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Since the groundbreaking paper of Karmarkar, many researchers have proposed
and analyzed various interior-point methods (IPMs) for linear optimization (LO)
and a large amount of results have been reported. In the literature, the Newton
direction is used as the search direction in most primal-dual IPMs based on the
logarithmic barrier function. However, there is still a gap between the practical
behavior of these algorithms and these theoretical performance results [25]. For a
survey, we refer to the monograph [26,28] on the subject and the references therein.

Peng et al. [25] considered the self-regular barrier function, which is fairly general
and includes the logarithmic barrier function as a special case. The iteration bounds
of large- and small-update methods for LO based on the self-regular barriers are ob-
tained, namely, O

(√
n log n log n

ε

)
and O

(√
n log n

ε

)
, respectively, where n denotes

the number of inequalities in the problem, and ϵ denotes the desired accuracy in
terms of the objective value. Bai et al. [4] introduced a variety of non-self-regular
kernel functions, i.e., the so-called eligible kernel functions, which defined by some
simple conditions on the kernel functions and their derivatives. They provided a
simple and unified computational scheme for the complexity analysis of primal-
dual kernel function based IPMs for LO. Subsequently, a series of eligible kernel
functions are considered for various optimization problems and complementarity
problems, see, e.g., [2, 5, 6, 8, 9, 14,15,18,19,22–24,29,30,32,33].

Jordan algebras were created to illuminate a particular aspect of physics: the
quantum mechanical observably. However, Jordan algebras illuminated connec-
tions with many other areas of mathematics. Specially their relation to symmetric
cones. In fact any symmetric cone, can be realized as a cone of squares of some
EJA. It turns out that EJAs provided the tools to treat optimization problems in-
volving symmetric cones: with a simple structure to analyze, at once, all symmetric
optimization problems [16,29,31].

There is an extensive literature on the analysis of the optimization problems
over symmetric cones due to EJA tool. Faybusovich [11] made the first attempt to
extend IPMs from semidefinite optimization (SDO) to symmetric cone optimization
(SCO) by using EJAs. Schmieta and Alizadeh [27] provided a unified method of
the analysis for many IPMs in symmetric cones extensively under the framework of
EJAs. Since then, several IPMs designed for LO, second-order cone optimization
(SOCO) and SDO have been successfully extended to SCO and CQSCO. For a
survey, we refer to the monograph [1] on the subject and the references therein.

Recently, El Ghami et al. [15] first introduced a trigonometric kernel function as
follows

ψ(t) =
t2 − 1

2
+

6

π
tan

(
π(1− t)

2 + 4t

)
.

They established the worst case iteration bounds of large- and small-update methods

for LO, namely, O(n
3
4 log n

ε ) and O(
√
n log n

ε ), respectively. Consequently, a class of
kernel functions with trigonometric barrier terms are discovered [8,9,18,19,22–24].
The corresponding iteration bounds for large-update methods are collected in Table
1. In most cases, the complexity results for small-update IPMs are essentially the
same small-update methods based on the classic logarithmic barrier function, which
is O(

√
n log n

ε ).
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i The kernel functions ψi(t) Large-update methods Ref.

1 t2−1
2 + 6

π tan
(

π(1−t)
2+4t

)
O
(
n

3
4 log n

ε

)
[15]

2 t2−1
2 − log t+ 1

8 tan
2
(

π(1−t)
2+4t

)
O
(
n

2
3 log n

ε

)
[23]

3 t2−1
2 −

∫ t

1
e3(tan ( π

2+2ξ )−1)dξ O
(√
n(log n)2 log n

ε

)
[24]

4 t2−1
2 − log t+ λtan2

(
π(1−t)
2+3t

)
, 0 < λ ≤ 8

25π O
(
n

3
4 log n

ε

)
[9]

5 t2 − 2t+ 1

sin( πt
1+t )

O
(
n

3
4 log n

ε

)
[18]

6 t2−1
2 + 4

π cot
(

πt
1+t

)
O
(
n

3
4 log n

ε

)
[19]

7 (t−1)2

2 + (t−1)2

2t + 1
8

(
tan2

(
π(1−t)
2+4t

))
O
(
n

2
3 log n

ε

)
[22]

8 t2−1
2 − 4

πp

(
tanp

(
π

2+2t

)
− 1
)
, p ≥ 2 O

(
pn

p+2
2(p+1)

log n
ε

)
[8]

Table 1. Complexity results for kernel functions with trigonometric barrier terms

The purpose of the paper is to present a class of primal-dual large-update IPMs
for CQSCO based on a new kind of parametric kernel function with trigonometric
barrier term. By employing EJAs, we derive the currently best result of iteration
bounds for these type methods.

The outline of the paper is as follows. In Section 2, we provide the basic analysis
on symmetric cone and some properties of the parametric kernel (and barrier) func-
tion. In Section 3, primal-dual IPMs for CQSCO based on the parametric kernel
function are presented. In Section 4, we give some conclusions.

2. Preliminaries

In this section, we present some basic results on EJAs, and properties of the new
parametric barrier function that are needed in the analysis of our algorithm.

2.1. Analysis on symmetric cone. We give some basic analysis on symmetric
cone by using EJAs. A comprehensive treatment of EJAs can be found in the
monograph [13] and the references [11,16,27,29].

Let x, y ∈ V. Then the Lyapunov transformation L(x) is defined by

(2.1) L(x)y := x ◦ y.
Furthermore, the quadratic representation P (x) is given by

(2.2) P (x) := 2L(x)2 − L(x2),

where L(x)2 = L(x)L(x).
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For any EJA V, the corresponding cone of squares

(2.3) K(V) := {x2 : x ∈ V}

is indeed a symmetric cone (see, Theorem III.2.1 in [13]). In the sequel, K will
always denote a symmetric cone, and V an EJA with rank(V) = r for which K is
its cone of squares.

The following theorem gives an important decomposition, the spectral decompo-
sition, on the space V.

Theorem 2.1 (Theorem III.1.2 in [13]). Let x ∈ V. Then there exists a Jordan
frame {c1, . . . , cr} and real numbers λ1(x), . . . , λr(x) such that

(2.4) x =

r∑
i=1

λi(x)ci.

The numbers λi(x) (with their multiplicities) are called the eigenvalues of x. Fur-
thermore, the trace and the determinant of x are given by

tr(x) =

r∑
i=1

λi(x), and det(x) =

r∏
i=1

λi(x),

respectively.

Let x ∈ V with the spectral decomposition given by (2.4), the vector-valued
function ψ(x) is defined by

(2.5) ψ(x) := ψ(λ1(x)) c1 + · · ·+ ψ(λr(x)) cr.

Furthermore, if ψ(t) is differentiable, the derivative ψ′(t) exist, and we also have
the vector-valued function ψ′(x), namely

(2.6) ψ′(x) = ψ′(λ1(x)) c1 + · · ·+ ψ′(λr(x)) cr.

It should be noted that ψ′(x) is just a vector valued function induced by the de-
rivative ψ′(t) of the function ψ(t) rather than the derivative of the vector valued
function ψ(x) defined by (2.5).

The following theorem provides another important decomposition, the Peirce
decomposition, on the space V.

Theorem 2.2 (Theorem IV.2.1 in [13]). Let x ∈ V with the spectral decomposition
given by (2.4). Then we have

V = ⊕i≤jVij ,

where

Vii := {x|x ◦ ci = x}, and Vij :=

{
x|x ◦ ci =

1

2
x = x ◦ cj

}
, 1 ≤ i < j ≤ r,

are Pierce spaces of V. Then, for any x ∈ V, there exists xi ∈ R, ci ∈ Vii and
xij ∈ Vij (i < j) such that

x =

r∑
i=1

xici +
∑
i<j

xij .
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Let x, s ∈ V . The trace inner product is defined by

(2.7) ⟨x, s⟩ := tr(x ◦ s).

Then the Frobenius norm, namely ∥ · ∥F , is given by

(2.8) ∥x∥F :=
√

⟨x, x⟩ =
√

tr(x2) =

√√√√ r∑
i=1

λ2i (x).

It follows that

(2.9) |λmin(x)| ≤ ∥x∥F , and |λmax(x)| ≤ ∥x∥F .

The following lemma gives the so-called NT-scaling of V, which plays an impor-
tant role in the analysis of the algorithm presented in Fig. 1.

Lemma 2.3 (Lemma 3.2 in [12]). Let x, s ∈ intK. Then there exists a unique
w ∈ intK such that

x = P (w)s.

Moreover,

w = P (x)
1
2

(
P (x

1
2 )s
)− 1

2

[
= P (s−

1
2 )
(
P (s

1
2 )x
) 1

2

]
.

The point w is called the scaling point of x and s (in this order).

Recall that two elements x and s in V are similar, and briefly denoted as x ∼ s, if
x and s share the same eigenvalues, including their multiplicities (see, e.g., [27,29]).

Lemma 2.4 (Proposition 21 in [27] and Proposition 3.3 in [29]). Let x, s, z ∈ intK
and w be the scaling point of x and s. Then
(i) (P (x1/2)s)1/2 ∼ P (w1/2)s;

(ii) P (x1/2)s ∼ P (s1/2)x;

(iii) P (x1/2)s ∼ P ((P (z)x)1/2)P (z−1)s.

Let x =
∑r

i=1 λi(x)ci be the spectral decomposition of x ∈ V with respect to
the Jordan frame {c1, . . . , cr}. The following two theorems give explicitly the first
derivatives of the real valued separable spectral function F : V → R and the vector
valued separable spectral function G : V → V, respectively.

Theorem 2.5 (Theorem 38 in [7]). If f is continuously differentiable function in a
suitable domain that contains all the eigenvalues of x, then the real valued separable
spectral function

(2.10) F (x) :=

r∑
i=1

f(λi(x)),

is continuously differentiable at x and

DxF (x) =

r∑
i=1

f ′(λi(x))ci.
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Theorem 2.6 (Lemma 1 in [20]). If g is continuously differentiable function in
a suitable domain that contains all the eigenvalues of x, then the vector valued
separable spectral function

(2.11) G(x) :=
r∑

i=1

g(λi(x))ci,

is continuously differentiable at x and

DxG(x) =

r∑
i=1

g′(λi(x))Pii +
∑
j<k

g(λj(x))− g(λk(x))

λj(x)− λk(x)
Pjk,

where Pii = P (ci) and Pjk = 4L(cj)L(ck). When λj(x) = λk(x), the quotient is
understood as the second derivative of g(λj(x)), i.e., g

′′(λj(x)).

2.2. Properties of the parametric kernel (barrier) function. In this paper,
we consider a kind of parametric kernel function with trigonometric barrier term as
follows

(2.12) ψ(t) :=
t2 − 1

2
− log t−

∫ t

1

u2

2p(x+ 2u)2
tan2p(h(x))dx, t > 0, p ∈ N, p > 1,

where

(2.13) h(x) =
πu(1− x)

x+ 2u

and 0 < u ≤ u∗, (u∗ ≈ 0.4275). Also, u∗ is the unique solution of the equation

g(u) := tan

(
(1− 2u)π

4

)
− 2

3π(1 + 2u)
= 0.(2.14)

This parametric kernel function is fairly general and includes the classic barrier
function as a special case when µ = 0.

The first three derivatives of ψ(t) with respect to t are given by

ψ′(t) = t− 1

t
− u2

2p(t+ 2u)2
tan2p(h(t)),(2.15)

ψ′′(t)=1 +
1

t2
+

u2

p(t+ 2u)3
tan2p(h(t))(2.16)

+
πu3(1 + 2u)

(t+ 2u)4
tan2p−1(h(t)) sec2(h(t)),

ψ′′′(t)=− 2

t3
− 3u2

p(t+ 2u)4
tan2p(h(t))(2.17)

−6πu3(1 + 2u)

(t+ 2u)5
tan2p−1(h(t)) sec2(h(t))

−π
2u4(1 + 2u)2(2p− 1)

(t+ 2u)6
tan2p−2(h(t)) sec4(h(t))
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−2πu4(1 + 2u)2

(t+ 2u)6
tan2p(h(t)) sec2(h(t)).

One can easily verify that

ψ(1) = ψ′(1) = 0, and lim
t→0+

ψ(t) = lim
t→+∞

ψ(t) = +∞.

Moreover, the proposed kernel function ψ(t) is completely defined by its second
derivative, i.e.,

ψ(t) =

∫ t

1

∫ ξ

1
ψ′′(ζ)dζdξ.

The following lemma provides some properties of the parametric kernel function
ψ(t) defined by (2.12).

Lemma 2.7. One has

ψ′′(t)>1, ∀t > 0;(18-a)

tψ′′(t) + ψ′(t)>0, ∀t > 0;(18-b)

tψ′′(t)− ψ′(t)>0, ∀t > 1;(18-c)

ψ′′′(t)<0, ∀t > 0.(18-d)

Proof. See Appendix A.
To analyze the algorithms, we define the barrier function Ψ(v) : intK → R+

based on the proposed parametric kernel function as follows

(2.19) Ψ(v) :=

n∑
i=1

ψ(λi(v)).

One can conclude that Ψ(v) is nonnegative, strict convex and vanishes if and only
if v = e (see, e.g., [4, 25]). Furthermore, we define the norm-based proximity δ(v) :
intK → R+ as follows

(2.20) δ(v) :=
1

2
∥∇Ψ(v)∥F =

1

2

√√√√ r∑
i=1

ψ′(λi(v))2.

One can easily verify that δ(v) ≥ 0, and δ(v) = 0 if and only if Ψ(v) = 0.
The proposed parametric kernel function ψ(t) is strongly convex due to the fact

that (18-a) of Lemma 2.7, i.e., ψ′′(t) > 1. As a result, we have the following lemma
(see, e.g., Lemma 2.1 in [3]).

Lemma 2.8. If t > 0, then

1

2
(t− 1)2 ≤ ψ(t) ≤ 1

2
ψ′(t)2.

The following lemma provides an upper bound on ∥v∥ in terms of Ψ(v) and r.

Lemma 2.9. If Ψ(v) ≥ 1, then

∥v∥F ≤
√
r +

√
2Ψ(v).
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Proof. From Lemma 2.8, we have

t ≤ 1 +
√

2ψ(t).

This implies that

λi(v) ≤ 1 +
√
2ψ(λi(v)), i = 1, · · ·, r.

Then

∥v∥2F =

r∑
i=1

λi(v)
2 ≤

r∑
i=1

(1 +
√

2ψ(λi(v)))
2 ≤

r∑
i=1

(1 + 4ψ(λi(v))) ≤ r + 4Ψ(v).

Hence, we have

∥v∥F ≤
√
r +

√
2Ψ(v).

This completes the proof. □
The following lemma shows that the proposed parametric kernel function ψ(t) is

exponential convex.

Lemma 2.10. (Lemma 2.1 in [4]) Let ψ(t) be a twice differentiable function for
t > 0. Then the following three properties are equivalent:
(i) ψ(

√
t1t2) ≤ 1

2(ψ(t1) + ψ(t2)) for t1, t2 ≥ 0;
(ii) tψ′′(t) + ψ′(t) > 0 for t > 0;
(iii) ψ(eξ) is convex.

As a consequence of Lemma 2.10, we have the following important result.

Theorem 2.11 (Theorem 4.3.2 in [29]). If x, s ∈ intK, then

Ψ
(
(P (x)1/2s)1/2

)
≤ 1

2
(Ψ(x) + Ψ(s)).

In what follows, we want to find an upper bound for Ψ(βv) with β = 1√
1−θ

in

terms of Ψ(v). We start with the following lemma.

Lemma 2.12. If β ≥ 1, then

ψ(βt) ≤ ψ(t) +
1

2
(β2 − 1)t2.

Proof. Let

ψb(t) := − log t−
∫ t

1

u2

2p(x+ 2u)2
tan2p(h(x))dx, 0 < u ≤ u∗.

Then

(2.21) ψ(t) =
t2 − 1

2
+ ψb(t).

Furthermore, we have

ψ(βt)− ψ(t) =
1

2
(β2 − 1)t2 + ψb(βt)− ψb(t).

Note that β ≥ 1, to prove the lemma, it is sufficient to show that the function ψb(t)
is a decreasing function. This due to the following fact that

ψ′
b(t) = −1

t
− u2

2p(t+ 2u)2
tan2p(h(t)) < 0.
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This completes the proof. □

Theorem 2.13. If 0 < θ < 1 and v+ = v√
1−θ

, then

Ψ(v+) ≤ Ψ(v) +
θ

2(1− θ)

(
2Ψ(v) + 2

√
2rΨ(v) + r

)
.

Proof. From Lemma 2.12 with β = 1√
1−θ

, we have

Ψ(βv) ≤ Ψ(v) +
1

2

n∑
i=1

(β2 − 1)v2i = Ψ(v) +
θ∥v∥2F
2(1− θ)

.

Lemma 2.9 implies that

Ψ(v+) ≤ Ψ(v) +
θ

2(1− θ)

(
2Ψ(v) + 2

√
2rΨ(v) + r

)
.

This complete the proof. □
Let x(t) = x0+ tu ∈ intK with t ∈ R and u ∈ V. From Theorem 2.1, the spectral

decomposition of x(t) with respect to the Jordan frame {c1, . . . , cr} can be defined
by

(2.22) x(t) =
r∑

i=1

λi(x(t))ci.

Similarly, we have the Pierce decomposition of u, by Theorem 2.2,

(2.23) u =
r∑

i=1

uici +
∑
i<j

uij .

It follows from Theorem 2.5 and Theorem 2.6 that the first two derivatives of the
general function Ψ(x(t)) with respect to t are given by (see, e.g., [29])

(2.24) DtΨ(x(t)) = tr(DxΨ(x(t)) ◦ x′(t)) = tr

(
r∑

i=1

ψ′(λi(x(t)))ci ◦ u

)
,

and
(2.25)

D2
tΨ(x(t)) =

r∑
i=1

ψ′′(λi(x(t)))(ui)
2 +

∑
j<k

ψ′(λj(x(t)))− ψ′(λk(x(t)))

λj(x(t))− λk(x(t))
tr((ujk)

2).

When λj(x(t)) = λk(x(t)), the quotient is understood as the second derivative of
ψ(λj(x(t))), i.e., ψ

′′(λj(x(t))).
Recall that ψ′′(t) is monotonically decreasing in t ∈ (0,+∞) according to (18-d).

Under the assumption that j < k implies λj(x(t)) ≥ λk(x(t)), we can conclude that

(2.26) D2
tΨ(x(t)) ≤

r∑
i=1

ψ′′(λi(x(t)))(ui)
2 +

∑
j<k

ψ′′(λk(x(t)))tr((ujk)
2),

which bounds the second-order derivative of Ψ(x(t)) with respect to t.
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3. Kernel function-based IPMs for CQSCO

3.1. Framework of the kernel function-based IPMs. Without loss of gener-
ality, we assume that both (P ) and (D) satisfy the interior-point condition (IPC),
i.e., there exists (x0, y0, s0) such that

A(x0) = b, x0 ≻K 0, AT y0 + s0 −Q(x0) = c, s0 ≻K 0.

Then the Karush-Kuhn-Tucker optimality condition for CQSCO under the IPC is
equivalent to solve the following nonlinear system

A(x)=b, x ⪰K 0,

AT y + s−Q(x)=c, s ⪰K 0,(3.1)

x ◦ s=0.

Replacing the third equation of the system (3.1) by the nonlinear parameterized
equation x ◦ s = µe with µ > 0, we have

A(x)=b, x ⪰K 0,

AT y + s−Q(x)=c, s ⪰K 0,(3.2)

x ◦ s=µe.

Since the IPC holds and A is surjective, the nonlinear parameterized system (3.2)
has a unique solution (x(µ), y(µ), s(µ)) for each µ > 0, and we call x(µ) the µ-
center of (P ) and (y(µ), s(µ)) the µ-center of (D) [11,21]. The set of µ-centers gives
a homotopy path (with µ running through all the positive real numbers), which is
called the central path. If µ→ 0, then the limit of the central path exists and since
the limit points satisfy the complementarity condition x ◦ s = 0, it naturally yields
an optimal solution for (P ) and (D) (see, e.g., [11, 21,27]).

Applying Newton’s method to the nonlinear parametric system (3.2), we have

A(∆x)=0,

AT∆y +∆s−Q(∆x)=0,(3.3)

x ◦∆s+ s ◦∆x=µe− x ◦ s.

Due to the fact that x and s do not operator commute in general, i.e., L(x)L(s) ̸=
L(s)L(x), this system not always have a unique solution. It is well known that this
difficulty can be solved by applying the following scaling scheme (see, Lemma 28
in [27])

x ◦ s = µe ⇔ P (u)x ◦ P (u)−1s = µe, u ∈ intK.
Then we can consider the following nonlinear parametric system

A(x)=b, x ⪰K 0,

AT y + s−Q(x)=c, s ⪰K 0,(3.4)

P (u)x ◦ P (u−1)s=µe.

Applying Newton’s method to the nonlinear parametric system (3.4), we have

A(∆x)=0,

AT∆y +∆s−Q(∆x)=0,(3.5)
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P (u)x ◦ P (u)−1∆s+ P (u)−1s ◦ P (u)∆x=µe− P (u)x ◦ P (u−1)s.

Let u = w− 1
2 , where w is the NT-scaling point of x and s. We define

(3.6) v :=
P (w)−

1
2x

√
µ

[
=
P (w)

1
2 s

√
µ

]
,

and

(3.7) A :=
AP (w)

1
2

√
µ

, dx :=
P (w)−

1
2∆x

√
µ

, ds :=
P (w)

1
2∆s

√
µ

.

From (3.6) and (3.7), after some elementary reductions, we have

A(dx)=0,

AT
∆y + ds −Q(dx)=0,(3.8)

dx + ds=v
−1 − v,

where Q = P (w)
1
2QP (w)

1
2 . The system has a unique solution (see, e.g., [11, 21]).

Considering the classical logarithmic function as follows

(3.9) ψc(t) =
t2 − 1

2
− log t,

we have
v−1 − v = −∇Ψc(v),

where ∇Ψc(v) is the gradient of the classical logarithmic barrier function

(3.10) Ψc(v) := tr(ψc(v)) =

r∑
i=1

(ψc(λi(v)) .

Then the system (3.8) is equivalent to the following system

A(dx)=0,

AT
∆y + ds −Q(dx)=0,(3.11)

dx + ds=−∇Ψc(v).

Follows the strategy considered in [4], we rewrite the barrier function Ψ(v) defined
by (2.19) as follows.

(3.12) Ψ(x, s;µ) := Ψ(v) :=

n∑
i=1

ψ(λi(v)).

Replacing the right-hand side v−1 − v in the third equation of the system (3.8) by
−∇Ψ(v), we have

A(dx)=0,

AT
∆y + ds −Q(dx)=0,(3.13)

dx + ds=−∇Ψ(v).

The system (3.13) with the parametric kernel function (2.12) has a unique solution
(dx,∆y, ds) for each µ > 0, which can be used to computer the search directions ∆x
and ∆s from (3.7). If (x, y, s) ̸= (x(µ), y(µ), s(µ)), then (∆x,∆y,∆s) is nonzero.
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By taking a default step size α along the search directions, we get the new iteration
point as follows

(3.14) x+ := x+ α∆x, y+ := y + α∆y, and s+ := s+ α∆s.

Furthermore, we can conclude that

(3.15) x ◦ s = µe⇔ v = e⇔ ∇Ψ(v) = 0 ⇔ Ψ(v) = 0.

Hence, the value of Ψ(v) can be considered as a measure for the distance between
the given iterate (x, y, s) and the corresponding µ-center (x(µ), y(µ), s(µ)).

The generic form of primal-dual kernel function-based IPMs for CQSCO is shown
in Figure 1.

Generic Primal-Dual Kernel Function-Based IPMs for CQSCO

Input:
A threshold parameter τ ≥ 1;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
a starting point (x0, y0, s0) with µ0 = ⟨x0, s0⟩/r such that
Ψ(x0, s0;µ0) ≤ τ .
begin
x := x0; y := y0; s := s0; µ := µ0;
while rµ ≥ ε do
begin
µ := (1− θ)µ;
while Ψ(x, s;µ) > τ do
begin

calculate the search direction (∆x,∆y,∆s);
determine the default step size α;
update (x, y, s) := (x, y, s) + α(∆x,∆y,∆s).

end
end

end

Figure 1. Generic Primal-Dual IPMs for CQSCO

3.2. Analysis of the kernel function-based IPMs. From (3.14) and (3.7), after
some elementary reductions, we have

x+ =
√
µP (w(j))1/2(v + αdx), and s+ =

√
µP (w)−1/2(v + αds).

Furthermore, we have, by Lemma 2.3,

v+ = P (w+)
−1/2P (w)1/2(v + αdx) = P (w+)

1/2P (w)−1/2(v + αds),

where
w+ = P (x+)

1/2((P (x+)
1/2s+)

−1/2).
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To calculate a decrease of the barrier function Ψ(v) during an inner iteration it
is standard to consider a decrease as a function of α defined by

f(α) := Ψ(v+)−Ψ(v).

Our aim is to find an upper bound for f(α) by using the exponential convexity of
ψ(t), and according to Theorem 2.11.

From Lemma 2.4, we have

√
µv+ = P (w+)

1
2 s+ ∼

(
P (x+)

1
2 s+)

) 1
2
,

and(
µP (v + αdx)

1
2 (v + αds)

) 1
2 ∼

(
µP
(
P (w)

1
2 (v + αdx)

) 1
2
P (w)−

1
2 (v + αds)

) 1
2

.

Since (
P (x+)

1
2 s+)

) 1
2
=

(
µP
(
P (w)

1
2 (v + αdx)

) 1
2
P (w)−

1
2 (v + αds)

) 1
2

,

we can conclude that v+ is unitarily similar to (P (v + αdx)
1/2(v + αds))

1/2. This
shows that the eigenvalues of v+ are precisely the same as those of

v+ = (P (v + αdx)
1/2(v + αds))

1/2.

From Theorem 2.11, we have

Ψ(v+) = Ψ(v+) ≤
1

2
(Ψ(v + αdx) + Ψ(v + αds)) .

Then

f(α) ≤ f1(α) :=
1

2
(Ψ(v + αdx) + Ψ(v + αds))−Ψ(v),

which means that f1(α) gives an upper bound for the decrease of the barrier function
Ψ(v). It is worth pointing out that f1(α) is convex and in general f(α) is not convex.
That is an important advantage of using the function f1(α) instead of using the
original decrease function f(α). Moreover, we have f(0) = f1(0) = 0.

We have, by (2.24),

f ′1(α) =
1

2

(
tr(ψ′(v + αdx) ◦ dx) + tr(ψ′(v + αds) ◦ ds)

)
.

It follows from (3.13) that

f ′1(0) =
1

2
tr(∇Ψ(v) ◦ (dx + ds)) = −1

2
∥∇Ψ(v)∥2F = −2δ(v)2 < 0.

Let

dx =

r∑
i=1

dxici +
∑
i<j

dxij

be the Peirce decomposition of dx with respect to the Jordan frame {c1, . . . , cr},
and

ds =

r∑
i=1

dsibi +
∑
i<j

dsij
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be the Peirce decomposition of ds with respect to the Jordan frame {b1, . . . , br}.
Furthermore, we can write

v + αdx =

r∑
i=1

λi(v + αdx)ci, v + αds =

r∑
i=1

λi(v + αds)bi.

To simplify the notations we used (and will use below), ηi = λi(v + αdx) and
γi = λi(v + αds) for i = 1, · · ·, r.

From (2.25), we have

(3.16) f ′′1 (α) = g1(α) + g2(α),

where

g1(α) =

r∑
i=1

ψ′′(λi(η))(dxi)
2 +

∑
j<k

ψ′(λj(η))− ψ′(λk(η))

λj(η)− λk(η)
tr
(
(dxij)

2
)
,

and

g2(α) =
r∑

i=1

ψ′′(λi(γ))(dsi)
2 +

∑
j<k

ψ′(λj(γ))− ψ′(λk(γ))

λj(γ)− λk(γ)
tr
(
(dsij)

2
)
.

When λj(η) = λk(η) and λj(γ) = λk(γ), the quotients are understood as the second
derivatives of ψ(λj(η)) and ψ(λj(γ)), i.e., ψ

′′(λj(η)) and ψ
′′(λj(γ)), respectively.

It follows directly from (2.26) that

f ′′1 (α)≤
1

2

r∑
i=1

ψ′′(λi(η))(dxi)
2 +

∑
j<k

ψ′′(λk(η))tr
(
(dxjk)

2
)

(3.17)

+
1

2

r∑
i=1

ψ′′(λi(γ))(dsi)
2 +

∑
j<k

ψ′′(λk(γ))tr
(
(dsjk)

2
)
.

Note that this makes clear that f ′′1 (α) > 0贈測 unless dx = ds = 0. Thus, since
during an inner iteration the iterates x and s are not both at the µ-center, we may
conclude that f1(α) is strictly convex as a function of α.

In what follows, δ(v) is denoted by δ. The following lemma provides an upper
bound of f ′′1 (α) in terms of δ and ψ′′(t).

Lemma 3.1 (Lemma 5.4 in [33]). One has

f ′′1 (α) ≤ 2δ2ψ′′(λmin(v)− 2αδ).

Recall that f(α) ≤ f1(α) and f(0) = f1(0) = −2δ(v)2 < 0. We note that the best
value for α is the one that minimizes f(α). The idea underlying our approach is
that the step size that minimizes f(α) will be good enough for our purpose. Thus,
we want to find α∗ such that f ′1(α

∗) = 0. Since f1(α) is strictly convex, we have

α∗ = max{α : f ′1(α) ≤ 0}.

The default step size that we are going to use will satisfy f ′1(α) ≤ 0, and as a
consequence also α ≤ α∗. This has as an important consequence that our step size
will certainly be feasible.
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By integrating we derive from Lemma 3.1 that

f ′1(α)=f
′
1(0) +

∫ α

0
f1

′′(ξ)dξ ≤ −2δ2 +

∫ α

0
2δ2ψ′′(vmin − 2ξδ)dξ

=−2δ2 − δ(ψ′(vmin − 2αδ)− ψ′(vmin)).

Hence, f ′1(α) ≤ 0 will certainly hold if α satisfies

(3.18) −ψ′(vmin − 2αδ) + ψ′(vmin) ≤ 2δ.

Any α satisfying this inequality will also satisfy α ≤ α∗, and hence is a feasible step
size. Of course, we want α to be as large as possible. Thus our next task is to find
the largest α that satisfies (3.18). The detailed can be refer to [4].

Since f1(α) is strictly convex, we will have f1(α) ≤ 0 for all α less than or equal
to the value where f1(α) is minimal and vice versa. Suppose that the step size α
satisfies (3.18), then the largest possible value of the step size of α satisfying (3.18)
is given by

(3.19) ᾱ :=
1

2δ
(ρ(δ)− ρ(2δ)).

Furthermore, we can conclude that

(3.20)
1

ψ′′(ρ(2δ))
≤ ᾱ ≤ 1

ψ′′(ρ(δ))
.

Then the default step size in the analysis of the kernel function-based IPMs is chosen
by

(3.21) α̃ :=
1

ψ′′(ρ(2δ))
.

From Lemma 4.1 and the fact that f(α) ≤ f1(α), which is a twice differentiable
convex function with f1(0) = 0, and f ′1(0) = −2δ2 < 0, we have the following
lemma.

Lemma 3.2. If step size α satisfies the condition α ≤ α̃, then

f(α) ≤ −αδ2.

From Lemma 3.2 and (3.21), we have the following theorem, which shows that
the default step size (3.21) yields sufficient decrease of the barrier function value
during each inner iteration.

Theorem 3.3. If α̃ is the default step size given by (3.21), then

f(α̃) ≤ − δ2

ψ′′ (ρ (2δ))
.

Let Ψ0 be the value of Ψ(v) after the µ-update, and Ψk, k = 1, 2, · · · ,K be the
subsequent values in the same outer iteration, where K is the total number of inner
iterations in the outer iteration. Let the constants β > 0 and γ ∈ (0, 1] be such that
for Ψ(v) ≥ τ . The definition of K implies ΨK−1 > τ and ΨK ≤ τ and

Ψk+1 ≤ Ψk − β(Ψk)
1−γ , k = 0, 1, . . . ,K − 1.
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From Lemma 4.2 with tk = Ψk, the upper bound of the number of inner iterations
is given by

K ≤ Ψγ
0

βγ
.

The number of outer iterations coincides with the number of barrier parameter
θ updates until we obtain rµ < ε. It is well known (cf. Lemma Π.17 in [26]) that
the number of outer iterations is bounded above by 1

θ log
r
ε . Thus, an upper bound

on the total number of iterations is obtained by multiplying the number of outer
iterations and the number of inner iterations.

Theorem 3.4. The total number of iterations of the algorithm depicted in Fig. 1
is bounded above by

Ψγ
0

θβγ
log

r

ε
.

Theorem 3.4 implies that the iteration bound of the algorithm depends on the
parameters θ, β, γ and the upper bound on Ψ0.

3.3. Complexity of the kernel function-based IPMs. Following the analysis
of kernel function-based IPMs for LO in [4], the iteration bounds for large-update
methods can be performed in a systematic way by using the following strategy.

• Step 1: Solve the equation −1
2ψ

′(t) = s to get ρ(s), the inverse

function of −1
2ψ

′(t), t ∈ (0, 1]. If the equation is hard to solve,
derive a lower bound for ρ(s).

Let −1
2ψ

′(t) = s for t ∈ (0, 1]. Then

−t+ 1

t
+

u2

2p(t+ 2u)2
tan2p(h(t)) = 2s.

This implies that

tan2p(h(t)) =
2p(t+ 2u)2

u2

(
2s+ t− 1

t

)
≤ 4(1 + 2u)2ps

u2
.

Hence, putting t = ρ(2δ), we have 4δ = −ψ′(t). Thus

tan2p(h(t)) ≤ 8u−2(1 + 2u)2pδ := δu,

This implies that

(3.22) tan(h(t)) ≤ (δu)
1
2p .

Remark: For this special parametric kernel function, we only derive the in-
equality (3.22) from the equation −1

2ψ
′(t) = s, not a lower bound for ρ(s). This

inequality is enough for the analysis of the algorithms.
• Step 2: Calculate the decrease of Ψ(v) in terms of δ(v) for the
default step size α̃ from

f(α̃) ≤ − δ2

ψ′′ (ρ (2δ))
.
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From Lemma 4.4, we have

1 + tan(h(t)) >
4u

3π(1 + 2u)t
, 0 < t ≤ 1,

which implies that

1

t
<

3π(1 + 2u)

4u
(1 + tan(h(t))) , 0 < t ≤ 1.

Note that 1
t+2u <

1
2u for 0 < t ≤ 1, together with p > 1, then we have

α̃=
1

ψ′′ (ρ (2δ))

=

(
1 +

1

t2
+

u2

p(t+ 2u)3
tan2p(h(t)) +

πu3(1 + 2u)

(t+ 2u)4
tan2p−1(h(t))sec2(h(t))

)−1

≥

(
1 +

9π2(1 + 2u)2

16u2

(
1 + (δu)

1
2p

)2
+

1

8u
δu +

π(1 + 2u)

16u
(δu)

2p−1
2p

(
1 + (δu)

2
2p

))−1

.

Since
√
2δ ≥

√
Ψ(v) ≥ 1 (see, (3.25)) and p ∈ N, p > 1, we can conclude that

pδ > 1. After some elementary reductions, we have

α̃≥

(
1 +

9π2(1 + 2u)2

16u2

(
1 +

(
2
√
2u−1(1 + 2u)

) 1
p

)2

+
(1 + 2u)2

u3

+
π(1 + 2u)

16u

(
8u−2(1 + 2u)2

) 2p−1
2p

(
1 +

(
8u−2(1 + 2u)2

) 2
2p

))−1

(pδ)
− 2p+1

2p

≥

(
1 +

9π2(1 + 2u)2

16u2

(
1 + 2

√
2u−1(1 + 2u)

)2
+

(1 + 2u)2

u3

+
π(1 + 2u)

16u

8(1 + 2u)2

u2

(
1 + 8u−2(1 + 2u)2

))−1

(pδ)
− 2p+1

2p

=
1

C(u)(pδ)
2p+1
2p

,

where

C(u)=1 +
9π2(1 + 2u)2

16u2

(
1 + 2

√
2u−1(1 + 2u)

)2
+
(1 + 2u)2

u3
+
π(1 + 2u)3

2u3
+

4π(1 + 2u)5

u5
.

Then

(3.23) f(α̃) ≤ − δ2

C(u)(pδ)
2p+1
2p

.

• Step 3: Solve the equation ψ(t) = s to get ϱ(s), the inverse
function of ψ(t), t ≥ 1. If the equation is hard to solve, derive
the lower and upper bounds for ϱ(s).
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From (2.21), we have

s = ψ(t) =
t2 − 1

2
+ ψb(t) ≤

t2 − 1

2
, t ≥ 1.

The inequality holds due to the fact that ψb(1) = 0 and ψb(t) is monotonically
decreasing. Then

t = ϱ(s) ≥
√
1 + 2s.

On the other hand, it follows from Lemma 2.8 that

s = ψ(t) ≥ 1

2
(t− 1)2,

we have

t = ϱ(s) ≤ 1 +
√
2s.

Then the lower and upper bounds for ϱ(s) are given by

(3.24)
√
1 + 2s ≤ ϱ(s) ≤ 1 +

√
2s.

• Step 4: Derive a lower bound for δ(v) in terms of Ψ(v).
From Lemma 2.8, we have

2δ2(v) =
1

2

r∑
i=1

ψ′(λi(v))
2 ≥

r∑
i=1

ψ(λi(v)) = Ψ(v).

This implies that

(3.25) δ(v) ≥
√

Ψ(v)

2
.

• Step 5: Using the results of Step 3 and Step 4 find positive
constants β and γ, with γ ∈ (0, 1], such that

f(α̃) ≤ −βΨ(v)1−γ .

From (3.23) and (3.25), we have

f(α̃) ≤ − δ2

C(u)(pδ)
2p+1
2p

≤ − δ
2p−1
2p

C(u)p
2p+1
2p

≤ − 1
√
2C(u)p

2p+1
2p

Ψ(v)
2p−1
4p .

Thus it follows that f(α̃) ≤ −βΨ(v)1−γ for the values of β and γ as given by

(3.26) β =
1

√
2C(u)p

2p+1
2p

, γ =
2p+ 1

4p
.

• Step 6: Calculate the uniform upper bound Ψ0 for Ψ(v).

Let Ψ(v) ≤ τ , we have, by Theorem 2.13,

Ψ0 ≤ τ +
θ

2(1− θ)

(
2τ + 2

√
2rτ + r

)
.(3.27)

• Step 7: Derive an upper bound for the total number of the
iterations from

Ψγ
0

θβγ
log

r

ε
.



PRIMAL-DUAL KERNEL FUNCTION-BASED IPMS FOR CQSCO 37

Substitution of the expressions in (3.26) and (3.27) yields the following upper
bound for the total number of the iterations, namely,

O

(
C(u)p

2p+1
2p

θ

(
τ +

θ

2(1− θ)

(
2τ + 2

√
2rτ + r

)) 2p+1
4p

log
r

ε

)
.(3.28)

• Step 8: Set τ = O(r) and θ = Θ(1) so as to calculate an iteration
bound for large-update methods.

For large-update methods, we take τ = O(r) and θ = Θ(1). It follows from (3.28)
that the iteration bound for large-update methods is given by

O
(
p

2p+1
2p r

2p+1
4p log

r

ε

)
.

Let p = O(log r). Then the iteration bound for large-update methods reduces to

O
(√

r log r log
r

ε

)
,

which matches the currently best known iteration bound for large-update methods.
Remark: In case of small-update methods, we have τ = O(1) and θ = Θ( 1√

r
).

It follows from (3.28) that the iteration bound for small-update methods is given
by

O
(
p

2p+1
2p r

6p+1
8p log

r

ε

)
.

This implies that if the above analysis is used for small-update method, the iteration
bound would not be as good as it can be for these types of methods, namely,

O
(√

r log
r

ε

)
.

This due to the fact that the used upper bound for ϱ(s) given by (3.24) is not tight
at s = 0. It should be equal to ϱ(0) = 1 when s = 0. To save space, we leave it as an
exercise to the reader to verify that the small-update IPMs based on the proposed
parametric kernel function also has the the currently best known iteration bound.
For more details, we refer to [4].

4. Conclusions and remarks

In this paper, we have investigated a class of primal-dual large-update IPMs
for CQSCO described in Fig. 1 based on the new parametric kernel function with
trigonometric barrier term. For this parametric kernel function, we have shown that
the best result of iteration bounds for large-update methods can be achieved. In
our future study, we intend to generalize the primal-dual IPMs to general nonlinear
symmetric cone optimization based on this parametric kernel function.
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Appendix A. Some technical lemmas

Lemma 4.1 (Lemma 12 in [25]). Let h(t) be a twice differentiable convex function
with h(0) = 0, h′(0) < 0 and let h(t) attain its (global) minimum at t∗ > 0. If h′′(t)
is increasing for t ∈ [0, t∗], then

h(t) ≤ th′(0)

2
, 0 ≤ t ≤ t∗.

Lemma 4.2 (Lemma 14 in [25]). Suppose t0, t1, . . . , tK is a sequence of positive
numbers such that

tk+1 ≤ tk − βt1−γ
k , k = 0, 1, . . . ,K − 1,

where β > 0 and 0 < γ ≤ 1. Then K ≤
⌊

tγ0
βγ

⌋
.

Lemma 4.3. Let g(u) be as defined in (2.14). Then

g(u) > 0, 0 < u < u∗.

Proof. From (2.14) and the fact that cos(x) = sin(π2 − x) < π
2 − x for 0 ≤ x < π

2 ,
we have

g′(u)=−π
2
sec2

(
π(1− 2u)

4

)
+

4

3π(1 + 2u)2

=sec2
(
π(1− 2u)

4

)(
−π
2
+

4

3π(1 + 2u)2
cos2

(
π(1− 2u)

4

))
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≤sec2
(
π(1− 2u)

4

)(
−π
2
+

4

3π(1 + 2u)2
π2(1 + 2u)2

16

)

=−5π

12
sec2

(
π(1− 2u)

4

)
< 0.

This implies that g(u) is decreasing in (0, u∗). Due to the fact that g(u∗) = 0, we
can conclude that g(u) > 0 for 0 < u < u∗. This completes the proof. □
Lemma 4.4. Let h(t) be as defined in (2.13). Then

f(t, u) := tan(h(t))− 4u

3π(1 + 2u)t
> 0, 0 < t ≤ 2u , 0 < u < u∗.

Proof. Let 0 < t ≤ 1. Then 0 ≤ h(t) < π
2 , therefore cos(h(t)) ≤ π

2 − h(t). Differen-
tiating the function f(t, u) with respect to t, we have

∂f(t, u)

∂t
=

1

cos2h(t)
h′(t) +

4u

3(1 + 2u)πt2

=
1

3πt2cos2h(t)

(
3πt2h′(t) +

4u

1 + 2u
cos2h(t)

)
≤ 1

3πt2cos2h(t)

(
3πt2h′(t) +

4u

1 + 2u

(π
2
− h(t)

)2)
=

1

3πt2cos2h(t)

(
−3πt2

πu(1 + 2u)

(t+ 2u)2
+

4u

1 + 2u

π2(1 + 2u)2t2

4(t+ 2u)2

)

=− 2πu(1 + 2u)

3(t+ 2u)2cos2h(t)
< 0.

This implies that f(t, u) is strictly monotonically decreasing with respect to t ∈
(0, 2u]. It follows from Lemma 4.3 that

f(2u, u) = tan

(
(1− 2u)π

4

)
− 2

3π(1 + 2u)
= g(u) > 0, 0 < u < u∗.

Then, we can conclude that f(t, u) > 0 for t ∈ (0, 2u]. This completes the proof. □
Lemma 4.5 (Lemma 2 in [9]). Let a be a constant, and

w(t, λ) = Ln(λ)t
n + Ln−1(λ)t

n−1 + · · ·+ L1(λ)t+ L0(λ), t ∈ R.

Here Li(λ) are functions of parameter λ ∈ R for i = 0, 1, · · · , n. If Ln(λ) > 0,

w(a, λ) > 0 and ∂iw(t,λ)
∂ti

|t=a > 0 for i = 1, · · · , n − 1, then we have w(t, λ) > 0 for
all t > a.

Appendix B. Proof of lemma 2.7

Proof. We first prove (18-a). The second derivative of ψ(t) is given in (2.16). Using
that tan(h(t)) > 0 for all 0 < t < 1, thus ψ′′(t) > 1 for 0 < t < 1.

Now let t ≥ 1. Define the function

ξ(t) :=
1

t2
+

u2

p(t+ 2u)3
tan2p(h(t)) +

πu3(1 + 2u)

(t+ 2u)4
tan2p−1(h(t)) sec2(h(t)),



PRIMAL-DUAL KERNEL FUNCTION-BASED IPMS FOR CQSCO 41

we need to prove that when 0 < u < u∗ and t ≥ 1, ξ(t) > 0 holds. To do this we
consider the following two cases:

Case 18-a.1: For 0 < u ≤ 1
4 . Then we have −π

4 ≤ −πu < h(t) < 0. This implies
that −1 < − tan(πu) < tan(h(t)) ≤ 0 for t ≥ 1. We have

ξ(t)≥ 1

t2
+

u2

p(t+ 2u)3
tan2p(h(t))− 2πu3(1 + 2u)

(t+ 2u)4

=
u2

p(t+ 2u)3
tan2p(h(t)) +

η1(t)

t2(t+ 2u)4
,

where

η1(t) := (t+ 2u)4 − 2πu3(1 + 2u)t2, t ≥ 1.

One can easily verify that

η1(1) = (1 + 2u)4 − 2πu3(1 + 2u) = (1 + 2u)((1 + 2u)3 − 2πu3) > 0.

Similarly, we can prove that η1
′(1) > 0, η1

′′(1) > 0 and η1
′′′(t) = 24(t + 2u) > 0.

From Lemma 4.5, we have η1(t) > 0 for t ≥ 1. This shows that ψ′′(t) > 1 holds
when 0 < u ≤ 1

4 and t > 0.

Case 18-a.2: Let 1
4 < u ≤ u∗. We consider two situations to prove that ξ(t) > 0

holds for t ≥ 1.
Situation 18-a.2.1: Let 1 ≤ t < 6u

4u−1 . Then −π
4 < h(t) ≤ 0, which implies that

−1 < tan(h(t)) ≤ 0. Similar to the proof in the Case 18-a.1, we can easily verify
that (18-a) holds.

Situation 18-a.2.2: Let t ≥ 6u
4u−1 . Then −πu∗ < h(t) ≤ −π

4 , which implies that

− tan(πu∗) < tan(h(t)) ≤ −1. We have

ξ(t)=
1

tan2p(h(t))

(
tan2p(h(t))

t2
+

u2

p(t+ 2u)3
+
πu3(1 + 2u)

(t+ 2u)4
tan−1(h(t)) sec2(h(t))

)
≥ 1

tan2p(h(t))

(
1

t2
+

u2

p(t+ 2u)3
− πu3(1 + 2u)sec2(πu∗)

(t+ 2u)4

)
=

1

tan2p(h(t))

(
u2

p(t+ 2u)3
+

η2(t)

t2(t+ 2u)4

)
,

where

η2(t) := (t+ 2u)4 − πu3(1 + 2u)sec2(πu∗)t2, t ≥ 6u

4u− 1
.

Since u∗ ≈ 0.4275 < 0.428, so sec2(πu∗) < sec2(0.428π) < 20, and use the fact that
π < 3.2, thus for 1

4 < u < u∗ < 1
2 , we have

η2

(
6u

4u− 1

)
=
4u4(1 + 2u)

(4u− 1)4
(64(1 + 2u)3 − 9πu(4u− 1)2)sec2(πu∗)

>
4u4(1 + 2u)

(4u− 1)4
(64(1 + 2u)3 − 576u(4u− 1)2)

=
256u4(1 + 2u)

(4u− 1)4
(1 + 3u(4u− 1) + 4u2 + 68u2(1− 2u))
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>0.

Similarly, we can verify that η2
′( 6u

4u−1) > 0, η2
′′( 6u

4u−1) > 0 and η2
′′′(t) = 24(t+2u) >

0. From Lemma 4.5, we have η2(t) > 0 when t ≥ 6u
4u−1 . This means that ψ′′(t) > 1

when 1
4 < u < u∗ and t ≥ 6u

4u−1 .

From the two cases above we can conclude that (18-a) holds.
By using (2.15) and (2.16), we have

tψ′′(t) + ψ′(t) =2t+
u2(t− 2u)

2p(t+ 2u)3
tan2p(h(t))

+
πu3(1 + 2u)t

(t+ 2u)4
tan2p−1(h(t))(1 + tan2(h(t))).

We will consider three cases to prove (18-b).
Case 18-b.1: Let 0 < t ≤ 2u. After some elementary reductions, we have, by

Lemma 4.4,

tψ′′(t) + ψ′(t)>2t+
πu3(1 + 2u)t

(t+ 2u)4
tan2p−1(h(t)) +

3u2t2 + (8p− 12)u4

6p(t+ 2u)4
tan2p(h(t)),

which indicates that tψ′(t) + ψ′(t) > 0 holds in this case.
Case 18-b.2: Let 2u < t ≤ 1. Then t − 2u > 0 and tan(h(t)) ≥ 0. It follows

that tψ′′(t) + ψ′(t) > 0 holds in this case.
Case 18-b.3: Let t > 1. It follows from (18-a) that ψ′(t) is an increasing function

for t > 0. Due to the fact that ψ′(1) = 0, we can conclude that ψ′(t) > 0 holds for
t > 1, so tψ′′(t) + ψ′(t) > 0.

From the three cases above we can conclude that (18-b) holds.
To prove (18-c), we consider two cases:
Case 18-c.1: Let 0 < u ≤ 1

4 . Then −π
4 ≤ −πu < h(t) ≤ 0 for t ≥ 1, which

implies that −1 < tan(h(t)) ≤ 0 for t ≥ 1. We have

tψ′′(t)− ψ′(t)≥ 2

t
+

3u2t+ 2u3

2p(t+ 2u)3
tan2p(h(t))− 2πu3(1 + 2u)t

(t+ 2u)4

=
3u2t+ 2u3

2p(t+ 2u)3
tan2p(h(t)) +

η3(t)

t(t+ 2u)4
,

where

η3(t) := 2(t+ 2u)4 − 2πu3(1 + 2u)t2 = (t+ 2u)4 + η1(t) > 0, t > 1.

Thus tψ′′(t)− ψ′(t) > 0 holds for t > 1.
Case 18-c.2: Let 1

4 < u < u∗. We consider two situations to prove (18-c) holds
in this case.

Situation 18-c.2.1: Let 1 ≤ t < 6u
4u−1 . Then −π

4 < h(t) ≤ 0, which implies that

−1 < tan(h(t)) ≤ 0. Similar to the proof in the situation 18-a.2.1, we can easily
verify that (18-c) holds.
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Situation 18-c.2.2: Let t ≥ 6u
4u−1 . Then −πu∗ < h(t) ≤ −π

4 , which implies that

− tan(πu∗) < tan(h(t)) ≤ −1. We have

tψ′′(t)− ψ′(t)≥ 1

tan2p(h(t))

(
2

t
+

3u2t+ 2u3

2p(t+ 2u)3
− πu3(1 + 2u)sec2(πu∗)t

(t+ 2u)4

)
=

1

tan2p(h(t))

(
3u2t+ 2u3

2p(t+ 2u)3
+

η4(t)

t(t+ 2u)4

)
,

where

η4(t) := 2(t+ 2u)4 − πu3(1 + 2u)(1 + tan2(πu∗))t2 = (t+ 2u)4 + η2(t) > 0,

with t ≥ 6u
4u−1 . This implies that tψ′′(t) − ψ′(t) > 0 holds when 1

4 < u < u∗ and

t ≥ 6u
4u−1 .

From the two cases above we can conclude that (18-c) holds.
Finally we need to prove that (18-d) holds.
Using (2.17) and since tan(h(t)) > 0 for 0 < t < 1, therefore ψ′′′(t) < 0.
Now let t ≥ 1. To prove ψ′′′(t) < 0 we consider two cases.
Case 18-d.1: Let 0 < u ≤ 1

4 . Then −π
4 ≤ −πu < h(t) ≤ 0 for t ≥ 1, which

implies that −1 < tan(h(t)) ≤ 0 for t ≥ 1. We have

ψ′′′(t)≤− 2

t3
− 6πu3(1 + 2u)

(t+ 2u)5
tan2p−1(h(t)) sec2(h(t))

≤− 2

t3
+

12πu3(1 + 2u)

(t+ 2u)5
= − 2η5(t)

t3(t+ 2u)5
,

where

η5(t) := (t+ 2u)5 − 6πu3(1 + 2u)t3, t ≥ 1.

Let 0 < u ≤ 1
4 . Then

η5(1) = (1 + 2u)5 − 6πu3(1 + 2u) ≥ (1 + 2u)

(
1− 3π

32

)
> 0.

Similarly, we can verify that η5
′(1) > 0, η5

′′(1) > 0, η5
′′′(1) > 0 and η5

(4)(t) =
120(t + 2u) > 0. From Lemma 4.5, we have η5(t) > 0 for t ≥ 1. This shows that
ψ′′′(t) < 0 when 0 < u ≤ 1

4 and t ≥ 1.

Case 18-d.2: Let 1
4 < u < u∗. We consider two situations to prove (18-d) holds

in this case.
Situation 18-d.2.1: Let 1 ≤ t < 6u

4u−1 . Then −π
4 < h(t) ≤ 0. This implies that

−1 < tan(h(t)) ≤ 0. Similar to the proof in the case 18-a.2.1, we can easily verify
that (18-d) holds.

Situation 18-d.2.2: Let t ≥ 6u
4u−1 . Then − tan(πu∗) < tan(h(t)) ≤ −1. We

have

ψ′′′(t)≤− 2

t3
− 6πu3(1 + 2u)

(t+ 2u)5
tan2p−1(h(t)) sec2(h(t))

=− 2

tan2p(h(t))

(
tan2p(h(t))

t3
+

3πu3(1 + 2u)

(t+ 2u)5
tan−1(h(t)) sec2(h(t))

)
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≤− 2

tan2p(h(t))

(
1

t3
− 3πu3(1 + 2u)

(t+ 2u)5
sec2(πu∗)

)
=− 2η6(t)

t3(t+ 2u)5tan2p(h(t))
,

where

η6(t) := (t+ 2u)5 − 3πu3(1 + 2u)sec2(πu∗)t3, t ≥ 6u

4u− 1
.

Since sec2(πu∗) < 20 and π < 3.2, thus for 1
4 < u < u∗ < 1

2 , we have

η6

(
6u

4u− 1

)
=

(
4u(1 + 2u)

4u− 1

)5

− 3π(1 + tan2(πu∗))u3(1 + 2u)

(
6u

4u− 1

)3

>
512u5(1 + 2u)

(4u− 1)5
(
2(1 + 2u)4 − 81u(4u− 1)2

)
> 0.

Similarly, we can verify that η6
′( 6u

4u−1) > 0, η6
′′( 6u

4u−1) > 0, η6
′′′( 6u

4u−1) > 0 and

η6
(4)(t) = 120(t + 2u) > 0. From Lemma 4.5, we have η6(t) > 0 when t ≥ 6u

4u−1 .

This means that ψ′′′(t) < 0 for 1
4 < u < u∗ and t ≥ 6u

4u−1 .
From the above all we complete the proof of the lemma. □
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