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RECENT PROGRESS IN BILINEAR DECOMPOSITIONS

XING FU, DER-CHEN CHANG, AND DACHUN YANG*

ABSTRACT. The targets of this article are twofold. The first one is to give a
survey on bilinear decompositions for products of functions in Hardy spaces and
their dual spaces, as well as their variants associated with the Schréodinger oper-
ator on Euclidean spaces. The second one is to give a new proof of the bilinear
decomposition for products of functions in the Hardy space H' and BMO on met-
ric measure spaces of homogeneous type. Some applications to div-curl lemmas
and commutators are also presented.

1. INTRODUCTION

In this article, we first give a survey on bilinear decompositions for products of
functions in Hardy spaces and their dual spaces, as well as their variants associated
with the Schrodinger operator, on Fuclidean spaces. Then we give a new proof
of the bilinear decomposition for products of functions in the Hardy space H' and
BMO on metric measure spaces of homogeneous type. Some applications to div-curl
lemmas and commutators as well as some further remarks are also presented.

In what follows, we denote the real Hardy space and the space of functions with
bounded mean oscillations on R” equipped with the D-dimensional Lebesgue mea-
sure, respectively, by H'(R”) and BMO (RP). It is well known that the pointwise
product fg of f € H'(RP) and g € BMO (R”) may not be meaningful, since this
pointwise product is not locally integrable on R” in general (see [7] for the details).
So, three main problems naturally arise:

(i) How do we realize products of functions in H'(R”) and BMO (R?)?
(i) What are the possible decompositions of those products?
(iii) Are there any applications of these decompositions?

For Problem (i), in 2007, Bonami et al. [7] viewed the product f x g where
f € H'Y(RP) and g € BMO (R”) as a Schwartz distribution, which is denoted
by f x g € .Z'(RP). More precisely, let .7 (RP) be the Schwartz class, equipped
with the well-known topology induced by a series of semi-norms, and .#/(R”) the
dual space of .7 (RP), equipped with the weak-* topology. We regard ¢ € . (RP)
as a multiplier for BMO (RP”), namely, for any ¢ € BMO (R”), pg € BMO (RP)
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(see [43,59,60] for the details). Then f x g is defined by the rule
(Fxa.9) = [ @@ duta).

The above integral makes sense via the duality between H!(R”) and BMO (RP);
see the seminal work of Fefferman and Stein [23]. Then Bonami et al. [7] successfully
illustrated the meaning of f x g. In what follows, %C?B(RD ) denotes the space of all
smooth functions with compact supports and the vanishing moment of order zero.

Lemma 1.1 ([7]). Let g € BMO (RP). Then the mapping f — gf, which is a priori
defined on €. (RP) and takes values in .#'(RP), can be extended continuously into
a mapping from H'(RP) into .#'(RP), which is denoted by f — f x g. Moreover,
for {gr}ren C L®(X) with limy,_,o0 gx = g almost everywhere on RY, the sequence
{f X gr}ren converges to f x g in ' (RP).

The investigation of the distribution f x g was motivated by the recent devel-
opments in geometric function theory [1,41,42] and nonlinear elasticity [3,58,70];
see [7] for the details.

On Problems (ii) and (iii), Bonami et al. [7] showed that the product f x g of
f € HY(RP) and g € BMO (R”) can be further written as a sum of an integrable
function and a distribution in some adapted Hardy-Orlicz space H® (RP, 11), where

(1.1) O(t) :=t/log(e+t), Vtel0,00),
and du(x) := dx/log(e + |z|) for all z € RP. Let
(12) BMO*(RD) ;:{g € BMO (RP) :

I9llrio+ @) = l9llmao zp) + l9ll1ep) < 00}
Theorem 1.2 ([7]). For any given f € HY(RP), there exist two bounded linear oper-
ators: s from BMO (RP) into L'(RP), and 5; from BMO (RP) into H®(RP, p),
and a positive constant C such that, for all g € BMO (RP),
fxg=2r9+ g
and
121111 0y + 17591 oy < ClL AL oy I lasor oy

Let {dc}ee(0,00) be an approximation to the identity and, for any e € (0, 00) and
suitable function f, f. := f % ¢.. As a consequence of Theorem 1.2, it was shown
in [7] that the pointwise product fg of f € H*(R”) and g € BMO (R”) can be
approximated by the convolutions {(f X g)e}ee(0,00) Of the distribution f x g.

Theorem 1.3 ([7]). Let f € HY(RP) and g € BMO (R”). Then, for almost every
z e RP,

f(x)g(x) = Lim(f x g)e(z).
e—0
Remark 1.4. It was shown in [7, Corollary 1.9] that, if the pointwise product

fg of f € HY(RP) and g € BMO (RP) is locally integrable on R, then fg, as a
distribution, coincides with f x g € ./ (RP).
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Theorem 1.2 was further extended by Bonami and Feuto [4] to the classical

Hardy space HP(RP) with p € (0,1). Let AD(l_l)(RD) and AD(;_l)(IR{D) be
P p

the homogeneous and the inhomogeneous Lipschitz spaces respectively. For each

a € (D(1—p),00), H, (RP) is the weighted Hardy space with the weight function

1
we(x) = (

— vV c RP.
T+ [z

For any p € (DLH, 1), Bonami and Feuto [4] obtained the following linear decom-
positions:
(1.3) HP(RP) x AD(%fl)(RD) c L'(RP) + HP(RP)
and
(1.4) HP(RP) x AD(%_U(RD) c LY(RP) + H?, (RP).

Theorem 1.3 has some applications in nonlinear PDEs, where f x g € .%/(RP) is
used to justify the weak continuity properties of the pointwise product fg.

Bonami et al. [7] further conjectured whether or not the operators .%; and J¢;
in Theorem 1.2 can depend linearly on f.

Conjecture 1.5 ([7]). Prove that there exist two bounded bilinear operators:
2 HYRP) x BMO (R?) — LY(RP),
A HYRP) x BMO (RP) — H®*(RP, 1),
and a positive constant C such that, for all f € H(R”) and g € BMO (RP),
fxg=2(f9) +72(f9)

and
-2 (f, g)”Ll(RD) + H«%ﬂ(fag)Hyé(RD,u) < CHfHHl(RD)”9”BMO+(RD)-

Recently, using wavelet tools and bilinear estimates of paraproducts, Bonami et
al. [6] affirmatively confirmed the above conjecture in a sharp manner, where the
aforementioned Hardy-Orlicz space H ‘I’(]RD , 1) can be replaced by a smaller space
H"8(RP), which is a special case of Musielak-Orlicz-type Hardy spaces originally
introduced by Ky [47]. Bonami et al. [6] further showed that H'°8(RP) is optimal
in the sense that it can not be replaced by a smaller space by using the main
theorem of Nakai and Yabuta [59]; see [6,47] for more details. For more properties
on Musielak-Orlicz-type Hardy spaces, we refer the reader to [37,47,53-56,64] (see
also the monograph [63] for a complete theory of Musielak-Orlicz-Hardy spaces).

To be precise, Bonami et al. [6] showed that f x g can be decomposed into
a sum of two bilinear bounded operators, respectively, from H*(R”) x BMO (RP)
into L'(RP) and from H'(RP)x BMO (RP) into H'°8(R”). As a consequence, they
obtained an optimal endpoint estimate involving the space H'°(R”) for the div-curl
lemma related to an implicit conjecture from [7] (see also [5,6]). Moreover, the above
decomposition of the products plays essential roles in establishing the bilinear or the
subbilinear decompositions, respectively, for the linear or the sublinear commutators
of singular integrals by Ky [46]; see [48,50] for more applications of the above
decompositions.
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On the other hand, for local cases, let h?(RP) with p € (0,1] be the local Hardy
space in the sense of Goldberg [30], bmo (R”) the local BMO space and h®(RP)
a variant of the local Orlicz-Hardy space associated to ® as in (1.1), which was
introduced in [4]. Bonami et al. [4] obtained linear decompositions of the products
of the local Hardy spaces and their dual spaces. Precisely, Bonami et al. [4] showed
that

(1.5) hY(RP) x bmo (RP) ¢ LY(RP) + hE(RP)
and, for any p € (0, 1),

(1.6) WP(RP) x Ap1_yy(RP) € LHRP) + hP(RP),

where both the decompositions in (1.5) and (1.6) are linear only with respect to the
functions from bmo (RP) or from A, (RP).

Later, Cao et al. [8] improved the above results in [4,6, 7] by investigating the
bilinear decompositions of the products of local Hardy spaces h?(R”) and their dual
spaces in the case when p < 1 and near to 1.

By the celebrating work of Fefferman and Stein [23], it is well known that the
Hardy space H'(RP) is essentially associated to the Laplace operator A. In the past
two decades, many researchers turned their attentions to Hardy spaces associated
to operators other than A over various settings; see, for example, [20-22, 62, 67].
To be precise, Shen [62] triggered the study of harmonic analysis associated to
Schrodinger operators. Dziubanski and Zienkiewicz [22] established the character-
izations of the Hardy space Hj(RP) associated to the Schrodinger operator £ via
atoms, the maximal function defined by the semigroup generated by L and the
Riesz transforms VL£~1/2. Dgziubanski et al. [21] proved that the dual space of
H}(RP) is the BMO type space BMO(RP) associated to £, and presented some
applications. Later, Duong and Yan [18] obtained the molecular and the Lusin-
area function characterizations of Hardy spaces H}:(RP) associated to £ with heat
kernel bounds, including the Schrodinger operator with non-negative potential as a
special case. The maximal function characterization, via the semigroup generated
by L, and the atomic characterization for the Hardy space H}(RD ) associated to
the degenerate Schrodinger operator £ were established by Dziubanski [20].

For the product f x g of f € H:(RP) and g € BMO,(RP), Li and Peng [52]
proved that f x g, regarded as a distribution, can be written into a sum of two
parts: one lies in L'(R”) and the other belongs to some weighted Hardy-Orlicz
space associated to £. Ky [48] essentially improved the above result by proving that
the product of two functions f € HE(RP) and g € BMO£(RP) can be written into
a sum of two bilinear operators, which map boundedly from H}(R?) x BMO.(RP)
to L'(RP), and to the optimal Hardy-Orlicz space H'°&(RP), respectively. This
bilinear decomposition also motivated the study of the endpoint boundedness of
commutators of singular integrals associated to £ in [50].

We know that many classical results of harmonic analysis on Euclidean spaces
can be extended naturally to spaces of homogeneous type in the sense of Coifman
and Weiss [13,14], or on the RD-space that was introduced by Han, Miiller and
Yang [36].
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Recall that a space of homogeneous type, (X,d, ), in the sense of Coifman and
Weiss [13,14] is a quasi-metric space (X, d) equipped with a non-negative measure p
satisfying the following measure doubling condition: there exists a universal constant
Cxy € [1,00) such that, for all balls B(x,r) := {y € & : d(z,y) < r} with
(x,r) € X x (0,00),

u(B(x,2r)) < Clay( Bz, r)).

Equivalently, there exists a positive constant 6( x) such that, for any A € [1,00),

(1.7) w(B(x,Ar)) < Con)\'u(B(x,r))
with n :=logy Cxy. Let
(1.8) no := inf{n € (0,00) : n satisfies (1.7)}.

Notice that ng can be regarded as the dimension of X', ng < n and (1.7) may not
be true if n is replaced by nyg.

Recall that a metric measure space of homogeneous type, (X,d, ), is a space of
homogeneous type with d being a metric and, moreover, an RD-space (X,d, u) is a
space of homogeneous type, which satisfies the following additional reverse doubling
condition (see [35,36]): there exist positive constants ay, 6(;() € (1,00) such that,
for all balls B(z,r) with z € X and r € (0, diam (X')/ao),

u(B(z,aor)) > Ciayu(B(z,r))
(see [66] for some equivalent characterizations of RD-spaces), here and hereafter,
diam (X) := sup{d(z,y) : =,y € X}.

Let (X, d, 1) be a space of homogeneous type. Coifman and Weiss [14] introduced
the atomic Hardy space H.; 4(X) for all p € (0,1] and ¢ € [1, 00] N (p, 0o] and proved
that HY9(X) is independent of the choice of ¢, which is simply denoted by HZ, (X)
hereafter, and that its dual space is the Lipschitz space Lip;/,_1(X) when p € (0,1),
or the space BMO (X') when p = 1.

Moreover, under an additional assumption that there exists a specific generalized
approximation of the identity, Duong and Yan [19] developed a theory of new BMO-
type function spaces on spaces of homogeneous type.

On any RD-space (X, d, u) with d being a metric, for p € (n;ﬁl’ 1] with ng as in
(1.8), Han et al. [35] established a Littlewood-Paley theory for atomic Hardy spaces
H? (X); Grafakos et al. [33] obtained their characterizations via various maximal
functions. Moreover, it was proved in [36] that these Hardy spaces identified with
some special cases of Triebel-Lizorkin spaces on (X,d, ). In order to develop a
real-variable theory of Hardy spaces or, more generally, Besov spaces and Triebel-
Lizorkin spaces on RD-spaces, some basic tools, including spaces of test functions,
approximations of the identity and various Calderén reproducing formulae on RD-
spaces were well developed in [35,36]. From then on, these basic tools play crucial
roles in harmonic analysis on RD-spaces; see, for example, [32,34-36,44, 45,65, 66].

Let (X,d, ;) be an RD-space. The problem about the product of f € HL (X)
and g € BMO (&) was first studied by Feuto [25]. In [25], Feuto showed that the
product of f € HL(X) and g € BMO (X), viewed as a distribution, can be written
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as a sum of an integrable function and a distribution in some adapted Hardy-Orlicz
space H®(X,v) with @ as in (1.1).

Theorem 1.6 ([25]). Let (X,d, u) be an RD-space. Then, for any f € HL(X) and
g € BMO (X), the product f x g can be given a meaning in the sense of distributions.
Moveover, there exist two bounded linear operators: Zs from BMO (X) into L' (X)
and #; from BMO (X) into H®(X,v), and a positive constant C such that, for all
g € BMO (X),

[ xg=2Lg+ Hg

and

HngHLl(X) + H%”fQHHWXW) < CHfHH;t(X)HQHBMOWX)a
where ® is as in (1.1), dv(x) = log(ed—ﬁd% for all x € X and x1 is a fized point
of X.

Recently, Ky [49] improved the above result via showing that the product f x g
can be written into a sum of two linear operators and via replacing the Hardy-
Orlicz space H®(X,v) by some Musielak-Orlicz-type Hardy space H'°(X’) which
is a subspace of the above Hardy-Orlicz space and is known to be optimal even on
Euclidean spaces.

Theorem 1.7 ([49]). Let (X,d,p) be an RD-space. Then, for every f € HL(X),
there exist two bounded linear operators: &5 from BMO (X) into L'(X) and ;
from BMO (X) into H'8(X), and a positive constant C such that, for all g €
BMO (),

fxg=2Zg+ g
and
Hgfguu(;() + Hv%ﬂfQHHlog(x) < CHfHH;t(X)HQHBMO+(X)-

A. Bonami and F. Bernicot further conjectured that f x g can be written into a
sum of two bilinear operators, which was presented by Ky in [49, p. 809, Conjecture].

Conjecture 1.8 ([49]). Let (X, d, ) be an RD-space. Prove that there exist two
bounded bilinear operators:

& HL(X)x BMO (X) - L'(Xx), #: HL(X)xBMO (X) - H'8(X)
and a positive constant C' such that, for all f € HL(X) and g € BMO (&),
fxg=2(f.9)+7(f9)
and
120, sy + 17 9) sy < CI s o I ngor o

Recently, Auscher and Hytonen [2] built an orthonormal basis of Holder contin-
uous wavelets with exponential decay on spaces of homogeneous type, which paved
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the way for one to confirm Conjecture 1.8. Fu and Yang [26] obtained an uncondi-
tional basis of HL (X) and several equivalent characterizations of H} (X) in terms
of wavelets. Fu et al. [27] further proved the bilinear decompositions:

HL(X) x BMO (X) ¢ LY(X) + H™8(X),

where H'°8(X) is a space of Musielak-Orlicz-type, which affirmatively confirms Con-
jecture 1.8. These bilinear decompositions stimulated the investigation of bilinear
decompositions of commutators in [57].

Later, under an additional assumption that there exists a specific generalized
approximation of the identity (see Assumption 4.14 below), Fu and Yang [28] es-
tablished a local version of [27, Theorem 1.7] on RD-spaces.

This article is organized as follows.

In Section 2, we summarise the bilinear decompositions for products of functions
in HY(RP) and BMO (R”) and their applications on Euclidean spaces. This sec-
tion is divided into four parts. In Subsections 2.1 and 2.2, we review the bilinear
decompositions of products of functions in H'(R”) and BMO (R?), which confirms
Conjecture 1.5, and their applications to div-curl lemmas and the bilinear and the
subbilinear decompositions, and the endpoint boundedness of commutators. Sub-
sections 2.3 and 2.4 are devoted to reviewing the bilinear decompositions of products
of functions in H:(RP) and BMO,(RP) associated to the Schrodinger operator £,
and their applications to the bilinear and the subbilinear decompositions, and the
endpoint boundedness of commutators associated to the Schrodinger operator L.

Section 3 aims to recall the bilinear decompositions for products of functions in
hP(RP) and Lipschitz spaces A (1 /p_l)(RD ) and their applications to the div-curl
lemmas.

Section 4 is divided into two parts. In the first part, we give a survey of bilinear
decompositions of products of functions in HX (X) and BMO (X)) and their appli-
cations on spaces of homogeneous type. This part is further decomposed into three
subsections. In Subsection 4.1, we review the bilinear decompositions of products
of functions in H} (X) and BMO (X). In Subsection 4.2, we summarize the bilinear
decompositions of products of functions in H pl(./‘( ) and BMO,,(&X) associated to the
admissible function p. Subsection 4.3 is devoted to reviewing the applications of
the bilinear decompositions in Subsection 4.1 to the endpoint boundedness of com-
mutators. Observe that there exists a gap in the proof of [27, Theorem 1.7] (see
Theorem 4.9 below), which can be sealed with some minor modifications that will
be presented elsewhere. In Subsection 4.4, we give a new proof of Theorem 4.9.

Some further remarks, including some open questions on spaces of homogeneous
type, or even on Euclidean spaces, are presented in Section 5.

2. PRODUCTS OF FUNCTIONS IN H!(RP) axnp BMO (RP)
In this section, we review the bilinear decompositions for products of functions
in H'(RP) and BMO (RP) and their applications.

2.1. Bilinear decompositions for products of functions in H'(R”) and
BMO (RD ). In this subsection, we introduce bilinear decompositions for products of
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functions in H!(RP) and BMO (R”) and their applications to the endpoint estimate
involving the space H'°8(RP”) for the div-curl lemma.

We first recall the notions of Hardy spaces from [23]. For every m € N, f €
' (RP) and z € RP, let

fm(x) = sup  sup [f*@i(y)l,
€S m(RP) vzl

here and hereafter

(21) FmRP)=qpeSRY): swp <1+\:c|)<m+2><"+1>yaggp(x)y}gl
zeR
lo|<m+1

The Hardy space HP(RP) is defined by setting
HY(RP) = {f € " ®P) : |f|n(ap) = | frallom) < o}

here and hereafter, for any ¢t € (0,00) and z € RP, ¢y(z) = A¢(%) and the
subscript m > |D(1/p — 1)] is always omitted. Recall that, for any s € R, |s]
denotes the biggest integer which is not bigger than s.

For the Hardy space HP(RP), one of its most important properties is its atomic
characterization, which was first established by Coifman [11] for D = 1 and extended
by Latter [51] to D > 1.

Definition 2.1. Let p € (0,1], ¢ € [1,00) N (p,o0] and @ be a cube in RP. A
function a € LI(RP) is called a (p, q)-atom related to Q if
(i) supp (a) C @; L

(i) llallpa@oy < [Q[«7;

(i) if Q| < 1, then [pp 2%a(z)dx = 0 for any a € Z7} with |a| < LD(% —-1)].

The following result establishes the atomic characterization of the Hardy space
HP(RP) for any p € (0, 1].
Theorem 2.2 ([11,51]). Let p € (0, 1], ¢ € [I,00) N (p,00] and f € HP(RP).
Then there exist a family {a;}32, of (p,q)-atoms and {;}32; C C such that f =
E;‘il Aja; in ' (RP). Moreover, there exists a positive constant C, independent
of f, such that

D

1 oo
5“f\|Hw(RD) < Z NP < Clfll oy
=1

The Musielak-Orlicz function 6 is defined by setting, for all z € RP and t € (0, 00),
_ t
- log(e + |z[) +log(e + t)’

The Musielak-Orlicz space L'°8(RP) is defined as the space of all measurable
functions f such that

O(x,t) :

[, o1 do < o
RD
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and the quasi-norm of f in LI°8(RP) is defined by setting

”fHLlog(]RD) = ll’lf{)\ S (0,00) : /RD 0 (337 |f(>\513)|> de < 1} )

Then we recall the notions of the Hardy-type space H'™°8(RP). We first recall
the grand maximal function of a distribution f € .7/(RP) as follows. Let F be the
class of all functions ¢ in . (RP) satisfying

|p(x)| + |Vo(z)] < (1 + |z|)~PHD.
For any t € (0,00), let ¢y(z) := t~P¢(x/t) for all z € RP. Then

(2.2) Mf(z):=sup sup |f*¢i(x).
PeF te(0,00)

The Musielak-Orlicz Hardy space H'8(RP) is defined by setting

HO%(RP) i= {f € S"(RP): |floncary = Ml osgary < o0}

We first state the result in [6, Theorem 1.1], which confirms Conjecture 1.5.
Recall that BMO™(RP) is defined as in (1.2).

Theorem 2.3 ([6]). There exist two bounded bilinear operators
2. H'(RP) x BMO (R?) — LY(RP)
and
A . HY(RP) x BMO (RP) — H'8(RP),
and a positive constant C' such that, for all f € H'(RP) and g € BMO (RP),
fxg=2(f.9)+H(f9) in SR
and
1L (f; D v @oy + 172(F, 9 pogwpy < Cllf oy l9llsyo+ @p)-

The following result from [6, Theorem 1.2] gives an optimal endpoint estimate
involving the space H'°8(RP) for the div-curl lemma, which sharpens a known result
in [5, Theorem 1.2]. Let

HY(RP; RP) .= {F:=(F,...,Fp): foranyie{l,..., D}, F, GHI(]RD)}
and, for any F € H'(RP; RP), let

HF”Hl(RD;RD) =

1
n 2
> ||Fi||%{1(RD)] :

=1

The vector-valued BMO space BMO (RP; RP) is defined by setting
BMO (R”;R”) :={G := (G1,...,Gp) :
for any i € {1,...,D}, G; € BMO(RD)}.



162 XING FU, DER-CHEN CHANG, AND DACHUN YANG

Theorem 2.4 ([6]). Let F € H'(RP RP) and G € BMO (RP,RP) be two vector
fields such that curl F = 0 and divG = 0. Then the scalar product F-G € H'98(RP)

in the distribution sense and there exists a positive constant C, independent of F
and G, such that

IF - Gl gios ey < C ¥l 1m0, m0) [|GllBMO (RO:RP) -

2.2. Bilinear decompositions and commutators of singular integral oper-

ators on RP. This subsection is devoted to the summarization of conclusions on

bilinear decompositions and commutators of singular integral operators on R”.
We first recall the notions of Calderén-Zygmund operators from [31]; see also [46].

Definition 2.5. Let 6 € (0, 1]. A continuous function
K : {RDXRD}\{(x,x): reRP} = C

is called a ¢-Calderdn-Zygmund kernel if there exists a positive constant Cgy,
depending on K, such that, for all z, y € RP with = # v,

Cr)

K(ay)| < —2
Kol < 0

and, for all z, 7, y € RP with 2|z — 2| < |z — g,

o — )’

|K(z,y) — K (Z,y)| + [K(y,7) — K (y,7)| < C(K)m-

A linear operator T': .7 (RP) — .#/(RP) is called a §-Calderdén-Zygmund op-
erator if T can be extended to a bounded linear operator on L?(RP) and if there
exists a 6-Calderén-Zygmund kernel K such that, for all f € €>°(R”) (the space of
all smooth functions with compact supports) and all x & supp (f),

Tf(@):= [ Kw)fw)dy

T is called a Calderon-Zygmund operator if T is a §-Calderén-Zygmund operator
for some § € (0,1].

In what follows, for any Calderén-Zygmund operator T and its adjoint oper-
ator T*, T*1 = 0 and T1 = 0 represent, respectively, [pp Ta(z)dz = 0 and
Jgp T*a(z) dz = 0 for all (1,00)-atoms a. Let b be a locally integrable function
on RP. Then T*b = 0 means that [5, b(z)Ta(z)dz = 0 for all (1, 00)-atoms a.

The theory of commutators of singular integrals, originated from the work of
Coifman et al. [12], has been a vital part of the theory of singular integrals, which
attracts a lot of attentions and has important appplications in harmonic analysis
and partial differential equations; see, for example, [9,10,12,24,46]. Coifman et
al. [12] showed that the commutator [b, T of a Calderén-Zygmund operator 17" with
a function b € BMO (RP), defined by setting

b, T)(f)(x) := b(2)T(f)(z) = T(bf)(z), VzeR?,

is bounded on LP(RP”) for all p € (1,00). From then on, there appeared a lot of
literatures on the boundedness of commutators on various kinds of function spaces
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over different underlying spaces and their applications; see [17,29, 31] for some
classical results and fundamental tools in the theory of commutators.

We now recall a wavelet basis on RP from [15]; see also [8]. Choose the father
and the mother wavelets ¢, v € C*(R) (the set of all functions with continuous
derivatives up to order k) with compact supports such that ¢(0) = (2r)~1/2
for each [ € {0, ..., k},

and,

/ 2l (x) de =0,
R
where $ denotes the Fourier transform of ¢, namely, for any ¢ € RP,

3(6) = (2m) "2 /R e g(a) do.

The extension of the above wavelets from 1 dimension to D-dimension can be
realized by the standard procedure of tensor products. Precisely, let

D times
N —_—— =
Op:=(0,...,0) and E:={0,1}”\{0p}.

Let Dy be the set of all dyadic cubes in R with side lengths not bigger than 1, that
is, for any I € Dy, there exist j € Z; and k :={ki, ..., kp} € Z" such that

(2.3) [:=1Ip:={reRP: k; <2a; <k +1foranyic{l, ..., D}}.
There exist two families {¢7}1ep, and {1/13\}161)07/\@@ such that, for any j € Z,,
keZP (with I = I;, € Dy as in (2.3)), A€ EU{fp} and = € RP,
o1, (%) when j =0, k € ZP and A = 0p,
U (z) == \Il?j () = @b?‘j_l (@) whenjeN, ke ZP and A € E,
0 otherwise,

{07}, Do, \eBU{f,} forms an orthonormal basis of L2?(RP). Moreover, for any j €

Z., let V; be the closed subspace of L?(RP) spanned by {é1}1j=2-sn- It is known
that {Vj} ez, is an MRA; see [8] for more details.
In what follows, let L">°(RP) be the weak L'(RP) space defined by setting

LY (RP) :—{f measurable :

[fllpreewpy == sup [tu({z € RP: |f(z)| >t})] < oo} .

te(0,00)

Let K be the set of all sublinear operators T" bounded from H'(RP) into L!(RP)
and from L!'(RP) into L1*°(RP) satisfying that there exists a positive constant C
such that, for all g € BMO (R”) and (1, 0o)-atoms a,

(g — 98)Tall 1wy < CllgllBmo D)
where gp := |—]§| J5 9(x) dx. The sublinear commutator [b,T] is defined by setting

b, T)(f)(z) =T ([b(x) — b(-)] f(-)) (z), VaeRP.
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In what follows, the bilinear operator & is defined by setting
2
&(f.9) == S (£, 9) (g 9}) (1) .
I1€Dg N\eE

The following subbilinear decomposition of [g, T'|(f) was claimed in [46, Theorem
3.1] without assuming that 7" is bounded from L!(RP) into L'*°(RP), whose proof
has a gap; see [63, Theorem 11.2.7] for the following corrected version.

Theorem 2.6 ([46,63]). Let T € K be linear. Then there exists a bounded sub-
bilinear operator R := Ry : HL(X) x BMO (RP) — LY(RP) such that, for all
f € HY(RP) and g € BMO (RP),

T(S (f,9)l =R (f,9) <llg, TI(NI < |T (& (f,9)| + R (f,9)

almost everywhere on RP.

As an application of Theorem 2.6, Ky [46, Corollary 3.1] showed that [g,T] is
bounded from H'(RP) into L1 (RP).

Corollary 2.7 ([46]). Let T € K. Then the subbilinear operator, defined by setting

B (f,9) =9, T1(f)
with (f,g) € HY(RP) x BMO (RP), is bounded from H'(RP) x BMO (RP) into
LY (RP) and there exists a positive constant such that, for all (f,g) € H'(RP) x
BMO (RP),
1B (f, 9l r.0o oy < Cllf I ®ey 9]l BMO (RP)-

Particularly, the commutator [g,T] is bounded from H'(RP) into L1>°(RP).

When T' € K is linear, the bilinear decomposition of [g, T'](f) was obtained in [46,
Theorem 3.1].
Theorem 2.8 ([46]). Let T' € K be linear. Then there ezists a bounded bilinear
operator R := Ry : HY(RP) x BMO (RP) — LY(RP) such that, for all (f,g) €
H'(RP) x BMO (RP),

9T} (f) =R (f,9) + T (& (f,9))

holds true almost everywhere on RP.

Then we display the result from [46, Theorem 3.3] (see also [63, Theorem 11.3.4])
that [g, 7] is bounded from the Hardy-type space Hgl(RD) into L'(RP), where

H gl (RP) was original defined in [46, p. 2933] which is recalled as follows.

Definition 2.9. Let g be a non-constant BMO (R”)-function. A function f in
H'(RP) is said to belong to the Hardy-type space Hy(RP) if [g, M](f), defined by
setting

9. MI()(z) = M (g(2)f() = 9(-)f() (), Yz eRP,
belongs to L'(RP), where M is as in (2.2). Moreover, the norm of f in H, (RP) is
defined by setting

”fHH;(RD) = | f ez weyl9llBaio ey + g, MI(H) || 1 oy
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Corollary 2.10 ([46,63]). Let g be a non-constant BMO (RP)-function and T € K.
Then the commutator [g, T is bounded from H; (RP) into L'(RP) and there exists

a positive constant C such that, for all f € Hgl(RD),

H[gvT](f)HLl(]RD) < CHfHH;(]RD)‘

Remark 2.11. By [46, Remark 5.1], we know that, for every Calderén-Zygmund
operator T' and g € BMO (RP), [¢,T] is bounded from H, (RP) into L'(X). More-
over, H gl(RD ) is the biggest space having this property.

Ky [46, Theorem 3.4] (see also [63, Theorem 11.4.10]) also gave the following
strongly bilinear estimates which improve Corollary 2.7.

Theorem 2.12 ([46,63]). Let T be a linear operator in K. Assume that I € N, A;
and B; with i € {1,...,1} are Calderén-Zygmund operators which are bounded on
L*(RP) and A;1 = Af1 = 0= B;1 = Bf1. Suppose that, for all f, g € L*(RP),

/

Then the bilinear operator I, defined by setting Z(f,g) = Zle[Big,T](Aif), is

bounded from H'(RP)x BMO (RP) into L'(RP) and there exists a positive constant
C such that, for all (f,g) € H'(RP) x BMO (RP),

I
> Aif(z)- Big(x)| du(x) = 0.
i=1

HI(f?.g)HleOO(RD) < C||f||H1(RD)Hg”BMo (RD)-

It was shown in [46, Theorem 3.5] (see also [63, Theorem 11.4.11]) that the linear
commutator [b, T is bounded from HQI(RD) into h'(RP) (see [30] or (3.2) below for

the definition of h'(RP)).

Theorem 2.13 ([46,63]). Let g be a non-constant BMO (RP)-function and let T
be a Calderon-Zygmund operator, which is bounded on L?*(RP), satisfying T*1 =
T*g = 0. Then the commutator [b, T| maps continuously from H; (RP) into h'(RP)

and, moreover, there exists a positive constant C' such that, for all f € Hg1 (RP),

H[gvT](f)”hl(RD) < C”fHHgl(RD)~

Moreover, [46, Theorem 3.6] (see also [63, Theorem 11.4.12]) provides a sufficient
condition that the linear commutator [b,T] maps continuously from H,(RP) into

HY(RD).

Theorem 2.14 ([46,63]). Let g be a non-constant BMO8(RP)-function and let
T be a Calderdn-Zygmund operator, which is bounded on L*(RP), satisfying T*1 =
T*g = 0. Then the commutator [b,T] maps continuously from H}(RP) into H*(RP)
and, moreover, there exists a positive constant C such that, for all f € H; (RP),

g, TIH e woy < CllF Ny mp)-
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2.3. Bilinear decompositions for products of functions in H}:(RP) and
BMO,(RP). In this subsection, we display the results in Ky [48] of the bilin-
ear decompositions for products of functions in H}(RP) and BMO,(R?), where
L := —/A +V is the Schridinger operator associated to a non-negative potential
V # 0. A non-negative locallly integrable potential V is said to belong to the re-
verse Hélder class RHq(]RD), q € (1,00), if there exists a positive constant C' such
that, for all balls B of R,

{m [V(x)]qczx}l/q < i | v

Let us now recall the notions of the Hardy space Hé(RD ) and the BMO space
BMO(RP) associated to the Schrodinger operator £. Let {T}}e(0,00) be a semi-
group generated by £ and {T;(:, ) }4e(0,00) their kernels, that is, for all ¢ € (0, c0),
f € L*(RP) and = € RP,

Tif(a) o= fa) = [ T f0)dy

A function f € L*(RP) is said to belong to the space H:(RP) if
Hf”HlL(RD) = [|Mcfll prroy < o0,

where M f () = sup;c (g o) |Tt.f (2)] for all z € RP. The Hardy-type space Hj(RP)
is defined as the completion of HA:(RP) with respect to the above norm.
In what follows, for any = € R” and r € (0, 00), let

B(z,r) = {yE]RD: lz—y| <r}.

It was shown in [21, Theorem 4] that the dual space of H}(RP) is the BMO-type
space BMO.(RP) which consists of all functions in BMO (R”) such that

”fHBMOL(RD) = || fllBmo (RD)

1
+ sup |f(y)]dy < oo,

z€RP relp(x),00) |B($? ’I")| B(z,r)

where p is an admissible function defined by setting

p(x) :—sup{re(O,oo): 74;_2/3( )V(y)dygl}.

The following [48, Theorem 1.1] essentially improves the conclusion of [52, The-
orem 1].
Theorem 2.15 ([48]). There exist two bounded bilinear operators:
Zr . HE(RP) x BMO£(RP) — LY(RP),
Ay HE(RP) x BMOg(RP) — H98(RP),
and a positive constant C such that, for all f € H'(RP) and g € BMO (RP),
fxg=2c(f,9) + (], 9)
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and
122 (f; 9l Loy + 1722 (f 9l noe oy < Cllf s oy lgllByo  mo)-

Analogous to [7, Theorem 1.8], Ky [48] showed that the following result, associ-
ated with the Schrédinger operator, also holds true.

Theorem 2.16 ([48]). Let f € HE(RP) and g € BMO(RP). Then, for almost
every x € RP,

f(@)g(x) = Im(f x g)e(x).

e—0

2.4. Endpoint estimates for commutators of singular integrals associated
to Schrodinger operators on R”. This subsection aims to summarize the end-
point boundedness of commutators associated to the Schrédinger operator £ via
bilinear decompositions discussed in Subsection 2.3.

Let ¢ € (1,00] and € € (0,00). Recall that a function a is called a generalized
(H}(RP), q,€)-atoms related to the ball B(zg,r) with (x9,7) € RP x (0,00) if

i) supp (a) C B(zo,r);
i) llall ooy < [B(wo, )97
i) | fo ale) dp(e)] < [

Let K. be the set of all sublinear operators T which map continuously from
H}(RP) into L'(RP) and satisfy that there exist ¢ € (1,00] and € € (0, 00) such
that, for any g € BMO (R”) and generalized (H}:(RP), g, €)-atom a related to a ball
B, |[(g — gB)Tallp1(xy < C, where C' is a positive constant independent of g and a.

Let g € LL (RP) and T € K. The sublinear commutator [g,T] is defined by
setting

9. T1(f)(@) =T ([b(x) = b()] f()) (z), Yz eRP.
The following subbilinear decomposition of [g, T'](f) was obtained in [50, Theorem
3.1].

Theorem 2.17 ([50]). Let T € K. be bounded from L*(RP) into LY>°(RP). Then
there ezists a bounded subbilinear operator R := Ry : HE(RP) x BMO (RP) —
LY(RP) such that, for all f € HL(RP) and g € BMO (RP),

almost everywhere on RP | where & : HE(RP) x BMO (RP) — LY(RP) is a bilinear

operator.

Applying Theorem 2.17, Ky [50, Proposition 3.1] showed that [g, T](f) is bounded
from H}:(RP) to L1 (RP).

Corollary 2.18 ([50]). Let T € K. be bounded from L*(RP) into L1'>°(RP). Then
the subbilinear operator B(f, g), defined by setting

with (f,g) € HE(RP) x BMO (RP), is bounded from H}(RP) x BMO (RP) into
LY °(RP) and, moreover, there exists a positive constant C such that, for all (f,g) €
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H}(RP) x BMO (RP),

1B (f, g)HleOO(]RD) < CHfHHé(RD)HgHBMO (RD)-
Particularly, the commutator [g,T] is bounded from H}:(RP) to L1>(RP).

If T € K¢ is linear, then the bilinear decomposition of [g,7] was established
in [50, Theorem 3.2].

Theorem 2.19 ([50]). Let T € K. be a bounded linear operator from L'(RP) into
LY >°(RP). Then there exists a bounded bilinear operator

R :=Rp: HERP) x BMO (RP) — LY(RP)
such that, for all (f,g) € Hr(RP) x BMO (RP),
[9.T)(f) =R (f,9) + T (& (f,9))

holds true almost everywhere on RP.

We now recall the notions of £-Calderén-Zygmund operators from [50]. Let
§ € (0,1]. A continuous function K : {RP x RP}\ {(x,2): 2 € RP} — C is called
a (0, L£)-Calderén-Zygmund kernel if, for each N € (0,00), there exists a positive
constant C(y), depending on N, such that

-N
LM%MSQMD@+”‘“]
|z — y| p(x)

for all z, y € RP with = # y, and
K (o) = K @)l + 1K (.0) = K (1.3)] < Coy 1™

for all z, 7, y € RP with 2|z — 7| < |z — y].

A linear operator T : . (RP) — #/(RP) is called a (4, £)-Calderén-Zygmund
operator if there exists a (0, £)-Calderén-Zygmund kernel K such that, for all f €
C*(RP) and all = ¢ supp (f),

Tf(x):= o K(z,y)f(y) dy.

A linear operator T is called a L-Calderon-Zygmund operator if it is a (9, L)-
Calderén-Zygmund operator for some § € (0,1]. We say that T satisfies T*1 = 0 if
there exist ¢ € (1,00] and € € (0,00) such that [pp Ta(x) = 0 for every generalized
(H}(RP), g, €)-atom a.

For any 6 € [0, 00), denote by BMOIE%(RD) the set of all locally integral functions
f such that 7

= sup
z€RD re(0,00)

{log(e + p(f)) 1

|f(y) —fB\dy}

”fHBMOIZ%(RD)

< 0.

Write BMO 2% (RP) simply by BMO25(RP).
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As applications of bilinear decompositions of [g, T'] in Theorem 2.19, the bounded-
ness on the Hardy space H'°8(RP) of linear commutators were obtained in [50, The-
orem 3.3].

Theorem 2.20 ([50]). (i) T be an L-Calderdn-Zygmund operator satisfying
T*1 =0 and let g € BMOILOg(RD). Then the linear commutator [g,T] is

bounded on HE(RD) and, moreover, there exists a positive constant C' such
that, for all f € H}(RP),

H[gaT](f)HH}:(RD) < CHQHBMOILOE(RD)HfHHé(RD)'

(i) If V € RHy(RP), then the converse of (i) also holds true. That is, if b €
BMO (RP) and [b, T is bounded on H}:(RP) for every L-Calderdén-Zygmund
operator satisfying T*1 =0, then b € BMOIEg(RD). Moreover,

D
HbHBMOILOg(]RD) ~ [[bllBmo (rP) + Z 16, Rl 1. (moy— m11 (RPY
i=1
where the equivalent positive constants are independent of b, {]:ii},f»):1 are
Riesz transforms and || - HH}:(RD)_}H}:(RD) denotes the operator norm on
HE(RD).

3. BILINEAR DECOMPOSITIONS FOR PRODUCTS OF LOCAL HARDY AND
LIPSCHITZ OR BMO SPACES ON RP

In this section, we discuss the bilinear decompositions for products of functions in
local Hardy spaces h?(RP) and local Lipschitz spaces A, (RP) and their applications
to the div-curl lemmas.

For any m € N, f € ./(RP) and 2 € RP, let

(3.1) fijoc () = sup —sup | fxpi(y)],
eI m(RP) \tyg(glf)t

where .7, (RP) is as in (2.1).
Then, for any p € (0, 1], the local Hardy space h?(RP) is defined by setting

(32)  WRP) = {7 € S®R): o) = I ftoc lrgpy < 0}

see [30] for more properties of h?(RP).
Recall that, in [4], Bonami and Feuto introduced the following wvariant local
Orlicz-Hardy space h® (RP), defined by setting

(33)  BIRP) = {f € S RD): |fllz@o) = Ifisc |z @n) < o0},

where f  is defined as in (3.1) with some m € NN (|D(1/p—1)],00), ® as in (1.1)
and, for any measurable function g,

lgll e @ey =Y lgllLe@,)
jezr
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with j := (j1, ..., jp), Qj :==[j1, j1+1) x --- x [jp, jp + 1) and

l9llze(q;) := inf {)\ € (0, 00) : /@j P (!g(/\az)\) dr < 1}.

Obviously, L'(RP) ¢ L2(RP) implies that h'(R”) c h®(RP).

Cao et al. [8] studied the bilinear decompositions of products of functions in local
Hardy spaces h?(RP) and their dual spaces in the case when p < 1 and near to 1. Let
pE (DLH, 1] and o := D(% —1). The main result in [8] is the following two bilinear
decompositions, which are extensions of corresponding linear decompositions (1.5)
and (1.6) from [4], respectively.

Theorem 3.1 ([8]). Letp € (DLH, 1), o = D(% —1) and ® be as in (1.1). Then

(i) there exist two bounded bilinear operators S : hP(RP) x Ay (RP) — LY(RP)
and T : hP(RP) x Ay (RP) — hP(RP), and a positive constant C, such that,
for any (f,9) € hP(RP) x Aq,(RP),

fxg=S8(f,9)+T(f g) in SR
and

1SCF. s oy + 1T Dllnoy < Cll ooy lgla,, @oy:

(i) there exist two bounded bilinear operators S : h'(RP) x BMO (R”) —
LYRP) and T : h'(RP) x BMO (RP) — h2(RP), and a positive constant
C such that, for any (f,g) € h'(RP) x BMO (RP),
fxg=5(f,9)+T(f.g) in F'(RY)
and
1S(fs ey +IT(f5 9 llpe@oy < Cllfllna@e)lglBvo ®p)-

As an application of Theorem 3.1, Cao et al. [8] obtained a div-curl lemma at the
endpoint case ¢ = co. Let

(R RP) = {F:=(F,..., Fp): foranyie€ {1,...,n}, F; € h'(R")}
and, for any F € h!'(RP; RP), let

2

HFth(RD;RD) =

3 HFMI(M]
=1

The local vector-valued BMO space bmo (R”; RP) is defined by setting
bmo (R”;RP) := {G := (G1,...,Gp) : forany i€ {1,...,n}, G; € BMO (R")}.

Theorem 3.2 ([8]). Let F € h'(RP; RP) with curl F = 0 in the sense of distribu-
tions and

G < bmo (R”; RP)
with div G = 0 in the sense of distributions. Then F - G € h?(RP), where h® (RP)
denotes the variant local Orlicz-Hardy space defined as in (3.3) above with ® as in
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(1.1), and, moreover, there exists a positive constant C, independent of F and G,
such that

IF - G|l gpogrpy < C[|F || g1 mp, mo) GllsMmo woirp) -
This result essentially improves the corresponding div-curl lemmas in [5, 6].

4. PRODUCTS OF FUNCTIONS IN H! AND BMO ON SPACES OF HOMOGENEOUS
TYPE

The aims of Section 4 are twofold. The first aim is devoted to a survey of
bilinear decompositions of products of functions in H} (X) and BMO (&) and their
applications on a space X of homogeneous type and the second aim is to provide a
new proof of Theorem 4.9 below.

Throughout this section, for the presentation simplicity, we always assume that
(X,d,p) is a metric measure space of homogeneous type, diam (X) = oo and
(X,d, p) is non-atomic, namely, p({z}) = 0 for any x € X. It is known that
pu(X) = oo if diam (X') = oo (see, for instance, [2, Lemma 8.1]).

4.1. Bilinear decompositions for the products of functions in H) (X) and
BMO (&). In this subsection, we mainly review some known results from [27] on
bilinear decompositions of products of functions in HX(X) and BMO (X) over a
space X of homogeneous type.

To this end, we first recall the notion of the space of all test functions on X,
whose following versions were introduced by Han, Miiller and Yang [35, Definition
2.2] (see also [36, Definition 2.8]).

Definition 4.1. Let 1 € X, r € (0,00), 0 € (0,1] and ¥ € (0,00). A function f
on X is said to belong to the space of all test functions, G(x1,r, 0,19), if there exists
a non-negative constant C' such that

(T]') |f(x)| < 5Vr(w1)+1\/($1,x) [T+dr )]’7 for all x € X,

(z1,z

~ d x, r .
(T2) [f(z) = fy)| < C[Hé(ﬁ?x)]er(xl)jv(wl’z) [r+d(a:1,x)]79 for all z, y € X satis-
fying d(z,y) < [r + d(z1,2)]/2,
here and hereafter,
Vi(z1) == p(B(z1,7)) and V(xi,z):= pu(B(z1,d(z1,2))).
Moreover, for any f € G(z1,r,0,7), its norm is defined by setting

1 fllg(z1,r, 0,9) = inf {5 . C satisfies (T1) and (TQ)}.

Fix z; € X. It is easy to see that G(z1, 1, 0,1) is a Banach space. In what follows,
we write G(z1, 1, 0,9) simply by G(o, ).

For any given € € (0,1] and p,9 € (0, €], let G5(o,?) be the completion of the
set G(e, €) in G(p,v). Moreover, for any f € G§(p,0), let Hf”gé(gﬂg) = [|fllg(o,)-
Recall that the dual space (G§(p,1)) is defined to be the set of all continuous linear
functionals £ from G§(p,9) to C, equipped with the weak- topology.

We point out that, for any x € X and r € (0,00), G(z,r,0,9) = G(x1,1,0,9)
with equivalent norms and the equivalent positive constants depending on x and r.

The following notion of the space BMO (X)) is from [14].
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Definition 4.2. (i) The space BMO (X) is defined to be the class of all func-
tions g € L (X) satisfying
7 . l90) = malo)l dute) < .

where the supremum is taken over all balls B C X and

1
mi() = /B o(x) dp(z).

loc

l9llBmo (x) = SUP

ii) Let ¢ € (0,00]. A function g € L’ (X) is said to belong to the space
loc
BMOY(X) if
1/q
Iolvionin) = sup { o [ lota) ~ma(@)ltaute) ) < o

where the supremum is taken over all balls B C X.

Remark 4.3. It was shown in [14] that the space BMO?(X) with ¢ € (1,00) and
BMO (&) coincide with equivalent norms.

Now we recall the following notion of Hardy spaces HL (X), which was originally

introduced in [14].
Definition 4.4. Let g € (1,00]. A function a on X is called a (1, g)-atom if

(i) supp (a) C B for some ball B C X;

(") ||aHLq S [M(B)]I/q_l;

(iii) fX =0.
A function f € Ll(X) is said to be in the Hardy space HY(X) if there exist
(1, g)-atoms {a;}72; and numbers {A;}72; C C such that

(41) fzz)‘jaj?
j=1

which converges in L'(X), and

o0

> Al < 0.

Jj=1

Moreover, the norm of f in H;t’q(X) is defined by setting

1 llgsory = mfQ SN
j=1

where the infimum is taken over all possible decompositions of f as in (4.1).

It was proved in [14] that, for any ¢ € (1,00), Hy9(X) coincides with H.;*(X)
in the sense of equivalent norms. Thus, from now on, H;t’q()c' ) is simply denoted

by H;t(‘)()'

Remark 4.5. Coifman and Weiss [14] showed that HZ (X) is a Banach space and
its dual space is BMO (X).
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We also need to recall some notions and results from [49]. For a fixed x; € X let

t
fo(@,1) := log(e +t) + log(e + d(z, 1))’

Let L'°8(X) denote the Musielak-Orlicz-type space of all y-measurable functions

f such that
/ B0, | (2)]) () <

see [49]. For any f € L'°8(X), the norm of f in Llog(X) is defined by setting

11l s ey += inf {A c0o0s [ (510 ey <1},

Remark 4.6. It is clear that L'(X) C L'°8(X) and, for all f € L' (X),
[ £l pros ey < 1 fllLrcay

Let € € (0,1], o, ¥ € (0,€¢] and f € (G§(0,v)). The grand mazimal function
M(f) is defined by setting, for all x € X,

(4.2) M(f) () =sup {[{f,h)] : h€Gile,9),
Ihllg(a, r, 0,0y < 1 for some 7 € (0,00)} .

The following notion of Musielak-Orlicz-type Hardy spaces is from [49].

Definition 4.7. Let € € (0,1] and o, ¥ € (0,¢]. The Hardy space H'°8(X) is defined
by setting

H98(X) = { £ € (G5(0,9)) + [ isy = M) | sy < 20}

We now recall the result in [49, Proposition 3.1].

Lemma 4.8 ([49]). Let (X,d, ) be a metric measure space of homogeneous type,
€ (0,1] and ¥ € (0,00). Then, for all h € G(o,9), there exists a positive constant
C, independent of h, such that, for any g € BMO (X),

17gllmo (x )<CV( 17llg 0.0 19llBMO* ()

here and hereafter, for a fired x4 € X and all g € BMO (X)),

1
= + x)|dp(z).
Iolensor o = Iolwo o+ g [ lot@ldntz)

We also need to explain the meaning of the product f x g for every f € HL (X)
and g € BMO (X) (see [49]). For any h € G§(p,7), let

(f % g,h) = (gh, ) = /X 9(2)h(x) f(z) du(x).

From Lemma 4.8, it follows that gh € BMO (X) and hence the above definition is
well defined in the sense of the duality between HY (X) and BMO (X).

Now we state the main result in [27] as follows, which is an extension of Theorem
2.3 from Euclidean spaces to metric measure spaces of homogeneous type.
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Theorem 4.9 ([27]). Let (X,d,p) be a metric measure space of homogeneous type.
Then there exist two bounded bilinear operators . : HL(X) x BMO (X) — LY(X)
and A : HL(X) x BMO (X) — H'8(X), and a positive constant C such that, for
all f € HY(X) and g € BMO (&),

fxg=2(f9)+(f9) in (G5e9)),
where € € (0,1] and o, ¥ € (0,¢], and

1 (f, g)HLl(X) +|2(f, g)HHng(X) B C||f||H;t(X)HQHBMO+(X)~

4.2. Bilinear decompositions for the products of functions in HPI(X) and
BMO,(X). Let (X,d, ;) be a metric measure space of homogeneous type. In this
subsection, we summarize the bilinear decompositions of products of functions in
H ;(X ) and BMO,(X') associated to the admissible function p.

We first recall the notion of approximations of the identity on RD-spaces from
[36].

Definition 4.10. Let ¢; € (0,1] and e, €3 € (0,00). A family {Sj}rez of linear
operators, which are bounded on L?(X), is called an approzimation of the identity
of order (€1, €9,€3) [for short, (e1,e€2,€3)-Al] if there exists a positive constant Cy
such that, for all k € Z and x, Z, y, y € X, Sk(z,y), the integral kernel of Sk, is a
measurable function from X x X into C satisfying

2~k €.

(i) \S’k(w,y)] <Gy V2_k(x)1+\/(x,y) [27k+d(m’y)} )
(ii) for d(z,T) < [27% + d(z,y)]/2,
d(z,7) r 1 [ 2~k r .
27k +d(z,y) | Va-r(z) +V(z,y) [27F +d(z,y)]
(iii) property (ii) also holds true with x and y interchanged,;
(iv) for d(z,7) < [Q*k +d(x,y)]/3 and d(y,y) < [24C +d(x,y)]/3,

= [Q‘kdféiz,y)r [2—kd4(ry;l?(jszz,y)r Vo-i () Jlr V(z,y) [2—k —idk(x,y)]es;

(V) S Skl 2) dp(z) = 1= [ Si(z,2) du(2).

Remark 4.11. A sequence {gt}te((],oo) of bounded linear operators on L?(X) is
called a continuous approximation of the identity of order (ei,eo,€e3) [for short,
(€1, €2, €3)-CAI] if it satisfies (i) through (v) of Definition 4.10 with 27% replaced
by t. It was shown by [67, Remark 2.2(ii)] that, if {Sk}rez is an (e1, €2, €3)-Al
and, for any t € (27%1,27%] with k € Z, let S; := Sy, then {gt}te(o,oo) is an
(€1, €2, €3)-CAL

1Si(2,9) — Sk (7 9)| < Co [

Then we recall the notion of admissible functions from [67].

Definition 4.12. A positive function p is said to be admissible if there exist positive
constants C and kg such that, for all x, y € X,

p(y) < Calp(x)]Y R0 p(z) + d(x, y)|Fo/ (+hko),
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Remark 4.13. It is obvious that constant functions are admissible functions with
Cy := 1 =: ky. There exists a non-trivial class of admissible functions induced by
the well-known reverse Holder class B,(X); see [67, p.1201] for the details.

We also need the following assumption from [28] that there exists a specific gen-
eralized approximation of the identity on (X, d, p).

Assumption 4.14. There exists a family {7} },¢(0,o0) of linear operators bounded on
L?(X) with integrable kernels, still denoted by {T; t Fte(0,00), Satisfying that there ex-
ists an (€1, €2, €3)-CAI {ft}te(o,oo) (with integral kernels, still denoted by {Tt}te(o,oo))
for some €¢; € (0,1], e2 € (1,00) and e3 € (0,00), and positive constants C,
d2 € (1, e9) and 41, d3 such that, for all ¢ € (0,00) and z, y € X,

. 1 Sa_~(2) 163.
0 1T 9)| < Cvamvey [mawy ) [How )™
(ii> ]Tt(x,y) - Tt(%@/)’ < C[H;(x)]él Vt(x)Jrlv(x,y) [dex,y)}&
(iii) for any N € (0,00) large enough, there exists a positive constant Cyy,
depending on N, such that, for all t € (0,00) and z, y € X,
(iii); if [d(w,y)]? > t, then

N N
\ﬂ“ﬂﬂﬁquéw{w@ZW};

(iii)o if [d(z,y)]? < t, then

Y

~ 1
Ti(z,y)| < Covy o=
itz NV (=)
(iv) Ti(z,9)| < C|Ty(,y)|-

Remark 4.15. It was shown in [28, Remark 1.7] that there exists a (1, N, N)-CAI
satisfying Assumption 4.14.

The following notions of maximal functions are from [67, Definition 2.5]. In what
follows, for any numbers a, b € R, let a A b := min{a, b}.

Definition 4.16. Let ¢; € (0,1], €2, €3 € (0,00), € € (0,€1 A €2) and {Sk}rez be
an (€1, €9, €3)-Al. Let p be an admissible function as in Definition 4.12. For any
0,9 € (0,¢), f € (G§(0,9)) and z € X, the grand mazimal function, associated to

0, GZ’W(}( f) is defined by setting
Gy’ (f)(x) =sup {|(f, )] : h € Gi(e,V),
IAllg(z,r, 0,9y < 1 for some r € (0,p(2))} .
Remark 4.17. If there exists no ambiguity, then G;’Q’ﬁ is simply denoted by G.

Now we recall the notions of the Hardy space and its local version from [67,
Definition 2.6],

Definition 4.18. Let € € (0,1), 0, ¥ € (0,¢) and p be an admissible function as in
Definition 4.12.
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(i) The Hardy space H'(X) is defined by setting

HY(X) = {f € (G5(e,;9)" + Ifllzcay = IM(Fllzr(xy < o0},
where M(f) is as in (4.2).
(ii) The Hardy space H;(X) associated to p is defined by setting

HY(X) = {f € G500+ 1 f i) = Gy < o0} -

The following notion of the local version of the space BMO (X) is from [68,
Definition 3.1].

Definition 4.19. Let p be an admissible function as in Definition 4.12, ¢ € (1, o0]
and

D:={B(z,r)CX: ze€X, r>p(x)}.
A function g € L (X) is said to belong to the space BMO%(X) if

loc

1/q
l9llmmosce) : = sup {H(lB) [ 1ot - mB<g>\qdu<x>}

Bg¢D
1 1/q
+ sup {/ g(x)|?du x)} < 0.
Bep | (B) B’ [l
Remark 4.20. (i) By [68, Lemma 3.2], we know that BMOZ(X) with ¢ €

(1,00) coincides with BMO;(X). In what follows, we denote BMO},(X)
simply by BMO,(X).
(ii) Obviously, BMO,(X) € BMO (X).
(iii) By [69, Theorem 2.1] and [67, Theorem 2.1], we know that the dual space
of H;(X) is BMO,(X).
In order to state the main result reviewed in this subsection, we need to illustrate
the meaning of the product f x g for every f € H,(X) and g € BMO,(X) (see [49]).
For any h € G§(0,7), let

(f % g, ) = {gh, ) = /X [9(2)h(@)] () du(z).

By [49, Proposition 4.1], we know that gh € BMO,(X) and hence the above defini-
tion is well defined in the sense of the duality between Hg(?() and BMO,(X).

The following result is just [28, Theorem 1.14], which is an extension of Theorem
2.15 from RP to an RD-space and also a local version of Theorem 1.2.

Theorem 4.21 ([28]). Let (X,d,u) be an RD-space satisfying the additional As-
sumption 4.14 and p an admissible function as in Definition 4.12. Then there
exist two bounded bilinear operators £, : le(X) x BMO,(X) — LYX) and

I H;(X) x BMO,(X) — H'®(X), and a positive constant C such that, for
all f € H;(X) and g € BMO,(X),

fxg=2(f,9)+(f,9) in (Gi(e.9)),
where € € (0,1) and o, ¥ € (0,¢€], and

1ZF. D s ey + 175, D) lsoniy < Cll s lgllmnio o
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Remark 4.22. (i) If (X,d,u) := (RP,|-|,dx) is the Euclidean space, then
Theorem 4.21 returns to Theorem 2.15.
(ii) Let (X,d,u) be an RD-space satisfying the additional Assumption 4.14.
Then, by [28, Remark 1.15], Theorem 4.21 essentially improves [49, Theorem
1.2].

4.3. Endpoint boundedness for commutators of singular integrals. This
subsection is devoted to reviewing the applications of the bilinear decompositions
in Subsection 4.1 to the endpoint boundedness of commutators.

We first recall some notions and notation from [13]; see also [2,16]. Let Cy(X)
be the space of all functions with bounded supports and the Hélder regularity s,
where s € (0,7] is arbitrary and 7 is as in Theorem 4.33 below. By [2, Proposition
4.5], we know that Cj(X) is dense in L?(X). The dual space of C§(X) is denoted
by (G5 (X))

Now we recall the notion of Calderén-Zygmund operators from [13]; see also [2,16].

Definition 4.23. A function K € LL ({X x X} \ {(z,2) : * € X}) is called a

loc
Calderdn-Zygmund kernel if there exists a positive constant C(g), depending on K,

such that
(i) for all x, y € X with z # y,

4. K < —

(4.3) K (z,y)| < C(K)V(Ly),

(ii) there exist positive constants s € (0, 1] and (), depending on K, such that
(ii), for all z, 7, y € X with d(z,y) > c¢k)d(z, ) > 0,

[d(z,2)]° 1

Ld(z,y)] V(z,y)’

(ii), for all z, y, y € X with d(z,y) > c(xyd(y,y) > 0,

(4.5) K (2,y) — K(2,9)] < Cx) 35?) V(;,y)‘

Let T : C;(X) — (C;(X))" be a linear continuous operator. Then T is called a
Calderon-Zygmund operator with kernel K satisfying (4.3), (4.4) and (4.5) if, for
all f e Cy(X),

(4.4) K (2, y) = K(7,y)] < Cx)

Tfa) = | K@) f)dut). Va g suop ()
Now we introduce the notion of the space Hgl(/'\,’ ), which is a variant of [46,
Definition 2.2].

Definition 4.24. Let g be a non-constant BMO (&X')-function. A function f in
H,(X) is said to belong to the space H,(X) if [g, M](f), defined by setting

[, MI(F) (@) := M (g(2) £ (-) —g()f () (), Ve,
belongs to L'(X), where M is as in (4.2). Moreover, the norm of f in H,(X) is
defined by setting

Hf||H;(X) = HfHH;t(X)”gHBMo (x) + ||[97M](f)”L1(X)-
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Here is the result on the endpoint boundedness of commutators, which is an
extension of [46, Theorem 1.3]. Recall from [46] that the symbol IC denotes the set
of all sublinear operators 1" satisfying

(i) T is bounded from HZ (X) into L'(X) and from L'(X) into L}*°(X);
(ii) there exists a positive constant C' such that, for all ¢ € BMO (X) and (1, 2)-
atoms a related to some balls B C X,

llg = ms(9)] Tall L1 (x) < Cllgllemo (x)-

Theorem 4.25 ([46]). Let (X, d, u) be a metric measure space of homogeneous type
and g a non-constant BMO (X)-function. Then, for any T € K, the commutator
lg, T is bounded from H;(X) into LY(X). In particular, if T is a Calderdn-Zygmund
operator, then [g,T] is bounded from H}(X) into L'(X) and, moreover, there exists
a positive constant C' such that, for all f € H;(X),

g, TIN) N2y < ClUF Nl ) -

4.4. A new proof of Theorem 4.9. The goal of this subsection is to present
a new proof of Theorem 4.9. To this end, we only need to give revised versions
of [27, Lemma 3.7, Theorems 4.10 and 4.16 and Propositions 3.4 and 3.5]; see
Lemmas 4.43, 4.37 and 4.44, and Propositions 4.38 and 4.39 below, respectively.

We first recall the notion of the geometrically doubling condition. Coifman and
Weiss [13, pp. 66-68] indicated that spaces of homogeneous type are geometrically
doubling. Recall that a metric space (X, d) is said to be geometrically doubling if
there exists some Ny € N such that, for any ball B(z,r) C X with x € X and
r € (0,00), there exists a finite ball covering {B(z;,7/2)}; of B(x,r) such that the
cardinality of this covering is at most Ny.

Remark 4.26. It was shown by Hytonen [39] that a metric space (X, d) is geomet-
rically doubling if and only if one of the following statements holds true:

(i) For any € € (0,1) and any ball B(z,r) C X, with x € X and r € (0,00),
there exists a finite ball covering { B(x;,er)}; of B(z,r) such that the cardi-
nality of this covering is at most Nge~"°, where Ny is the constant appearing
in the definition of the geometrically doubling property and ng := log, No;

(ii) For every ¢ € (0,1), any ball B(z,r) C X, with z € X and r € (0,00),
contains at most Noe™"° centers of disjoint balls {B(z;,er) }4;

(iii) There exists M € N such that any ball B(z,r) C X, with z € X and r €

(0,00), contains at most M centers {x;}, of disjoint balls {B(z;,r/4)}M,.

We then present some notions, notation and conclusions from [26,27]. Let (X, d)

be geometrically doubling. For every k € Z, a set of reference dyadic points,
{2k} e o, here and hereafter,

(4.6) 7, denotes some countable index set for each k € Z,

is chosen as follows, where the Zorn lemma is applied (see, for example, [61, Theroem
1.2]) since we consider the maximality. Let ¢ be a fixed small positive parameter.
For example, it suffices to take § < TIOO' For k = 0, let 270 := {20} e, be a
maximal collection of 1-separated points. Inductively, for any k& € N, let

(4.7) 2= {«Tg}ae_gfk > 2% 1 and 27F.= {$;k}aeﬂk c g —(k=1)
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be, respectively, maximal §*-separated and §~*-separated collections in X and in
2 —*=1)_ By [2, Lemma 2.1], we know that

(4.8) d(xloi,a:g) >6F Yo, Be o and a# B, dx, 2F):= inf d(x,x];) < 26

Q€

Observe that the reference dyadic points {zX}icz aew, satisfy [40, (2.3) and
(2.4)] (with ¢g = 1 and Cy = 2 therein), which further induces a system of dyadic
cubes over geometrically doubling metric spaces as in [40, Theorem 2.2], which was
re-formulated in [27, Theorem 2.3].

Theorem 4.27 ([40]). Let (X,d) be a metric space satisfying the geometrically
doubling condition. For any k € Z, let < be as in (4.6). Then there exist families

of sets, ngl cQkc @Z, which are said to be, respectively, open, half-open and
closed dyadic cubes, such that:

(1) Q’; and @Z represent the interior and the closure of Qf;, respectively;

1) ift € ZN|k,00) and o, b € &y, then C an N = olds true
(i) if ¢ € ZN [k, 00) and o, B € o, then Qf C Qh and QENQG = 0 hold
alternatively;
(iil) X = Unew, QF (disjoint union);
(iv) for all o € o, B (ak,16%) C QF C B (2k,46%) = B (QF);
(v) ift € ZNk,0), a, B € ), and Qg C QF, then B(Qeﬁ) C B(QF).
The open and closed cubes QIO’“C and @Z, with (k, ) € &7, here and hereafter,
(4.9) o ={(k,a): k€L, o€},

depend only on the points x% for B € oy and € € 7N [k,00). The half-open cubes
QF, with (k,a) € o, depend on x% for B € oy and ¢ € Z N [min{k, ko }, 00), where
ko € Z is a preassigned number in the construction.

In what follows, for any set E, we use #E to denote its cardinality (the number
of its elements).

Remark 4.28. By [26, Remark 2.4(ii)], we know that, for any k € Z and o € 7,
there exists a set L(k,a) C @41 with 1 < #L(k,a) < Ny such that

(4.10) = U @
BeL(k, )
where No € N is a constant independent of k and a.

We also need the following useful estimate about the 1-separated set from [2,
Lemma 6.4].

Lemma 4.29 ([2]). Let Z be a 1-separated set in a geometrically doubling metric
space (X,d) with positive constant Ny. Then, for any e € (0,00), there exists a
positive constant C( ny), depending on € and Ny, such that

sup eed(a7 2)/2 Z e—sd(a, b) < C(E,NO)?
acX beE

here and hereafter, for any set Z C X and x € X, d(x,E) := infe=d(x, a).
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Before recalling the orthonormal basis of regular wavelets, let (2, #,P,) be the
natural product probability measure space as in [2], where .% represents the smallest
o-algebra containing the set

{HAk: A C Q:={0,1,...,L}x{1,..., M} and only finite many Ak7éQk},
keZ

with L and M are the same as in [2, p.270]. For every (k,«) € &/ with &/ as in
(4.9), the spline function is defined by setting, for any x € X,

sk (z) =P, ({w eEN: e @Z(w)}) :

Then the splines have the following properties:
(i) for each (k,a) € & and z € X,

(411) Xt 11 (#) < $5(2) < X 00 ()
(ii) for every k € Z, a, B € o, (with <, as in (4.6)) and = € X,
sg(mg) = 0ap, SE(x)= Z pﬁﬁsgﬂ(:v) and Z sk(x) =1,
ﬁeﬁkﬂ aE),

where, for any k € Z, 411 C 9.1 denotes some countable index set,

Som 1 it a=p,
@@= 0 if a8

and {pZB},Be% .1 € [0,1] is a set of numbers with finite nonzero items;
(ili) there exist positive constants C' and n € (0,1] such that, for all (k,«) € o
and z, y € X,

d(z,y)

(1.12) shio) - st < |52

where the constants 7 and C' are independent of the choices of k and «.

Now we are ready to recall the orthonormal basis of regular wavelets constructed
by Auscher and Hyténen ( [2, Theorem 7.1]); see also [26] for an equivalent version
with some small modifications on the notation

(4'13) {7#25}(&&)6&{ BeL(k, ) = {71115}%2,/36%7
where %, .= {f € A1 : $g+1 ¢ Xk,

(4.14) o = {(k,a) € o : #L(k,a)> 1}
and, for all (k,a) € o,

(4.15) L(k,a) == L(k,a) \ {ﬁ € Lk,a) : ol = x';}

with L(k, o) as in (4.10).
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From [2, Theorem 5.1], it follows that there exists a linear, bounded (uniformly
on k € Z), and injective map Uy : £2(o) — L?(X) with closed range, defined by
setting

U\ = Z\ﬁ’;, V/\::{/\(’i}aedkeﬁz(%k),

Q€
here and hereafter, for any (k,«a) € o7,
(4.16) pe = n(B(ag, 0%)) = V(zg, 8")
and
1/2
Claty) = A=)k Yaea, CC: M) = < 00

aE ),

Observe that, if we let k € Z, A, Ne (), f:= Ui and f:: ka, then

(f f) L2(X) (Mk)" X)ﬁ(m) ’

where M, is the infinite matrix which has entries

(Slgn SE)L?(X)

\ HE

For all k € Z, let U} denote the adjoint operator of Uy, and Vi := Uy (¢*()).
The following result from [2] implies that {V} }rez is a multiresolution analysis (for
short, MRA) of L?(X).

Mi(a,B) = Va, B € o

Theorem 4.30 ([2]). Suppose that (X,d, ) is a space of homogeneous type. Let
k € Z and Vy, be the closed linear span of {sg}aedk. Then Vi, C Vi1,

UW=1*x) and (Vi ={0}.
keZ keZ

Moreover, the functions {Sg/\/ﬂlgé}aedk form a Riesz basis of Vi,: for all sequences
of complex numbers {\E}aew,

k ok
> dasal

aEg, .2 (X) aE

1/2
k

with equivalent positive constants independent of k and {/\’gl}aedk, where ,u]g; s as
n (4.16).

Now we recall an orthonormal basis {gb’; Yacw, in Vj, from [2, Theorem 6.1}, where,

for any k € Z, <7, is as in (4.6).

Theorem 4.31 ([2]). Let k € Z and (X,d, ) be a space of homogeneous type.
Then there exist a positive constant v and an orthonormal basis {gbg}aeﬂk m Vi
such that, for any x € X,

\ 1k

A < e Htein
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and, for any x, y € X with d(x,y) < &*,

\ HE

where pf is as in (4.16) and n as in (4.12).

oF (z) — ¢§($)‘ e |:d(‘§;€y):|ney§kd(x’§”x),

Remark 4.32. We point out that there exists a gap in the proof of Theorem 4.9 that
{8k /\/1E}aces, is not a orthogonal basis of Vj. Thus, the following representation
is not correct:

k
(417) f: Z <f7 Zz) Sl;u er V.

aEd,

Instead of (4.17), thanks to the orthonormal basis {¢% }4e ., , We can use the follow-
ing representation:

f=3 (f.0k) ok, ¥iew.

aE,

Now we state the remarkable orthonormal basis in [2]; see [26] for an equivalent
version.

Theorem 4.33 ([2]). Let (X,d, 1) be a metric measure space of homogeneous type.
Then there exists an orthonormal basis {wg’ﬁ}(k a)ed, BeL(k, a) of L*(X) and positive

constants C, v, and n € (0, 1] such that

C . k
wiz,m)\ e a— G R S

V(att, 6%

(4.18)

C dx7y K —v —k $k+lw
‘@Dﬁ,ﬁ(w)— 2,5(y)‘§ [( )] vk )

Vit oh L0
for all z, y € X with d(z,y) < 6%, and
(4.19) | vt o) duta) <o,
In what follows, we let
(4.20) 5 ={(.e.B): (ka)e o, BeLlk a)f,

where & and L(k, a) are, respectively, as in (4.14) and (4.15).
We now need to recall more notation from [26,27]. Let

(4.21) € ={(k,B): keZ, Be%}
with % as in (4.13). We choose a fixed collection
(4.22) {én: N €N, €y C ¢ and ¢y is finite}

such that €y 1 €, namely, for any N € N, ¥y C €11 and € = Uy En-
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Let N € N, g € BMO (X), 1 and r1 be as in Theorem 4.34,

= Y (99h) [V = Xkez pory (D¥h (@)
and

C(N) = gN — gN-
We then recall the following wavelet characterization of BMO(X) from [2, Theo-

rem 11.4]. A sequence {b,jé}jel, pew; 1s said to belong to the Carleson sequence space
Car(X) if
1/2
1 12
= sup — ‘b] ‘ < 00.
Car(¥)  keZ,aca, | MQE) jez’zﬁe% ?
(341, B)<(k, @)

)
H{ BJjez, pew;

Theorem 4.34 ([2]). Let (X,d, 1) be a metric measure space of homogeneous type.
Then the space BMO (X)/C (BMO(X) functions modulo constants) and Car(X)

are isomorphic. The isomorphism is represented by b — {(b, ¢é>}jez’r3€{¢j =
{bé}jezﬂgegj with the inverse given by

(Wi} jen pes, = > V) [% — X{kez: o) (DWh(x1)| =1 b,
jez, ped;

where G; with j € Z is as in (4.13), the series converges in LE _(X) for every z1 € X

and r1 € (0,00), and the choices of x1 and 1 only alter the result by an additive
constant.

Remark 4.35. (i) From the proof of [2, Theorem 11.4], it follows that, if b €
BMO (&), then b — b = constant and hence

b=b= > [V}~ Xprer sy IEh(@1)
JET, BEY;

converges in BMO (X) for every (z1,71) € X x (0, 00).
(ii) The proof of [2, Theorem 11.4] implies that there exists a positive constant
C such that, for all b € BMO (X),

{ Car(X)

(iii) Let b € BMO (X) and c(y = ez geg, (b, VWX (kez: stsmy () Wh(21). Tt
was shown in [57] that c(, is finite.

v }
BJ ez, pew,

< Obllmo (x)-

If two functions in L?(X) both have finite wavelet decompositions, we state the
following conclusion from [27, Lemma 3.1].
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Lemma 4.36 ([27]). Suppose that (X,d, ) is a metric measure space of homoge-
neous type. Let f, g € L*(X), {Vi}rez be an MRA of L?*(X) as in Theorem 4.30,
Wy, be the orthogonal complement [in L*(X)] of Vi in Viy1 and Py and Qy be the
projection operators from L?(X), respectively, onto Vi, and Wy,. Suppose that f and
g both have finite wavelet decompositions, namely, there exist My, Mo € N such that

(4:23) Z > (fuh)vh and g= Z > (g.05) vh,

—M; BEY, —Ms BEYG,

where 4, for k € Z is as in (4.13). Then
(4.24) f9=" (Pef)(Qrg) + D (Quf)(Prg) + > _(Qf)(Qrg)

keZ keZ kEZ
=111(f,9) + Ha(f,g) + I3(f,9) in L*(X).

The following lemma is a new version of [27, Theorems 4.10] with some slight
modifications. We present some details here.

Lemma 4.37. Let (X,d, n) be a metric measure space of homogeneous type. Then,
for any (1,2)-atom a and g € BMO (X), the series

S S (a6h) (9.05) hed
JEL ac sl BEY;

converges to some element in H) (X), denoted by I11(a, g) and
M1 (a, 9l g1, ) < CllgllBymo (1)

where C' is a positive constant mdependent of a and g. Moreover, 111 can be extended
to a bounded bilinear operator from HX (X) x BMO (X) into HL (X).

To show Lemma 4.37, we recall more results and notation from [27].
For every k, j € Z and (j,3) € €, write

(4.25) oy i={ac o P9 <d(al,yl) < 29,

where 7, is as in (4.7) with k replaced by j, and yé = :C%H for B € ¢¥;. From
the geometrically doubling condition and Remark 4.26(ii), we deduce that, for all
J,k€Z and B €Y,
(4.26) M]]fﬁ = #fgffﬁ < N2k +DGo —.
with Go and Ny same as in Remark 4.26(i).
. MF

We now relabel the set %kﬁ as ,kaﬁ =:{a} 5}; I Mk,B < my, then we further

enlarge ngfjkﬁ to {a;ﬁ};n with 57, := 0 for any i € NN (M J B’mk]' If Mj’.fﬁ = my,

J 6
then the set 42%’“5 remains unchanged. Let o := ozjﬁ € %,ﬂv g€ LX),

(2n) b= e el md U= Y (00]) 3

(4,B)€€N
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where 1/1%, is as in Theorem 4.33 with (k, o) replaced by (7, 5). We also let

yk =M\t
with 2% as in (4.7). Then we know that U},g € L?(X) for all g € L?(X), since €
is finite. Moreover, we display the following result from [27, Proposition 3.4] with
sé replaced by uégbﬂ.
Proposition 4.38. Suppose that (X, d, ) is a metric measure space of homogeneous
type. Let Ué\’]i be defined as in (4.27) for N € N, k € Z and i € {1,...,my} with

my as in (4.26). Then there exists a positive constant C, independent of N, k and
i, such that, for all g, h € L?(X),

1/2
N |2
(28) |Ulgml<c| S [(9ed)[| Il < Cllgle Il e,
(4, B)ECN

Proof. By the proof of [27, Proposition 3.4], we conclude that, for all g, h € L?(X),

1/2
(R0 1)] < Nl |30 3 (35 )[

jEL ped;
Thus, (4.28) is reduced to showing that
1/2

(4.29) L= | (@) ] Il

JEZ ﬁe%

To this end, similarly to the proof of [27, Proposition 3.4], we write

94 1/2
1< > |30 Y ()| (w3 05)
JET BeY; | s€T s
1/2
<3203 () [ (o)
JEZ BeY;
- 9y 1/2

S el (v k)

JEL BeY; [{veY;: v£B}

+{ZZ 5 S|

2y 1/2

JEZ BeY; _s:—oowe%
2y 1/2

351 Pop ot M

JEL BeY; | s=j+1~€%,
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As for Iy, we first estimate |(1/)é, Jfé)\ for any (j,5) € €, where € is as in (4.21)
and a € «7; with <7 as in (4.6).
Notice that, from (1.7), we deduce that, for any r¢, vy € (0,00) and xg € X,

(4.30) /X e~ vod(@: 2o}/ g (1)

B(Ioﬂ”o) =1 B(xo,(ﬁ-‘rl)?”o)\B(xo,f’r‘o)

S Vi(@o,ro0) + Y eV (wo, [€ + 1]ro)
/=1

SV (wo,mo) + > e N+ 1)V (w,70) S V (0, 70).
/=1

By (4.27), (4.18), d(xa,yﬁ) > 2k§i+1(4.30) and (4.49), we conclude that

(4 055)| < [ @it duto) s eV [ Joita)l [wh)]” duto

S euko*Q 1 / e—2u6*jd(yg7x)e—yéﬂd(xa,m) d}t(fl))
V(y/j’ 5])

< v82F 7 —voT id(yl, xd) 1 €—V57jd(yfp$)d (z)
~ V(y} o) 8

v62k—2 _psok
Se e S

which, together with Theorem 4.33, implies that

1/2

> > ’(%%)’2 ~ Al 2

JEZ BeY;

From the estimate of Iy in the proof of [27, Proposition 3.4], we deduce that

I <ZQ(S+ 5 Go

1/2

>3 ()l 5 (w2, 08)[

JEL vEY; {B€: 29671 <d(y, y))) <2515}

Now we estimate |(¢, 1) i 5)\ for any (j,v) € € with € as in (4.21), s € Z4
and B satisfying 256711 < d(yy, yﬁ) < 25F1§i+HL 0 By (4.11), (4.18), a € szfj’fﬂ,
25671 < d(y, yﬁ) the Holder inequality and (4.30), we conclude that

)| < [ [pi@dkie] dute) s e\ [ [ph@pheh@)] duta)
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fué_jd(zg” x) d/J,(CL’)

sk 2/ —u5’jd(y,+ z) V57jd(yi'37 )
e

\/V J(SJ \/V?Jﬁ,

< v§2k— 2 6 Jd(y%yﬂ) *K‘S Jd(yﬁ,xa)

/ _76 dyw: 775 Jd(yﬁv )
(z)
\/V yv 67) \/V yﬁ,

—L§—id(yl,- —Y§id(yl, -
< 6—1/623—2 e 2 (y'y ) e 2 (vg°) < e_V523—2
~Y ] ‘7 ~ ’
V(yry,é ) LQ(X) V(yﬂ,é ) L2(X)

which, combined with Remark 4.26(ii) and Theorem 4.33, implies that

1/2

I < Zz (s+0G0 =322 LSS () P Y S Rl ey

JEL ~EY;

Now we consider I3. We first estimate |(1/}:§,1Zfé)| for any (j,7), (s,7) € € with
d(ys3, yé) > 8+l and s € ZN (—o0,j — 1]. By ol € Vi, w% € W; and V; LW; with
V; and Wj for all j € Z as in Lemma 4.36, we have

/w 7) du(a —e”‘”“f/w ()9 () dpu() = 0.

This, together with (4.11), (4.18), a € Mjlfﬁ, d(ys3, yé) > 6711 the Holder inequality,
(4.30) and some arguments used in the estimate of [27, Proposition 3.4], further
implies that

’ s

\/ [us@) - 3 ( yﬁ)]w ' (x) du)

u§2k 2

% yﬁ)Hng ¢J )’ ()

—vé~J d(yﬁ, x)

,U/oz

< 6V62k_2 (&
Vo)

~

e*l/(S_jd(Iz“.’E) du(:c)

(@) =5 (v))

—u5id(y, )

V(@lg,é])

< ey52k*26—%6*jd(yg,x£) €

~

A

s 1/2
< {6—25‘511(?427%) Zémneg(ssﬂﬂ—j} '

t=0

L2(X)

N2 vs—j j . 1/2
(o) = s ()| 50 o)}
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By this and some arguments used in the estimate for I3 in the proof of [27,
Proposition 3.4], we obtain

I3 S [Pl 2y

Finally, we deal with I;. To this end, we also need to estimate ‘(wv’ i 6)\ for
any (j,7), (s,7) € € with d(y3, yﬁ) >0*tland s € ZN[j+1,00). By V5 € Wy,
QSZY € V; C Vs and W, LV with Vi, and W, for any £ € Z as in Lemma 4.36, we have

| vi@he) duta) =
X

which, combined with (4.11), (4.18), the Holder inequality, (4.30) and some argu-
ments used in the proof of [27, Proposition 3.4], further implies that

(5055 | = e Vi | ws@d@0h(o) dute)
el [ @@ [9)e) - v ()] duta)
< e, [ 1s@el@l [ - ) (03)] dute)

—vd~*d(y3, x)
V(SQk 2 e v
S /’@Z’B 77%’ yv)

e—uéfjd(acg” x) d,u(m)

V(ys3,0%)
o 567%d(y3, )

V(55,9%) L2(X)

. ' L 1/2
<A [ [ = )] e duto) |

$—J
56_75 Jd(y,y,yﬂ {Z&Qtn —p§ittti- S}

t=0

< 61/62’“_2

~

1/2

From this and the estimate of 14 in the proof of [27, Proposition 3.4], it follows
that

Ly S [Pl p2(xy

which, together with the estimates for I;, Is and I3, then completes the proof of
(4.29) and hence Proposition 4.38. O

We also recall some estimates of integral kernels from [27, Proposition 3.5 as

follows, where sl is replaced by \/ug[qb&. Let k € Z and i € {1,...,my} with my as
n (4.26). For any (z,y) € {X x X} \ {(z,2): = € X}, let

(4.31) Kii(z,y) =Y > 8 L@wiy)

JEL BeY;
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where ¥, for any j € Z is as in (4.13), and, for each N € Nand z, y € &, let

(4.32) Ki(wy) = Y Ors@)wh(y),

(4, B)€CN

where @y for any N € N is as in (4.22).
Before proving Lemma 4.37, we give a new version of [27, Proposition 3.5].

Proposition 4.39. Suppose that (X, d, p) is a metric measure space of homogeneous
type, N € N, k € Z and i € {1,...,my} with my, as in (4.26). Let Ky, ;, K,JCVZ be
defined as in (4.31) and (4.32). Then

Kk:,i’ Kl]c\,[z € Llloc ({X X X} \ {((L‘,l’) HERES X})
and satisfy (4.3), (4.4) and (4.5) with s :=n/2 and n as in (4.12).

Proof. Let N e N, k€ Z,i € {1,...,my}, and the kernels K}, ; and KN be defined
as in (4.31) and (4.32), respectlvely It suffices to show that Kj_; satlsﬁes (4.3),
(4.4) and (4.5), since the proofs for K/w are similar.

Now we show that K}, ; satisfies (4.3). From (4.11), (4.18), o € szkﬁ with %

as in (4.25), and the estimate of H in the proof of [27, Proposition 3.5], we deduce
that, for all z, y € X with x # y,

(433)  [Kealwy) S e 0303 e i)
jez pe,
L) ’1/2 5(y)|

Bl W

e v W)
S 52k2 5del3’ ZZ’E ’ Jﬁ,éj)]l/él

JEZ BeY;
e ) )
S Z Z ‘wﬂ ‘ J’(Sj)]l/ﬁl S V(z,y)’

JEZ BeY;

which, combined with (4.33), implies that K}, ; satisfies (4.3).
We then show that K, ; satisfies (4.5). Let z,y, vy € X with 0 < d(y,y) <
d(z,y). From (4.11), (4.18) and a € JZ{k with o7* "5 as in (4.25) and the estimate

for J in the proof of [27, Proposition 3. 5] together with yﬁ = x]H for all g € ¥,
we deduce that

(4'34) ’Kk,i(xﬂy) _Kk,i($7m|
S €V§2k_2 Z Z e—vé_jd(azja,m)e— 67 yﬁ» ’l/)ﬂ( ) Qp% (m
jez peg;
[CACIES

w BN
[V (5, 07)]/
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e ; Wﬁ )|1/2
Se e 2 ZZ‘%;( 1/15 A)’W
JEZ BEY,
| [ ()2 1 [dy,9)]"
< Z Z ‘%( % N)‘ ] ,69)] /4 S V(z,y) [d(m,y)] 7

JET BeY;

which further implies that K satisfies (4.5).
Finally, we prove that K satisfies (4.4). Let z, Z,y € X with 0 < d(z,7) <
d(z,y). From (4.11), (4.18) and a € ﬂ/jlfﬁ, we deduce that

| K, i(, y) — Ky, i(7,y)|

< e — 6 (@) v @) [l
JEZ BeY;

< 1/62’c 2\/>ZZ |:‘ ’ ( )w%(f)‘1/2:|
JEZ BeY;

()4 () — ) (8) @)\” |viw)

—%(Sﬂ'd(y%, :B)

V§2k 2 411 —50~ Jd(xd,, x) € A
"2 [ V()

JEZ BeY;
+e;m<xg,x>w1 L)) — o @0 @) )
] )Y qﬁf(wg()\”%
5[#&]‘1‘;2662%\% 1 -] e
MOPWILCERILIS L \/W(ZZ’Z% = Jit

By some arguments similar to those used in the estimates of (4.34), we have

j Sz W) 1 [d@2)]"
UEDIDD ‘wﬂ(‘”) ~ Vs (x)‘ [V(yi o7)H4 ~ V) [d(x’y)} |

JET BeY;

To estimate Jo, by Theorem 4.31 and the estimate for B in the proof of [27
Proposition 3.5], we conclude that

1S oy Bgmyﬂ/ |

This, combined with the estimate for Jq, implies that K}, ; satisfies (4.4), which
completes the proof of Proposition 4.39. O
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The following notions of (1, ¢q,n)-molecules are from [38] with a slight modifica-
tion.

Definition 4.40. Let g € (1, 00] and €:= {e }ren C [0, 00) satisfying
o

(4.35) Zk‘ek < 00.
k=1

A function M € LI(X) is called a (1, q, €)-molecule centered at a ball B = B(xg,r)
with some zp € X and r € (0, 00) if

(M1) [[MxB| ) < [W(B)V71

(M2) for all k € N, [|MX p(4425)\ B(zo,26~1r) | La(x) < (28 B9,

(M3) [, M(x)du(x) = 0.

Then we state the molecular characterization of HJ,(X) without resorting to the
measure doubling condition (1.7); see [57, Theorem 3.2] for the details.

Theorem 4.41 ([57]). Assume that (X,d,p) is a metric measure space of homo-
geneous type. Let q¢ € (1,00] and € := {ex}ren C [0,00) satisfy (4.35). Then there
exists a positive constant C' such that, for any (1,q, €)-molecule m, it holds true that

Imll g1, 2y < C-

Moreover, f € Hx(X) if and only if there exist (1,q,€)-molecules {m;}jen and
{A\j}jen € C such that
f=2 xm;
j=1

holds true in L'(X). Furthermore, there exists a positive constant C, independent

of f, such that

C Ml ey < nf 9 >IN < CllFlla, ()
j=1
where the infimum is taken over all the decompositions of f as above.

Remark 4.42. The molecular characterization of HL (X) appeared in [26,27] has
a problem that it only holds true on RD-spaces. For general spaces of homogeneous
type, we need a revised version as in Theorem 4.41.

Now we state the following result from [27, Lemma 3.7] with some slight modifi-
cations.

Lemma 4.43. Let (X,d,u) be a metric measure space of homogeneous type. Then
the bilinear operator 11y in (4.24), originally defined for f, g € L*(X) with finite
wavelet decompositions as in (4.23), can be extended to a bounded bilinear operator
from L?(X) x L?(X) into HL(X).

Proof. Suppose that f, g € L?(X) have finite wavelet decompositions as in (4.23), 3,
is as in Theorem 4.31 for all (j, ) € &, with & as in (4.9), and, for all (j,a) € <7,

iy 1= p(B(wh, 57)).
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We first notice that, for each given j € Z N [—Ma, M|, with My as in (4.23),
o € o) with & as in (4.6), and 8 € ¥}, with &} as in (4.13), by (4.13) and (4.8),
B € ¥ if and only if 8 € ¢; and d(xd,y ) > 53“. Furthermore, from the finite

wavelet decomposition of g, we deduce that Qjg = 0 for all j & Z N [—M>, M>].
From these facts, (4.24) and Theorems 4.30 and 4.33, it follows that

Mo
(436) (L) = Y (Pf)(Q9)
j=—M>
M, . . . .
=Y | X (e | X (9vh)vh
j=—M> | acd; BeY;

S Y (nd) (v v

j=—M2 a€d; (Bey;: d(:cfy,yg)ZtWﬂ}
in L'(X). Now we show that

wm 1YY Y (el

Jj=—M3 BEY; {aed;: d(xa,yﬂ)>5j+1}

;(x)%(w)‘ dp(z) < oo.

X

Indeed, by (4.11), (4.18), the Holder inequality, (4.30) and (1.7), we conclude that

ey Y Y (o)

J==M2 Y} {acdy: d(ah,y})>60+1}

dp()

/ oV d(z, v o~V Id(z,zh)

SN (el (s s

I==M2 Y {acd;: d(xh,y})>60+1}

/ —1/6 d:cyﬁ —yéfjd(a:,xé)

T \/uz dp(z)
S5 210 DENNED IR [( || RN Rt

J==M2 BEY; {acdy: d(ad,yl)>60+1}
2 1/2 92 1/2

67%5_jd(x,yg) e—%d’jd(a:,xfl)
AN @ty { [ || dut
Y/ Vs o) v i
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Mo
Ys—id(al,y
> 2 2 (.68 | (9.0 e 207 m),
j=—M> Bed; {acd: d(x&,yé)25j+1}

which, combined with the Holder inequality, Lemma 4.29, Theorems 4.30 and 4.33,
implies that

1/2
Mo
TSOY Y Y (et
J==Mz €95 {aedt;: dlahyl)>001}
1/2
S i\ |2 —v—id(zl,, y%) /2
X Z Z‘(Qﬂﬁg)‘ Ze o Yp
j=—M> Be¥; e
1/2
N K —usId(ze ) /2
S92 2 el 3 (8 dlah )
j==Mz acd; {B€;: d(zh,y})>67+1}
Mo L 1/2
X 2 (e)]
j:_MZBE(fj
M, ; 1/2 2
' 1
SOSS STUEGN Y gl S M2l gl < oo
j=—M2z a€dj

This shows that (4.37) holds true.

Recall that, for any j € NN [—My, M|, 5 € ¥;, with ¢ as in (4.13), and k € Z,
;z/j’fﬁ and my, are as in (4.25) and (4.26), respectively. Then, due to (4.36), (4.37)
and the Fubini theorem, we write

Mo
(4.38) W)= > > 3 (£.04) (9.4%) Ao

j=—M> ped; {acd: d(wﬁ;,yf%)Z(W*l}

0o Mo 4 o
=33 Y > (h6h) (94h) ehvd
k=0 j=—M2 f€%; aert

0o My j

_s9k—2
S 3t
k=0 i=1 Jj=—M> BeY; Mji
%, 8

(9#/’,3 vo2t 2\/ d’ 5

in L1(X).
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In order to estimate II;(f, g), we need to recall the following operator Uy ; from
[27] for any k € Z; and i € {1,...,my}. For any (j,5) € €, let

(4.39) Ur,i (v3) =05,

where {bvfé is as in (4.27) and 1/1% as in Theorem 4.33 with (k, ) replaced by (7, 3).
We now recall from [27, Section 3] that Uy ; can be extended to a bounded linear
operator on L?(X) and on H (X).

We claim that, for each k € Zy and i € {1,...,my},
¢j

ot
J, B

Mo
(4.40) S0
j=—Mz e Njai
\/ N

Indeed, from aé,ﬁ € 52{]]‘35 with szjkﬁ as in (4.25) and (1.7), we deduce that

(9.0) wh € ()

(4.41) |4 (yi;éj) <V <aﬁj ,2k+25f> < 2nky (:c] ,53’) ~ 2Ryl
aj»ﬁ aj,ﬂ aj,ﬁ

Moreover, from the proof of [26, Lemma 3.7], it follows that, for any j € Z and 5 €
i

9, % is a (1,2, n)-molecule multiplied by a positive constant independent of
y67 J

j and B. Thus, by this, the completion of H}, (X)), Theorem 4.41, (4.41), the Hélder

inequality, Theorems 4.30 and 4.33, the fact that, for any 8 € ¥, there exist at

most my points o, 5 in &5 C o corresponding to /3, V(y5,87) C V(i . 2k+257)
b b ]1

and (1.7), we conclude that

Ma (bjb
5,8 J\ 0
XD | (9’ %) vs
j=—M: ped; 1w
Q5,8

23>

j=—Mo> 6€gj

1/ 1/2

Mo

5 2nk/2 Z

Jj=—M-> ,BE%J‘

(f,¢i;ﬁ)\](g,wg)]
2
. 2
> |(o03)]
BE%

) 2
@%@)
3B
Mo 1/2

<222 ST ST (L[] Hlllieg

Jj=—M:z | acd;

T 1/2
S 22 P Mo| 2 9l ey < 0.

This finishes the proof of the above claim (4.40).
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By (4.38), (4.39), the above claim and the boundedness of Uy ; on HZ (X) uni-
formly with respect to k and ¢, we conclude that

oo Mg

=3 e Z > | (9:03) Ui (v3)
k=0 i=1 —M> Be¥; ,u
.775
o0 mk . .
=3 S ey, Z S s (9.3) v
k=0 i=1 —M; Be¥; M
.7,[3

in L1(X). From the above claim, (4.40), together with the boundedness of Uy ; on
HL (X) uniformly with respect to k and 4, and [26, Theorem 4.4], we deduce that

(4.42)

0o my s My ¢Jaz ) )
B I 1P PR [
k=0 i=1 j=—M; BeY; 1
»e Hy (X)
co Mmyg j
—vé2k—2 ',B J J
SY D e Z S| (ovd) v
k=0 i=1 j=—Ms BEY; ,U« i
e Hy (X)
‘ 2 1/2
oo my (ﬁ]i X i
_ o sok—2 al ; Q2
sy Sl e ()| 22 |
k=0 i=1 (G, 7, B)eS i @)
70 Li(x)

where .# is as in (4 20).
Moreover, by a

d ZL‘ji ,
NG

which, combined with Theorem 4.27(iv), implies that
2k +3 50y,

€ oF 5, (1 +1,8) < (j,7) and Remark 4.28(i), we obtain

:C%) <d <xai ,yb)) +d (yﬁ, ) < okH1gitl 4 o§itl < oht25i+1
N

Q) C B(al,48%) C B(xi;,ﬁ

From these inclusion relations, (4.11) and (1.7), we further deduce that, for all

re X,
J
f gbaj',ﬁ XQZY (IE)
) - j
J
:u‘ai :LL(Q"Y)

J, B
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f ¢i§u@ ( )XQ]( )
= ) - XB(s? . k+3
1 Bleay 2 (@)
N
[Cxy]* Ty ) Xgi ()
<
= V(eri | 2k+367) / | f(y) .8 du(y )XB(z 2k+353 (v) (QJ)
o g’
[5’(;\3)]k / XQj( )
< ; d )
~ V(a:ji 72k+35j) B, 2435 If(y)] H(Q)XB(xi; , ,2k+367) (z (QJ)
5.8 al g ;
[G(X)]k = _ 25+k+2/
+ . , e’” d
Vg s v, gy [
%8 %38 %, 8
X Xpg(ad — os+k+3 (z)
B( D‘;-,ﬁ 2 §79) (QJ)
~ XQ] ( ) ~ o s+k+2 XQJ ( )
S [Ca)" M (f) () =" + [Cla)|* > 2™ M(f)(x)
n(Q3) ; (@)

XQZY ('T)
n(@%)
which, together with (4.42), my, = Np2(k+1Go  the Holder inequality, the bound-

edness of the Hardy-Littlewood maximal function M on L?(X) and Theorem 4.33,
further implies that

S (O M(f) (=)

I

1/2
© - ' Yo
LE Y [Co] mem fur} 5 [(o0d,0)[
k=0 Gy Bes S
LM (X)
1/2
>~ k _ ,
<3 [Co| e I Dy { X ({0 )]
k=0 (4,7, B)eS
© k -
< {C(X)} mye "0 QHfHLQ(X)||9||L2(X) S ey lgllzz
k=0

This, combined with the completion of HJ, (X), then implies that IT;(f, g) € HL (X)
and

ML (f o), oy S LS ez 19l 22 )

which, together with the fact that the functions in L?(X) with finite wavelet decom-
positions as in (4.23) are dense in L?(X) and a standard density argument, further
completes the proof of Lemma 4.43. O

By [2, Corollary 11.2] (see also [27, (4.1)]), we know that, for any j € Z, B € ¥;
and g € BMO (X), (g,d)é) is well defined and there exists a positive constant C
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such that, for all g € BMO (X),

(4.43) (9,0)] < Cllgllio e\ V (h, ).

It was shown in [27, Section 4] that Qjg := > e, <g,¢%> 1/1% is also pointwisely
well defined.
Analogously, let j € Z and g € BMO (X).

Pig:i=">_ (g, ¢L) ¢,
acd;
is pointwisely well defined.

Now we are ready to prove Lemma 4.37.

Proof of Lemma 4.37. We first show that, for each (1,2)-atom a related to a ball
By := B(zg, o), with some zg € X and ry € (0,00), and g € BMO (X), II1(a,g) €
HL(X) and

(4.44) 151 (as Dl vy S Nllago o,

where the implicit positive constant is independent of a and g.
Indeed, let ko € Z satisfy 6*0t1 < rq < 6¥ and C4 be a sufficiently large positive
constant which is determined later. We formally write

Hl(a, g) = Z Z (av Q%) Q% Z <g’ wf]B> wé
j=ko+1 | acd {Be%;: yf;GC4Bo}
P Y Sl X ()
j=ko+1 |aed {Be9;: v, ¢CaBo}
ko . .
£ S @ay | [ X {ovd) el
Jj=—00 | ac BEY;

= 11{"(a,9) + 11? (a, 9) + 11 (a, 9).
Let

g= > > <g,w§>¢5‘

{LeZ: §'<ro} {0cY,: y£€C4BO}

From the proof of [27, Theorem 4.9], it follows that (1) € L?(X) and
Hg(l)‘ < llgllsmo (x) v/ 1(Bo).

By this and a € L?(X), combined with Lemma 4.43, we conclude that Hgl)(a, g) =
Iy (a, g1) belongs to H) (X), which, together with Lemma 4.43 and an argument

L2(X)
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similar to that used in the estimate for Hél)(a, g) in the proof of [27, Theorem 4.9],
implies that
1
[m2 0], oy = 1112 @90 ) % Nlonso o
Then we estimate Hg2)(a, g). By [57, Theorem 3.2], we know that, for all j € Z,
a € o, and € ¥; with ¥, as in (4.13), there exists € := {ej }ren satisfying (4.35)
such that

(4.45) = 5077 ma’yﬁ)qb] 1// is a (1,2, €)—molecule,

aﬁ

related to the ball B(xa, 87), multiplied by a positive harmless constant independent
of k, o and . '
By Theorem 4.31 and ry < 6* < &7 for any j > ko, we have

(4.46) |(a,0%)| S / Ia(w)li,
By \/;&

S / |@(~’v)l—1 eV d@o.at) 0TI d(@0,3) gy ()
Bg J

efué_jd(zo,xz!) du(az)

Mo
S [ Jaa) et ) dy(o)
Bo ’uj
—1/6 I d(xo, —V5’jd(x0,x£).

1
S—— w) lall ) S
i 7
From (4.45), (4.43), (4.11), (1.7) and Lemma 4.29, we deduce that

XYY e (993|203 1

Jj=ko+1 acd; {Be%;: yf;é?Cz;Bo}

ST Y (wedl|p ek

j=kot+1 o€ {ey;: y]¢CaBo}

Sllgllemo (v llallzr oy Z Ze—vé‘fd(ro,xg)

Jj=ko+1 aGsz'

1/2
Vs DN st =
V(zh,d7)

<D

{Be%;: ygmso}

Slgllsyo (x Z Z e~V d@o.ah) Z o 19 dlyg,d)

j=kotlacd; {Be%;: y,#CaBo}

Slgllsmo (x Z > e~ 0 Tdlwo.aa) > ¢~ 1077 d(yg,w0)

j=ko+l acd; {Be9;: y,#CaBo}
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2 §=id(y’
Slgllsmo (v Z Z e 10 dE ),

7=kot+1 {Be@;: yl¢CaBo}

This, combined with §%0*! < ry < ¢k implies that

o

_v§—id J
A < llgliBmo () Z Z o~ 5077 d(y), xo)
j:k0+1 {56%1 yéQCABo}

S - k 19t
Slgllsmoy D, Y. > o= 4 Cadko—i+12

J=ko+1t=0 {ﬂngi yg€2t+IC4Bo\QtC4Bo}

o0

o0
< |lgllBmo () Z Z2*tM05(]*k0)M05(kO*J)GO2tGO < Nlgllsmo (x);
j=ko+1 t=0

where My and Cy are chosen to be sufficiently large positive constants such that
My > 2Gp, with Gg as in Remark 4.26(ii). Therefore, from the completion of

HL(X), we deduce that H?) (a,g) € HL(X) and
(2) H
I <A< .
[12@9),, ., <A = ol
Finally, we deal with Hgg)(a, g). We first estimate |(a, ¢%)| for all j € ZN(—o0, ko)

and a € & with a}, € B(zg, 967). By [y a(z)du(z) =0, ro < §ko < 67 for all
Jj < ko, and (4.12), we have

447y (a6l < /B la(@)| | ¢4, (z) — ¢4 (x0)| dis(z)
alz d(.’L‘,LIZ(]) T e—udfjd(zo,wé) z
5/30'”'[ . ] du(z)

07 \//TZY

5(ko —)ne—ve~ Jd(zo,ah) HQHLl

< ig(koﬁ)nefw‘jd(xo,w{;)'
J

Mo
From (4.45), (4.47), (1.7), (4.43) and Lemma 4.29, it follows that

> 5 S Il [ [0y

Jj=—00 ac; BEY;

< i Z Z |(a,2)| ‘<gj¢é>‘e—g5—jd(yéyyi)

Jj=—00 acd; BEY;

S llgllemo (x) Z §tko=3)m Z eV I d(xo,ad)

j=—00 €
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x > (55 d(a )
{Be9;: d(al,y})>67+1}

kO . .
Slglevo @y >, oo - o~ v8 Id(z0,a%)

12
Vi)
V(xh,69)

Jj=—00 aEd;
P S 1/2
vs—id(a, o) | AWg: Ta) + 0
—z5=dd(zd, %) [ 3 Ta
x Z e 2 B) | 2P
— 59
{8€9;: d(zl, y})>6+1}
< llgllBao (x) Z gtko=a)n Z o107 d(wa, yp)
=00 {B€9;: d(zh,y})>07+1}
ko
S lglsvory D 8“7 < llgllsuo x),
j=—00

which, together with the completion of HZ (X), implies that Hg‘g) (a,9) € HL(X)
and

[0 @0)|| . . S lglsmo o,

From this and the estimates of Hgl)(a, g) and H(IQ)(a, 9), we deduce that II;(a, g)
belongs to H},(X) and (4.44) holds true, which, combined with [27, Theorem 4.7
and an argument similar to that used in the proof of [27, Theorem 4.9], further
implies that IT; can be extended to a bounded bilinear operator from H} (X) x
BMO (&) into H} (X). This finishes the proof of Lemma 4.37. O

Hyy (X)

Now we give the following revised version of [27, Theorem 4.16].

Lemma 4.44. Let € € (0,1], o, ¥ € (0,€] and (X,d, ) be a metric measure space
of homogeneous type. Then, for any (1,2)-atom a related to a ball By and g €
BMO (X), the bilinear operator lla, defined by setting

IIy(a, g) == agp, + ﬁg(a,g)
=ags, + > > D (9980, 0k) (.v)) 6hh i (Gile ),

JEZ acdl; BEY;

can be extended to a bounded bilinear operator from HL(X) x BMOT(X) into
H'Y8(X). Furthermore, it holds true that

H2(aa g) =h+ amp, (g)a

where h € HX (X) satisfies that there exists a positive constant C, independent of g
and h, such that [h|[ g1 vy < CllgllBmo (x)-

Proof. We first show that, for any (1, 2)-atom a supported in a ball By := B(zo, ro),
with some 29 € X and ry € (0,00), and g € BMO (X), 1Iz(a, g) € H'°8(X) and

(4.48) 2 (a, g)|| mrosxy S l9llBMO* ()0
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where the implicit positive constant is independent of a and g.
Let ko € Z satisfy 6%+ < ry < §%0 and Cs be a positive constant large enough,
which is determined later. We formally write

Ma(a,g) =Y { > (m%) 1/%} { >~ (lg = mbo(9)] XC5 80> D3) %}

jez | pe; aEd

+Z{Z (aﬂ%) 7%} { Z (lg = mB,(9)] X\ (C5 Bo)» ¢J>¢J}

jez | ey, acd

+3 { > (a,wg) wg} { > (ms,(9), 64) czbé;}
jez | pe%; aEd

=:Tly (a, [g — mB, (9)] X5 Bo) + 2 (a, [9 — mB,y (9)] X\ (€5 B0))

+ 113 (a, mp, (9))

(

=: H( )(a g)+H a,g )—i—Hé?’)(a,g),

where mp, (9) := [(Bo)l ™" [, 9(x) du(x)

By the proof of [27, Theorem 4.16], we know that Hgl)(a,g) € HL(X) C H s(x)
and

|1 (a.9)

< | (@ g)|

S llgllBmo (x)-

Ho8(X) Hyi (X)

To estimate ng) (a,g), we first deal with |([¢g — mp, (g)]XX\(CE)BO),gZ)é)\ for all
(j,a) € & with &7 as in (4.9). Indeed, by (4.11), [2, Lemma 11.1] and (1.7), we
conclude that

(4.49) |([g — mB,(g )]XX\(C5BO )|

< l9(z) — mp, ()| e v d(x,x) dyu(z)
iy
J/xam — ma,(9)] du(e)

— mpy(g)] e M) dp ()

/ 9(a)
\/ Mé =1/ B(al, 2869\ B(ah, 25159

, b
o llgllBmo (x —mp,(9) e du(z)
B(aza,Zk(W)
N MaHgHBMo +JZ/($ ps) ‘9(90) —mB(xngk(;j)(g)
N oy
—p2k-1
+ B(IJ(;”Q’C(SJ')(Q) —mp,(9)|| € dp(z)
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<V wallgllemo (x)

o0
: o ok—1

D> e 2 gllpuo (x)
k=1

1+ log

8 4 7o + d(ah, o)
min{d7,ro}

&7 + o + d(ah, xo)
min{d7,ro}

By (4.45), we know that, for any j € Z, a € o/; with </; as in (4.6), and § € ¥
with & asin (4.13), a;, 5 is a (1,2)-atom, multiplied by a positive harmless constant,

pdllgllsmo vy |1+ log

supported in B (asa, 10(53) and hence

I ;:Z Z Z |(lg = mBo(9)] Xa0\(C5Bo) D) | ‘(a’%)) ‘

JEL ac sy BEY;

<Z Z Z ’ 9 —mBy(9)] Xa\(C5Bo) 925])] ‘(a,@bé))e_%a*jd(xévyé)

JEL ac sty BEY;

~ Z Z Z| g — mBo XX\ (CsBo)» ¢a ”( 71/}5)‘ ffé—fd(zﬁyé)

Jj=ko+1 acsl; fEY;

ko
LY

j=—o00

From (4.49) and the proof of [27, Theorem 4.16], via choosing C5 to be largely
enough, we deduce that

I < llgllBmo (x),
11" (a,g) € HL,(X) C H5(X) and

10,9, 4, < 1@ )|, oy ST lilmrion:

g)(a,g). From [2, Lemma 10.1], it follows that, for all

Hlog

Finally, we estimate II
J €L,
(4.50) Pj1=1.
From (4.50), a € L?(X) and Theorem 4.33, it follows that

3
117 (a, 9) = m, (9)1L2(a, 1) = m, (g)a.

By this, Remark 4.6, [49, Proposition 3.2(ii)] and [49, Lemma 3.2], we have
| < lmz4(9) = 91 M@)oy + gl M (@) | s

S lms,(9) = gl M(@)|| 12y + llall o lllglllsmo+ ()
S llglleao (x) + l9llBmo+ () S ll9llBmo+ ()

(3
H a g HH'O%

which, together with the estimates of Hél)(a, g) and Hg) (a,g), implies that IIs(a, g)
belongs to H'°8(X) and (4.48) holds true.
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By the above proof of (4.48), we conclude that there exists
hi=Ta(a, 9) = 11" (a,9) + 11 (a. g) € H}\(X)
satisfying that |[h] g1 (1) < ll9llBmo (v) and
H2(a>g) =h+ amBo(g)a

which, combined with some arguments used in the proof [27, Theorem 4.16], further
implies that ITy can be extended to a bounded bilinear operator from H} (X) x
BMO (&) into H'°8(X). This finishes the proof of Lemma 4.44. O

Remark 4.45. Using s (f,g) = Uy (g, f) for all f, g € L*(X) and Lemma 4.43, we
conclude that IIs as in (4.24) can also be extended to a bounded bilinear operator
from L*(X) x L?(X) into HL(X).

Before proving Theorem 4.9, we recall the result from [27, Theorem 4.9] on the
boundedness of II3 as in (4.24). We first formally write

(4.51) My(a,9):= > | Y (avd) vd| [ D (owd) ]

JEZ | BeY; =

for any (1,2)-atom a and g € BMO (X), where ¥; for any j € Z is as in (4.13).
We point out that, if a, g € L?(X), then II3(a, g) in (4.51) coincides with II3(a, g)
in (4.24) with f replaced by a and, in this case, it is known that II3(a,g) € L'(X)
(see [27, Lemma 3.3]).

Lemma 4.46 ([27]). Let (X,d,p) be a metric measure space of homogeneous type.
Then, for any (1,2)-atom a and g € BMO (X), II3(a, g) in (4.51) belongs to L*(X)
and I3 can be extended to a bounded bilinear operator from HL (X)x BMO (X) into
L'(X).

Now we are ready to present the proof of Theorem 4.9.

Proof of Theorem 4.9. We first claim that, to prove Theorem 4.9, it suffices to show
that, for any (1,2)-atom a, supported in a ball By := B(xg,ro) with some zy € X
and r¢ € (0,00), and g € BMO (X),

3
(4.52) axg=>Y Miag) in (G5leD)),
=1

where €, p and ¢ are as in Theorem 4.9.

Assuming that (4.52) holds true, we now show Theorem 4.9. Indeed, for any
f € HL(X), from Definition 4.4, it follows that there exist a sequence {a;}jen of
(1,2)-atoms and {A;}jen C Csuch that f =372 Aja; in HL(X). For any N € N,
let fn := Zjvzl Ajaj. We then obtain

(4.53) Jim fy=f in HL(X).
By (4.52), we know that



204 XING FU, DER-CHEN CHANG, AND DACHUN YANG

We now prove that
(4.55) Jm fxxg=rxg i (Ghle.9) .
To this end, for any h € G§(o,?), from Lemma 4.8 and (4.53), we deduce that

[(fn x g, h) = (f x g, m)| = gh, fv = )] < llghllgmo () 1N = Flla, )

1

< h — 0
~ Via) | ”g(g,ﬁ)HgHBMoﬂX) | fn f”H;t(X) -

as N — oo, which proves (4.55).
Moreover, from (4.53), Lemmas 4.37, 4.44 and 4.46, we deduce that

Jim TI3(fy,g) =Us(f.g) in L'(X),

limN%ooHI(fNag) = Hl(f?g) in H;t(‘)()a and limN—>ooH2(fNag) = H2(fag) in
H'"8(X), which immediately imply that all of them hold true in (G§(o,9))’. By
these facts, (4.53), (4.54) and (4.55), we obtain

3
f Xg:}\}gnoofN Xg:J\}gnm;Hi (fn,9)

3
=Y "I(f,9) in (G5 D)) .
=1

which, combined with Lemmas 4.37, 4.44 and 4.46, then completes the proof of
Theorem 4.9 with % := II3 and 57 := II; + 1l5.
Now we show (4.52). From Theorem 4.34 and Remark 4.35, we deduce that

(4.56) 7= (9:9)) [Vh = Xppez: om0 (@)

JEZ ﬁefﬁj

converges in both L (X) and BMO (X).

Now we choose a fixed collection {¢x : N € N, €y C € and %y is finite} as in
(4.22) and let

ani= > <97¢Jg> [Wg = X{ke: 6k>r1}(j)¢é($1)} = > <g;¢é> Vs =t gN
(U, B)eeN (J, B)eeN
in BMO (X).
From the finiteness of €y, it follows that gy € L?(X), which, together with
Lemmas 4.36 and 4.43, [27, lemma 3.3] and Remark 4.45, further implies that, for
any N € N,

3
(4.57) agy =Y T (a,gy) in LYX).
i=1
Then we claim that, for any h € G§(0,7), imy_,o00(a X gn, h) = (ax g, h). Indeed,
by the definition of the distribution, the duality between HL (X) and BMO (X),
Lemma 4.8 and (4.56), we conclude that

(4.58) |{a X gn, h) — (a x g, h)|
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(v = 9) ha)| < [l(gn = 9) hllgmo (X) ||‘1||H;t()()

1
< h v T
N Vl(:cl)H 6.9 198 — dllBmo+ ()
< 1

h
Vvl(xl) H ||g(g,19)

- - 1 - .
x| lgn = llgmo () +WH(9N—9) XB(m,l)HLQ(X)
—0 as N — oo.

This shows the above claim.

It is shown in Remark 4.35 that g — g =: ¢4 is a constant. Let ¢y := gn — gn
for any N € N. It is easy to see that c(y) is a constant, depending on N, for each
N € N. From this, (4.58), (4.56), (4.57), Lemmas 4.37, 4.44 and 4.46, II2(a,1) = a
and (4.19), we deduce that

axXxg=aXg+ca= lim axgy+cqa= lim [agN—l—c(N)a]—i—a;a
N—o0 N—o0

3 3

= lim 21 IL; (a, gv) + conyll2(a, 1) | +cqa = lim 21 IL; (a, gn) + caa
1= 1=

=1L (a,9) + (2 (a, g) + callz(a, 1)] + s (a, g)

3
= ZHZ (a’ag) in (g(E)(Qa ?9)),7
i=1
which completes the proof of (4.52) and hence Theorem 4.9. O

5. FURTHER REMARKS

In this section, we list some unsolved problems on bilinear decompositions for
products of functions in Hardy spaces and Lipschitz spaces and their applications
on spaces of homogeneous type.

For any p € (0,1), # € X and t € [0,00), let Hy(X) and Lip;,, 1(X) be
the Hardy space and the Lipschitz space introduced in [14], respectively, ¢, some
Musielak-Orlicz functions, corresponding to the Musielak-Orlicz-type space L7 (X)
and Musielak-Orlicz-type Hardy space H*#?(X).

The following problem is natural extensions of Theorem 4.9.

Problem 5.1. Let (X,d, u) be a space of homogeneous type and p € (347, 1).

Prove that there exist two bounded bilinear operators . : Hy, (X) x Lipy j,_1(X) —
LY(X) and 5 : HE(X) x Lip;/,_1(X) — H¥?(X) such that, for all f € HL(X)
and g € Lipy/,_1 (&),

fxg=2(f.9)+2(f9) in (Gile,V)),
where € € (0,1] and o, ¢ € (0, €].

Problems (5.1) is also not clear even on Euclidean spaces.
Now we introduce the space H}(X), which is a variant of [46, Definition 2.2].
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Definition 5.2. Let p € (0,1], g be a non-constant Lip; /,_;(&X)-function. A func-
tion f in HE (X) is said to belong to the space H}(X) if [g, M](f), defined by
setting

lg, MI(f)(2) := M (g(x) f() —g()f () (x), Ve,

belongs to L'(X), where M is as in (4.2). Moreover, the HJ(X)-norm of f is
denoted by

1 ez vy = 1 ez, ey 9 Lipy ) + gy MICO) 220y -

Then we give the second open question of this article, which is an extension
of [46, Theorem 1.3].

Problem 5.3. Let p € (HLH, 1], (X,d,p) be a space of homogeneous type, g a
non-constant Lip; ,_ (X)-function when p € (;3,1) or BMO (X)-function when
p =1, and T a Calderén-Zygmund operator, which is bounded on L?(X), satisfying
T*1 =T*g = 0. Prove that the commutator [b, 7] maps continuously from HE(X)
into HZ, (X).

Problem 5.3 is unknown even on Euclidean spaces.

In order to introduce the third open problem, let o := n(1/p — 1), H5(X) and
Lip, ,(X) be, respectively, the local Hardy space and local Lipschitz space from [68]
with

D:={B(z,r)CX: zeX, r>px)}.

Let ¢, , be some Musielak-Orlicz type function, which corresponds to the Musielak-
Orlicz-type Hardy space H*#7r(X).

Now we are ready to state the third open problems of this section, which gener-
alizes Theorem 4.21 and Problem 5.1.
Problem 5.4. Let p € (;;77,1), a:=1/p—1, (X,d, 1) be a space of homogeneous
type satisfying the additional Assumption 4.14 and p an admissible function as
in Definition 4.12. Prove that there exist two bounded bilinear operators .Z), :
Hp(X) x Lip, ,(X) = L'(X) and 7, : HJ(X)x Lip, ,(X) — H¥»»(X) such that,
for all f € Hy(X) and g € Lip, ,(X),

Fxg=2(f.9)+7(f,9) in (Gie,9)),
where € € (0,1) and p, ¥ € (0, €].

Remark 5.5. (i) Let (X,d, ) := (RP,|-|,dz) be the Euclidean space equipped
with the D-dimensional Lebesgue measure dz and p = 1. Then HY(RP)
coincides with h?(R”) and Problem 5.4 generalizes Theorem 3.1.

(ii) Problem 5.4 is still unclear even on Euclidean spaces.

(iii) The applications of bilinear decompositions in Theorem 4.21 and Problem
5.4 to the endpoint boundedness of commutators associated to the admis-
sible function p are also possible, whose explicit forms are more difficult to
predict, the details being omitted.
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