Less Order Relation, [16]). Let D ∈ P(Y ).
The generalized upper set less order relation ⪯u

D is defined for two sets A,B ∈
P(Y ) by

A ⪯u
D B :⇐⇒ A ⊆ B −D,

which is equivalent to

∀ a ∈ A, ∃ b ∈ B : a ∈ b−D.

Remark 3.2. Notice that ⪯u
D is transitive if D + D ⊆ D. If D is a cone, then

D+D ⊆ D implies that D is convex. If, for instance, D = R2
+\{0}, then D+D ⊆ D

is fulfilled, but D is not a cone. Moreover, ⪯u
D is reflexive if 0 ∈ D. Therefore, ⪯u

D
is a preorder if D +D ⊆ D and 0 ∈ D.

The following result has been shown in [16].

Theorem 3.3. Let D ∈ P(Y ) be a closed proper set in Y , k ∈ Y \ {0} such that

(2.1) is fulfilled, D̃ ⊆ Y such that D + D̃ ⊆ D, and A,B ∈ P(Y ). Then it holds

A ⊆ B − D̃ =⇒ sup
a∈A

zD,k(a) ≤ sup
b∈B

zD,k(b).

The following result, shown in [16], gives an equivalent representation forA ⪯u
D B.

Theorem 3.4. Let D ∈ P(Y ) be a closed proper set in Y , and k ∈ Y \{0} satisfying
(2.1). For two sets A,B ∈ P(Y ), the following implication holds:

(3.1) A ⊆ B −D =⇒ sup
a∈A

inf
b∈B

zD,k(a− b) ≤ 0 .

Assume on the other hand, that there exists k0 ∈ Y \ {0} satisfying (2.1) such that
infb∈B zD,k0(a− b) is attained for all a ∈ A, then the converse is also true, i.e.,

(3.2) sup
a∈A

inf
b∈B

zD,k0(a− b) ≤ 0 =⇒ A ⊆ B −D .

In this paper, our goal is to study different extensions of several known set order
relations and their representation by means of the functional zD,k. We start by
introducing the following extension of the lower set less order relation by Kuroiwa
[17,18].

Definition 3.5 (Generalized Lower Set Less Order Relation). Let D ∈ P(Y ). The
generalized lower set less order relation⪯l

D is defined for two sets A,B ∈ P(Y )
by

A ⪯l
D B :⇐⇒ B ⊆ A+D,

which is equivalent to

∀ b ∈ B, ∃ a ∈ A : b ∈ a+D.

Remark 3.6. Notice that ⪯l
D is transitive if D+D ⊆ D and it is reflexive if 0 ∈ D.

If the set D in Definition 3.5 is replaced by a convex cone C ⊂ Y , then this
definition coincides with the definition of the lower set less order relation introduced
by Kuroiwa [17,18], and B ⊆ A+ C can be replaced by

∀ b ∈ B, ∃ a ∈ A : a ≤C b ,
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where ≤C relates to the order relation induced by the convex cone C, thus, a ≤C b
means that a ∈ b− C.

The following theorem gives a first insight into the relationships between the
generalized lower set less order relation and the functional zD,k.

Theorem 3.7. Let D ∈ P(Y ) be a closed proper set in Y , k ∈ Y \ {0} such that

(2.1) is fulfilled, let D̃ ⊆ Y such that D + D̃ ⊆ D, and A,B ∈ P(Y ). Then it holds

B ⊆ A+ D̃ =⇒ inf
a∈A

zD,k(a) ≤ inf
b∈B

zD,k(b).

Proof. Choose an arbitrary vector k ∈ Y \ {0} such that (2.1) is satisfied, and let

B ⊆ A+ D̃. Then, we have

∀ b ∈ B, ∃ a ∈ A : b ∈ a+ D̃ .

The monotonicity property of the functional zD,k (compare Theorem 2.2 (d)) yields

∀ b ∈ B, ∃ a ∈ A : zD,k(a) ≤ zD,k(b) .

Therefore, we conclude with the stated inequality. □

The following corollary, which was proven in [15, Theorem 3.15], is a consequence
of Theorem 3.7.

Corollary 3.8. Let D ∈ P(Y ) be a closed proper convex cone in Y , k ∈ Y \ {0},
A,B ∈ P(Y ). Then it holds

B ⊆ A+D =⇒ inf
a∈A

zD,k(a) ≤ inf
b∈B

zD,k(b).

We derive the following result in correspondence with Theorem 3.4 for the gen-
eralized lower set less order relation.

Theorem 3.9. Let D ∈ P(Y ) be a closed proper set in Y , and k ∈ Y \{0} satisfying
(2.1). For two sets A,B ∈ P(Y ), the following implication holds:

B ⊆ A+D =⇒ sup
b∈B

inf
a∈A

zD,k(a− b) ≤ 0 .

On the other hand, assume that there exists k0 ∈ Y \ {0} satisfying (2.1) such that
infa∈A zD,k0(a− b) is attained for all b ∈ B, then

sup
b∈B

inf
a∈A

zD,k0(a− b) ≤ 0 =⇒ B ⊆ A+D .

Proof. Let B ⊆ A+D. This means

∀ b ∈ B, ∃ a ∈ A : b ∈ a+D =⇒ ∀ b ∈ B, ∃ a ∈ A : a− b ∈ −D .

Because of Theorem 2.2 (f) with r = 0 and y = a− b, we have

∀ b ∈ B, ∃ a ∈ A : zD,k(a− b) ≤ 0 ,

and this implies

sup
b∈B

inf
a∈A

zD,k(a− b) ≤ 0 .
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Conversely, let k0 ∈ Y \ {0} be given such that for all b ∈ B the infimum
infa∈A zD,k0(a− b) is attained. Let

(3.3) sup
b∈B

inf
a∈A

zD,k0(a− b) ≤ 0 .

That means
∀ b ∈ B : inf

a∈A
zD,k0(a− b) ≤ 0 .

Because for all b ∈ B the infimum infa∈A zD,k0(a− b) is attained, we obtain

∀ b ∈ B ∃ a ∈ A : zD,k0(a− b) = inf
a∈A

zD,k0(a− b) ≤ 0 .

By Theorem 2.2 (f) with r = 0 and y = a− b, we conclude with

∀ b ∈ B ∃ a ∈ A : a− b ∈ −D,

thus B ⊆ A+D. □
In the following definition, we extend the notion of the set less order relation (see

Young [27] and Nishnianidze [20]).

Definition 3.10 (Generalized Set Less Order Relation). Let D ∈ P(Y ). The
generalized set less order relation ⪯s

D is defined for two sets A,B ∈ P(Y ) by

A ⪯s
D B :⇐⇒ A ⪯u

D B and A ⪯l
D B.

The next result follows directly from Theorems 3.4 and 3.9.

Corollary 3.11. Let D ∈ P(Y ) be a closed proper set in Y , and k ∈ Y \ {0}
satisfying (2.1). For two sets A,B ∈ P(Y ), we have

A ⪯s
D B =⇒ sup

a∈A
inf
b∈B

zD,k(a− b) ≤ 0 and sup
b∈B

inf
a∈A

zD,k(a− b) ≤ 0.

If, on the other hand, there exists k0 ∈ Y \ {0} satisfying (2.1) such that
infb∈B zD,k0(a − b) is attained for all a ∈ A, and if there exists k1 ∈ Y \ {0}
satisfying (2.1) such that infa∈A zD,k1(a− b) is attained for all b ∈ B, then

A ⪯s
D B ⇐= sup

a∈A
inf
b∈B

zD,k0(a− b) ≤ 0 and sup
b∈B

inf
a∈A

zD,k1(a− b) ≤ 0.

The following definition is an extension of the certainly less order relation (see
Jahn, Ha [10], Eichfelder, Jahn [4]).

Definition 3.12 (Generalized Certainly Less Order Relation). Let D ∈ P(Y ). The
generalized certainly less order relation⪯c

D is defined for two sets A,B ∈ P(Y )
by

A ⪯c
D B :⇐⇒ (A = B) or (∀ a ∈ A, ∀ b ∈ B : a ∈ b−D) .

The following result does not require any attainment property. We omit its proof,
as it is similar to that of Theorem 3.9.

Theorem 3.13. Let D ∈ P(Y ) be a closed proper set in Y , and k ∈ Y \ {0}
satisfying (2.1). For two sets A,B ∈ P(Y ), the following equivalence holds:

∀ a ∈ A, ∀ b ∈ B : a ∈ b−D ⇐⇒ sup
(a,b)∈A×B

zD,k(a− b) ≤ 0 .
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Corollary 3.14. Let D ∈ P(Y ) be a closed proper set in Y , k ∈ Y \ {0} such
that (2.1) is fulfilled, A,B ∈ P(Y ). Then we have the following equivalence for the
generalized certainly less order relation:

A ⪯c
D B ⇐⇒ (A = B) or

(
sup

(a,b)∈A×B
zD,k(a− b) ≤ 0

)
.

Notice that the result in Corollary 3.14 holds true for arbitrary k ∈ Y \ {0}
fulfilling (2.1). So we can conclude that A ⪯c

D B is equivalent to

(A = B) or

(
∀ k ∈ Y \ {0} satisfying (2.1): sup

(a,b)∈A×B
zD,k(a− b) ≤ 0

)
.

The next definition is a more general form of the possibly less order relation
(see [1, 10]).

Definition 3.15 (Generalized Possibly Less Order Relation). Let D ∈ P(Y ). The
generalized possibly less order relation ⪯p

D is defined for two sets A,B ∈ P(Y )
by

A ⪯p
D B :⇐⇒ ∃ a ∈ A, ∃ b ∈ B : a ∈ b−D.

The following result shows that the nonlinear scalarizing functional zD,k is useful
for the characterization of the generalized possibly less order relation.

Theorem 3.16. Let D ∈ P(Y ) be a closed proper set in Y , and k ∈ Y \ {0}
satisfying (2.1). For two sets A,B ∈ P(Y ), the following implication holds:

∃ a ∈ A, ∃ b ∈ B : a ∈ b−D =⇒ inf
(a,b)∈A×B

zD,k(a− b) ≤ 0. .

If there exists k0 ∈ Y \{0} satisfying (2.1) such that inf
(a,b)∈A×B

zD,k0(a−b) is attained,

we have:

inf
(a,b)∈A×B

zD,k0(a− b) ≤ 0 =⇒ ∃ a ∈ A, ∃ b ∈ B : a ∈ b−D .

Remark 3.17. Of course, many other set order relations can be found in the lit-
erature. Some of them can be generalized in the way we conducted so far. For
example, the minmax less order relation and the minmax certainly less order re-
lation, given in Jahn, Ha [10] can be generalized and expressed via the nonlinear
scalarizing functional zD,k. Moreover, in Kuroiwa et al. [19] the following order
relations are presented (with D being a proper closed convex cone):

A ⪯(ii) B ⇐⇒ ∃ a ∈ A : ∀ b ∈ B, a ∈ b−D

and

A ⪯(iv) B ⇐⇒ ∃ b ∈ B : ∀ a ∈ A, a ∈ b−D.

Under appropriate attainment properties and if D and k ∈ Y \ {0} satisfy (2.1),
these relations are concerned with

inf
a∈A

sup
b∈B

zD,k(a− b) ≤ 0 and inf
b∈B

sup
a∈A

zD,k(a− b) ≤ 0.

However, we will not pursue them any further, as they are similar to ⪯u
D as well as

⪯l
D, and coincide by simply interchanging the infima and suprema.
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4. Numerical methods for determining minimal elements

This section is concerned with developing numerical methods for finding minimal
elements of a family of sets with respect to the new generalized set order relations
that we introduced in Section 3.

In the literature, there already exist some algorithms for solving set-valued op-
timization problems. Jahn [9] proposes a descent method that generates approxi-
mations of minimal elements of set-valued optimization problems under convexity
assumptions on the considered sets. In [9], the set less order relation is character-
ized by means of linear functionals. More recently, in [15], the authors propose a
similar descent method for obtaining approximations of minimal elements of set-
valued optimization problems. In [15], several set order relations are characterized
by the nonlinear scalarizing functional zD,k, where D is assumed to be a proper
convex cone. Since the nonlinear functional zD,k is used in [15], no convexity as-
sumptions are needed. The approaches in [9,15] all rely on set order relations where
the involved domination structure is given by cones.

Our approach in this paper is two-fold: First, we extend the well-known Jahn-
Graef-Younes method, which was introduced in [26] for vector optimization prob-
lems. The Jahn-Graef-Younes method selects minimal elements of a set of finitely
many elements. Its advantage is that this method reduces the numerical effort by
excluding elements which cannot be minimal for a given set. In this section, we
extend this method to the set-valued case in order to obtain minimal elements of
a family of finitely many sets. We propose several extensions of the Jahn-Graef-
Younes method under different assumptions on the generalized set order relations
introduced in Section 3. Secondly, when the involved sets are compared by means
of any of those proposed set order relations, we use the results from Section 3 to
evaluate A ⪯ B by using the nonlinear scalarizing functional zD,k.

First, we recall the definition of minimal elements.

Definition 4.1 (Minimal Elements of a Family of Sets). Let A be a family of
nonempty subsets of Y and let a set order relation ⪯ on P(Y ) be given. A ∈ A is
called a minimal element of A w.r.t. ⪯ if

A ⪯ A, A ∈ A =⇒ A ⪯ A .

The set of all minimal elements of A w.r.t. ⪯ is denoted by A⪯.

When the family of sets A is given by a large number of elements, it may take
a long time to compare the sets pairwise according to Definition 4.1. We propose
a method that significantly reduces the number of comparisons of sets. Reducing
the numerical effort is especially useful if each comparison is rather expensive. The
following algorithm filters out elements of a family of sets which cannot be minimal.
This procedure extends the Jahn-Graef-Younes method which is given in the disser-
tation by Younes [26], Jahn and Rathje [11] (compare also Jahn [8, Section 12.4])
for minimal elements in the vector-valued case, where Y = Rn. Eichfelder [3] formu-
lated corresponding algorithms for vector-valued problems with a variable ordering
structure. We extend the idea of such a method to set optimization problems, where
we assume that a family of finitely many sets A is given and minimal elements of
A are to be identified.
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Algorithm 4.2. (Jahn-Graef-Younes method for sorting out non-minimal elements
of a family of finitely many sets)

Input: A := {A1, . . . , Am} ⊂ Rn, set order relation ⪯
% initialization
T := {A1},
% iteration loop
for j = 2 : 1 : m do

if (A ⪯ Aj , A ∈ T =⇒ Aj ⪯ A) then
T := T ∪ {Aj}

end if
end for
Output: T

Algorithm 4.2 is a reduction method which sorts out sets that cannot be minimal.
In the if-statement of Algorithm 4.2, each element is compared only with elements
that have been considered so far (which belong to the set T ), so it is not necessary
to compare all elements with each other pairwise, which can reduce the computation
time of determining minimal elements significantly. Notice that the conditions A ⪯
Aj and Aj ⪯ A in the if-statement in Algorithm 4.2 can be evaluated by means

of computing the nonlinear scalarizing functional zD,k (compare Theorems 3.4, 3.9,
3.16 and Corollaries 3.11 and 3.14 for representations of different order relations by
means of zD,k). This will be done on page 55. Below we show that all minimal
elements of the family of sets A are contained in the output set T generated by
Algorithm 4.2.

Theorem 4.3. (1) Algorithm 4.2 is well-defined.
(2) Algorithm 4.2 generates a nonempty set T ⊆ A.
(3) Every minimal element of A also belongs to the set T generated by Algorithm

4.2.

Proof. As 1. and 2. are obvious, we only prove part 3. Let Aj be a minimal element
of A, but assume that Aj /∈ T . Clearly j ̸= 1. As Aj is a minimal element of A, we
have

A ⪯ Aj , A ∈ A =⇒ Aj ⪯ A.

Since T ⊆ A, we have

A ⪯ Aj , A ∈ T =⇒ Aj ⪯ A.

But then the condition in the if-statement is fulfilled and Aj is added to T , which
is a contradiction to our assumption. □

As mentioned before, the conditions A ⪯ Aj and Aj ⪯ A in the if-statement in
Algorithm 4.2 shall be evaluated by means of the nonlinear scalarizing functional
zD,k for all introduced set order relations. This will be done on page 55. First, we
consider the following attainment properties:
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Assumption 4.4 (Attainment Property). (u) Assume that there exist ku0 , k
u
1 ∈

Y \{0} satisfying (2.1) such that infa∈Aj z
D,ku0 (a−a) is attained for all a ∈ A

and infa∈A zD,ku1 (a− a) is attained for all a ∈ Aj .

(l) Assume that there exist kl0, kl1 ∈ Y \ {0} satisfying (2.1) such that

infa∈A zD,kl0(a − a) is attained for all a ∈ Aj and infa∈Aj z
D,kl1(a − a) is

attained for all a ∈ A.
(s) Assume that there exist ks0, ks1, ks2, ks3 ∈ Y \ {0} satisfying (2.1) such

that infa∈Aj z
D,ks0(a − a) is attained for all a ∈ A, infa∈A zD,ks1(a − a) is

attained for all a ∈ Aj , infa∈A zD,ks2(a − a) is attained for all a ∈ Aj and

infa∈Aj z
D,ks3(a− a) is attained for all a ∈ A.

(p) Assume that there exist kp0, k
p
1 ∈ Y \ {0} satisfying (2.1) such that

inf(a,a)∈A×Aj
zD,kp0 (a− a) and inf(a,a)∈A×Aj

zD,kp1 (a− a) are attained.

Remark 4.5. The attainment properties above are important for the representation
of the introduced generalized set order relations by means of the nonlinear scalariz-
ing functional zD,k (compare Theorems 3.4, 3.9, 3.16 and Corollary 3.11). Sufficient
conditions ensuring the existence of solutions of corresponding optimization prob-
lems (extremal principles) are given in the literature. The well-known Theorem
of Weierstrass says that a lower semi-continuous function on a nonempty compact
set has a minimum. An extension of the Theorem of Weierstrass is given by Zei-
dler [28, Proposition 9.13]: A proper lower semi-continuous and quasi-convex func-
tion on a nonempty closed bounded convex subset of a reflexive Banach space has
a minimum. Taking into account that the functional zD,k0 is lower semi-continuous
and convex if D ⊂ Y is a proper closed convex cone and k0 ∈ D\{0} (compare The-
orem 2.2), we get that the attainment property for infa∈A zD,k0(a− b) (with b ∈ B
fixed) is fulfilled if A is a nonempty closed bounded convex subset of a reflexive
Banach space and D is a proper closed convex cone.

In the following, we will give an implementation of the implication A ⪯ Aj , A ∈
T =⇒ Aj ⪯ A in Algorithm 4.2 in order to show how we are using the results
from Section 3 for deriving the algorithm. Especially in Step 5 of the following
implementation of Algorithm 4.2 it can be seen that the results concerning the
scalarizing functional zD,k are important for computing minimal elements of the set
A. In the following, we assume that the set order relation used in Algorithm 4.2 is
given by⪯t

D, where t is replaced by u, l, s, c, p for the generalized upper set less order

relation ⪯u
D, lower set less order relation ⪯l

D, set less order relation ⪯s
D, certainly

set less order relation ⪯c
D or possibly set less order relation ⪯p

D, respectively.
In the if -statement of Algorithm 4.2, the implication A ⪯ Aj , A ∈ T =⇒ Aj ⪯

A is evaluated. Here, it is our goal to check this implication by means of the
nonlinear scalarizing functional zD,k and the results from Section 3 for ⪯=⪯t

D.
We use the following implications (see Theorems 3.4, 3.9, 3.16 and Corollaries 3.11

and 3.14) in our implementation of Algorithm 4.2 (note that these are equivalent
to A ⪯ Aj =⇒ Aj ⪯ A under appropriate attainment properties):
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sup
a∈A

inf
a∈Aj

zD,ku0 (a− a) ≤ 0 =⇒ sup
a∈Aj

inf
a∈A

zD,ku1 (a− a) ≤ 0(Iu)

sup
a∈Aj

inf
a∈A

zD,kl0(a− a) ≤ 0 =⇒ sup
a∈A

inf
a∈Aj

zD,kl1(a− a) ≤ 0(Il) 
sup
a∈A

inf
a∈Aj

zD,ks0(a− a) ≤ 0 ∧ sup
a∈Aj

inf
a∈A

zD,ks2(a− a) ≤ 0

=⇒ sup
a∈A

inf
a∈A

zD,ks1(a− a) ≤ 0 ∧ sup
a∈A

inf
a∈Aj

zD,ks3(a− a) ≤ 0
(Is)


(A = Aj) ∨ sup

a∈A
sup
a∈Aj

zD,k(a− a) ≤ 0

=⇒ (A = Aj) ∨ sup
a∈Aj

sup
a∈A

zD,k(a− a) ≤ 0
(Ic)

inf
a∈A

inf
a∈Aj

zD,kp0 (a− a) ≤ 0 =⇒ inf
a∈Aj

inf
a∈A

zD,kp1 (a− a) ≤ 0(Ip)

The following implementation of Algorithm 4.2 checks whether the implication
A ⪯ Aj , A ∈ T =⇒ Aj ⪯ A in the if -statement in Algorithm 4.2 is fulfilled
for some input Aj , given T , and t ∈ {u, l, s, c, p} for ⪯t

D:=⪯ which was chosen in
the input of Algorithm 4.2. Note that the set D and t ∈ {u, l, s, c, p} were already
chosen in the input of Algorithm 4.2. If this implication is satisfied for all A ∈ T ,
then the set Aj is added to the family of sets T . Then the for-loop in Algorithm 4.2
continues with j := j + 1. If this implication is not fulfilled for some A ∈ T , then
the for-loop in Algorithm 4.2 continues with j := j+1, but the set Aj is not added
to the family of sets T . Note that the set K := {k ∈ Y \{0} | D+[0,+∞) ·k ⊆ D},
which is necessary for the definition of the functional zD,k, as k ∈ K, should be
determined at the beginning of Algorithm 4.2.

Realization the implication A ⪯t
D Aj , A ∈ T =⇒ Aj ⪯t

D A in Algorithm
4.2:

Input: T and j

Step 1: Set T̃ := T . Go to Step 2.

Step 2: If T̃ = ∅, then the implication A ⪯t
D Aj , A ∈ T =⇒ Aj ⪯t

D A

holds and STOP. Otherwise, go to Step 3.

Step 3: Choose A ∈ T̃ . Set T̃ := T̃ \ {A}. Go to Step 4.

Step 4: When t ∈ {u, l, p, s}, choose ktr ∈ K (r = 0, 1 if t ∈ {u, l, p},
r = 0, 1, 2, 3 if t = s) such that Assumption 4.3 (t) is fulfilled.

When t = c, choose k ∈ K. Go to Step 5.

Step 5: If the implication (It) is true, then go to Step 2.

Otherwise, the implication does not hold and STOP.

Remark 4.6. The above implementation of the implication A ⪯t
D Aj , A ∈ T =⇒

Aj ⪯t
D A Algorithm 4.2 is especially easy for the generalized certainly less order
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relation ⪯c
D (when t = c), as no attainment property needs to be fulfilled for this

particular set order relation (compare Theorem 3.13).

Example 4.7. Let D := R2
+ and ⪯:=⪯c

D. We have randomly computed 1,000 sets,
for easy comparison each set is a ball of radius one in R2. Out of those 1,000 sets,
a total number of 93 are minimal w.r.t. to ⪯. Algorithm 4.2 generates 103 sets in
T , which is already a reduction of 897 sets. In Figure 1 the elements of the set T
are the filled circles.

Figure 1. A randomly generated family of sets. The filled circles
belong to the set T generated by Algorithm 4.2.

Remark 4.8. Notice that the set order relation ⪯ does not need to be transitive
in Algorithm 4.2, in contrast to descent methods (see Jahn [9]), which rely on the
transitivity of the considered set order relation.

Example 4.9. Let D := R2
+, ⪯:=⪯c

D, A1 := B1(3, 3), A2 := B1(5, 5), A3 :=
B1(0, 0) (where B1(y1, y2) denotes the closed ball of radius one around the point
(y1, y2) ∈ R2). Let the family of sets be given by these balls, i.e., A := {A1, A2, A3}.
The only minimal element of A w.r.t. ⪯ is A3 = B1(0, 0). Algorithm 4.2 generates
the set T := {A1, A3}.

Applying the for-loop in Algorithm 4.2 backwards leads to the following algo-
rithm, which determines all minimal elements of a family of sets under an external
stability assumption on the set of minimal elements A⪯, when the set order relation
is antisymmetric. For example, the generalized certainly less order relation ⪯c

D is
antisymmetric if D is a pointed cone (see Proposition 4.18).

Definition 4.10. If for all non-minimal elements A ∈ A\A⪯ there exists a minimal
element A ∈ A⪯ with A ⪯ A, then A⪯ is called externally stable.



GENERALIZED SET ORDER RELATIONS 57

Algorithm 4.11. (Jahn-Graef-Younes method with backward iteration for finding
minimal elements of a family of finitely many sets, where A⪯ is externally stable)

Input: A := {A1, . . . , Am} ⊂ Rn, antisymmetric set order relation ⪯
% initialization
T := {A1}
% forward iteration loop
for j = 2 : 1 : m do

if (A ⪯ Aj , A ∈ T =⇒ Aj ⪯ A) then
T := T ∪ {Aj}

end if
end for
{A1, . . . , Ap} := T
U := {Ap}
% backward iteration loop
for j = p− 1 : −1 : 1 do

if (A ⪯ Aj , A ∈ U =⇒ Aj ⪯ A) then
U := U ∪ {Aj}

end if
end for
Output: U

Theorem 4.12. Let the set order relation ⪯ be antisymmetric and the set of mini-
mal elements A⪯ be nonempty and externally stable. Then the output U of Algorithm
4.11 consists of exactly all minimal elements of the family of sets A.

Proof. Let U := {A1, . . . , Aq}. By 3 of Theorem 4.3, we know that all minimal
elements of A are contained in T as well as in U . Now we prove that every element
of U is also a minimal element of the set A. Let Aj ∈ U be arbitrarily chosen. By
the forward iteration of Algorithm 4.11, we obtain

∀ i < j (i ≥ 1) : Ai ⪯ Aj =⇒ Aj ⪯ Ai.

The backward iteration of Algorithm 4.11 yields

∀ i > j (i ≤ q) : Ai ⪯ Aj =⇒ Aj ⪯ Ai.

This means that

(4.1) ∀ i ̸= j (1 ≤ i ≤ q) : Ai ⪯ Aj =⇒ Aj ⪯ Ai.

(4.1) implies that

∀ Ai ∈ U \ {Aj} : Ai ⪯ Aj =⇒ Aj ⪯ Ai.

Then, Aj is a minimal element of U . Now suppose that Aj is not a minimal element
in A, then Aj /∈ A⪯. Then, as A⪯ was assumed to be externally stable, there exists
a minimal element A in A⪯ (especially, A ̸= Aj) with the property A ⪯ Aj . Since
A is a minimal element in A, Theorem 4.3, 3. implies that A ∈ U . Therefore, by
(4.1), Aj ⪯ A, as Aj is minimal in U and A ∈ U . By the antisymmetry of the set
order relation ⪯, we obtain A = Aj , a contradiction. □
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It is again possible to formulate an implementation of the implication A ⪯
Aj , A ∈ T =⇒ Aj ⪯ A of Algorithm 4.11. This can be performed for the
first for-loop analogously to the process on page 55, and for the second for-loop
simply by replacing T by U and changing j := j + 1 to j := j − 1.

Example 4.13. We return to Example 4.9. The backward iteration in Algorithm
4.11 generates the set U = {A3}, which is exactly the minimal element of A w.r.t.
⪯.

Example 4.14. The minimal elements of the randomly generated family of sets
of Example 4.7 are illustrated as dark filled circles in Figure 2. The remaining
elements which are lighter belong to the set T , but not to U .

Figure 2. A randomly generated family of sets. The minimal el-
ements w.r.t. ⪯c

D are dark, the lighter sets belong to the set T
generated by Algorithm 4.11.

In the following, we give a sufficient condition for the set of minimal elements A⪯
to be externally stable.

Lemma 4.15. Let a family A of finitely many nonempty subsets of Y be given and
let the set order relation ⪯ be transitive and antisymmetric. Assume that the set
of minimal elements w.r.t. ⪯, denoted as A⪯, is nonempty. Then A⪯ is externally
stable.

Proof. Let some A ∈ A, and A is assumed to be not minimal w.r.t. ⪯. Then there
exists some A1 ∈ A such that A1 ⪯ A and A ̸⪯ A1. If A1 ∈ A⪯, then there is
nothing to show. If A1 /∈ A⪯, then there exists some A2 ∈ A with A2 ⪯ A1 and
A1 ̸⪯ A2. As ⪯ is transitive, we get A2 ⪯ A. As A consists of finitely many elements
and ⪯ is antisymmetric, this procedure stops with a minimal element. □
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Remark 4.16. Here we briefly explain the difference between our extension of the
Jahn-Graef-Younes-Algorithm to set optimization with the originally introduced
version by Younes (compare [8, Section 12.4]). Let Y = Rn with the ordering ≤C

induced by a closed convex cone C ⊂ Y . The if-statement in the original Jahn-
Graef-Younes-Algorithm in vector optimization reads

for all y ∈ T \ {y} : y ̸≤C yj ,

and transferring this notion to our set optimization setting would yield the condition

for all A ∈ T \ {Aj} : A ̸⪯ Aj .

However, then the set T generated by Algorithm 4.2 would possibly not contain all
minimal elements. The reason for this is the following: We work with the minimality
notion given in Definition 4.1:

(4.2) A ⪯ A, A ∈ A =⇒ A ⪯ A .

However, the implication (4.2) does not imply

(4.3) ∀ A ∈ A \ {A} : A ̸⪯ A,

unless ⪯ is antisymmetric. We note that (4.3) always implies (4.2), even if ⪯ is
not antisymmetric. We exemplarily illustrate this with a small example in vector
optimization. Let a = (a1, a2) ∈ R2 be given, C := {y ∈ R2 | aT y ≥ 0}, A = {y ∈
R2 | aT y = 0} and A ∈ A arbitrarily given. The binary relation ≤C :=⪯ is defined
as y1 ≤C y2 :⇐⇒ y1 ∈ y2 −C. Then all elements in A are minimal w.r.t. ⪯. Then
(4.2) is satisfied for all A = y ∈ A. However, we have for all y1, y2 ∈ A the relation
y1 ≤C y2. Therefore, (4.3) does not hold true for any A = y ∈ A. The reason, of
course, is that the cone C is a halfspace and therefore not pointed, hence the binary
relation ≤C is not antisymmetric.

Proposition 4.17. We consider the statements

(4.4) ∄ A ∈ A \ {A} : A ⪯ A

and

(4.5) A ⪯ A, A ∈ A =⇒ A ⪯ A.

Then we have (4.4) =⇒ (4.5). Conversely, if ⪯ is antisymmetric, then (4.5) implies
(4.4).

Proof. Let (4.4) be true, and suppose that (4.5) is not fulfilled. Then there is some
A ∈ A \ {A} such that A ⪯ A, but A ̸⪯ A. Because of (4.4), we obtain A = A, a
contradiction.

Conversely, let (4.5) be fulfilled, but suppose that (4.4) does not hold. Then there
exists some A ∈ A \ {A} with the property A ⪯ A. By (4.5), we get A ⪯ A. As ⪯
was assumed to be antisymmetric, this yields A = A, a contradiction. □

By the above results, it is possible to replace the if-condition in Algorithms 4.2
and 4.11 by A ̸⪯ Aj for all A ∈ T (and A ̸⪯ Aj for all A ∈ U in the backwards-
iteration of Algorithm 4.11) under the assumption that the set order relation ⪯ is
antisymmetric. However, among our introduced generalized set order relations, only
the generalized certainly less order relation ⪯c

D is antisymmetric if D is a pointed
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cone (i.e., the cone D fulfills D ∩ (−D) = {0}). To overcome this issue, it seems
useful for the remaining set order relations to change the definition of minimal
elements, given in Definition 4.1, by means of (4.4).

Notions similar to antisymmetry, that are fulfilled by ⪯u
D, ⪯l

D and ⪯s
D, are sum-

marized below (see [13, Chapter 2.6.2]).

Proposition 4.18. (1) If D is a convex cone, then A ⪯u
D B and B ⪯u

D A imply
that A−D = B −D.

(2) If D is a convex cone, then A ⪯l
D B and B ⪯l

D A imply that A+D = B+D.
(3) If D is a convex cone, then A ⪯s

D B and B ⪯s
D A imply that A−D = B−D

and A+D = B +D.
(4) If D is a pointed cone, then the generalized certainly set order relation ⪯c

D is
antisymmetric. Moreover, A ⪯c

D B and B ⪯c
D A imply that the set A = B

is single-valued.

Proof. The first three assertion are obvious. Concerning the last statement, the
assertions a − b ∈ −D for all a ∈ A and for all b ∈ B and a − b ∈ D for all a ∈ A
and for all b ∈ B imply that a = b all a ∈ A and for all b ∈ B. □

Though ⪯u
D,⪯l

D,⪯
p
D and ⪯s

D are not antisymmetric in A, we can use Algo-
rithm 4.11 effectively to some antisymmetric subfamily A∗ of A. Let ⪯ be one
of the four relations and let A⪯ be the family of all minimal elements in A. The
following algorithm creates a subfamily A∗ of A:

Algorithm 4.19. (Method for finding an antisymmetric subfamily A∗ of A)

Input: A := {A1, . . . , Am} ⊂ Rn, set order relation ⪯
% initialization
A∗ := ∅
% iteration loop
for i = 1 : 1 : m do

if ̸ ∃ A ∈ {Ai+1, . . . , Am} such that Ai ⪯ A and A ⪯ Ai

then A∗ = A∗ ∪ {Ai}
end if

end for
Output: A∗

We can see that there is no pair (Ai, Aj) such that Ai, Aj ∈ A∗, i ̸= j, Ai ⪯ Aj ,
and Aj ⪯ Ai, that is, ⪯ is antisymmetric on A∗. For every A ∈ A, there exists
A′ ∈ A∗ such that A ⪯ A′ and A′ ⪯ A by the construction of A∗. Also, the set of
minimal elements of A∗, denoted by A∗

⪯, is nonempty and externally stable. From
Theorem 4.12, we are able to determine A∗

⪯ by using Algorithm 4.11.
We also have the following result.

Theorem 4.20. Let ⪯ be transitive, and

A0 := {A ∈ A \ A∗ | ∃A′ ∈ A∗
⪯ : A ⪯ A′, A′ ⪯ A}.
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Then we have the following property:

A∗
⪯ ∪ A0 = A⪯.

Proof. If Ā ∈ A⪯, there exists A′ ∈ A∗ such that Ā ⪯ A′ and A′ ⪯ Ā. We obtain
A′ ∈ A⪯. Since A

′ ∈ A∗ and A∗ ⊂ A, A′ ∈ A∗
⪯. Hence, if Ā ∈ A\A∗, then Ā ∈ A0.

If Ā ∈ A∗, from the antisymmetry on A∗, Ā = A′ ∈ A∗
⪯. Conversely, assume that

Ā ∈ A∗
⪯ ∪ A0. If Ā ̸∈ A⪯, there exists A ∈ A such that A ⪯ Ā and Ā ̸⪯ A. Also

there exists A∗ ∈ A∗ such that A ⪯ A∗ and A∗ ⪯ A. From the transitivity, we have
A∗ ⪯ Ā and Ā ̸⪯ A∗. This shows that Ā ̸∈ A∗

⪯. Then Ā ∈ A0, and there exists

A′ ∈ A∗
⪯ such that A′ ⪯ Ā and Ā ⪯ A′. From the transitivity, we have A∗ ⪯ A′ and

A′ ̸⪯ A∗. This contradicts with A∗ ∈ A∗ and A′ ∈ A∗
⪯. □

Finally, we propose the following algorithm that does not rely on antisymmetry
or external stability of the set order relation ⪯. The idea stems from Eichfelder [3,
Algorithm 1], who gave a similar numerical procedure for finding minimal elements
in vector optimization with a variable ordering structure. In the following algorithm,
a third for-loop is added which compares the elements that were obtained in the set
U by Algorithm 4.11 with all remaining elements in A \ U .

Algorithm 4.21. (Jahn-Graef-Younes method with backward iteration for finding
minimal elements of a family of finitely many sets)

Input: A := {A1, . . . , Am} ⊂ Rn, set order relation ⪯
% initialization
T := {A1}
% forward iteration loop
for j = 2 : 1 : m do

if (A ⪯ Aj , A ∈ T =⇒ Aj ⪯ A) then
T := T ∪ {Aj}

end if
end for
{A1, . . . , Ap} := T
U := {Ap}
% backward iteration loop
for j = p− 1 : −1 : 1 do

if (A ⪯ Aj , A ∈ U =⇒ Aj ⪯ A) then
U := U ∪ {Aj}

end if
end for
{A1, . . . , Aq} := U
V := ∅
% final comparison
for j = 1 : 1 : q do

if (A ⪯ Aj , A ∈ A \ U =⇒ Aj ⪯ A) then
V := V ∪ {Aj}

end if
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end for
Output: V

Theorem 4.22. Algorithm 4.21 consists of exactly all minimal elements of the
family of sets A.

Proof. Let Aj be an arbitrary element in V. Then Aj ∈ U , as V ⊆ U , and
A ⪯ Aj , A ∈ A \ U =⇒ Aj ⪯ A.

Suppose that Aj is not minimal in A. Then, there exists some A ∈ A such that
A ⪯ Aj and Aj ̸⪯ A. If A /∈ U , then this is a contradiction. If A ∈ U , then A is
also minimal in U (compare the proof of Theorem 4.12). Since Aj ∈ U , and Aj is
also minimal in U , we obtain from A ⪯ Aj that Aj ⪯ A, a contradiction.

Conversely, let Aj be minimal in A. Then we get

A ⪯ Aj , A ∈ A =⇒ Aj ⪯ A.

Now, suppose that Aj /∈ V. Then there exists some A ∈ A \ U with A ⪯ Aj and
Aj ̸⪯ A. As Aj is minimal in A, we get Aj ⪯ A, a contradiction. □
Remark 4.23. Note that it is again possible to evaluate the implication

A ⪯ Aj , A ∈ T (U , A \ U , resp.) =⇒ Aj ⪯ A

in Algorithm 4.21 by means of the nonlinear scalarizing functional zD,k. This can be
done analogously to the proposed process on page 55, but we refrain from repeating
it here due to its similarities.

Example 4.24. Let D := R2
+ and ⪯:=⪯u

D. We use the same family of randomly
computed sets from Example 4.7. Out of the considered 1.000 sets, a total number
of 5 are minimal w.r.t. to ⪯. Algorithm 4.21 first generates 18 sets in T , which is
already a huge reduction, and finally collects all minimal elements within the set U ,
which coincides with V. In Figure 3 the minimal elements are darkly filled, while
the lighter sets are those elements that are not minimal, but belong to the set T .
Of course, in our case the set of minimal elements is externally stable because of
the unified structure of the sets.

Example 4.25. Let D := R2
+, ⪯:=⪯p

D, A1 := {(0, 0)}, A2 := {(1, 1), (2,−1)},
A3 := {(3,−0.5)}. The family of sets is given as A := {A1, A2, A3}. The only
minimal element of A w.r.t. ⪯ is A1 = {0, 0}. Algorithm 4.2 generates the sets
T := {A1, A3} and U = {A3, A1}. A final comparison then yields V = {A1}.

Remark 4.26. A finite family of sets A can also be computed by an appropriate
discretization of the outcome sets of the considered (continuous) set optimization
problem.

5. Conclusions

In this paper, we introduced very general set order relations and characterized
them based on a prominent scalarizing functional from vector optimization. We
moreover proposed a numerical algorithm that reduces the numerical effort while
sorting out non-minimal elements of a family of sets and extended this method to
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Figure 3. The lightly filled circles belong to the set T generated by
Algorithm 4.21 and the darkly filled circles are the elements which
are minimal w.r.t. ⪯u

D (see Example 4.24).

select the sets which are minimal. Our approach can be regarded as an extension
of the well-known Jahn-Graef-Younes method. More research shall be done on the
implementations of Algorithms 4.2, 4.11, 4.19 and 4.21 to specific applications of
set optimization problems.
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