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where T > 0 is sufficiently large, x, y ∈ Rn, f : Rn ×Rn → R1 is an integrand and
h, ξ : Rn ×Rn → R1 belong to a space of functions described below.

In our research which was summarized in [30] we were interested in turnpike
properties of the approximate solutions of problem (P1) which are independent of the
length of the interval, for all sufficiently large intervals. To have this property means,
roughly speaking, that the approximate solutions of the variational problems are
determined mainly by the integrand, and are essentially independent of the choice
of an interval and endpoint conditions, except in regions close to the endpoints of
the time interval.

It is clear that an optimal solution v : [0, T ] → Rn of the variational problem
(P1) always depends on the integrand f and on x, y, T .

We say that the integrand f has the turnpike property if for any ϵ > 0 there
exist constants L1 > L2 > 0 which depend only on |x|, |y|, ϵ such that for each
τ ∈ [L1, T − L1] the set {v(t) : t ∈ [τ, τ + L2]} is equal to a set H(f) up to ϵ in
the Hausdorff metric where H(f) ⊂ Rn is a compact set depending only on the
integrand f .

Thus if the integrand f has the turnpike property, then for large enough T the
dependence on x, y, T is not essential. In [29] this turnpike property was established
for a certain large class of integrands.

Turnpike properties are well known in mathematical economics. The term was
first coined by Samuelson in 1948 (see [24]) where he showed that an efficient expand-
ing economy would spend most of the time in the vicinity of a balanced equilibrium
path (also called a von Neumann path). This property was further investigated for
optimal trajectories of models of economic dynamics [21,30]. Many turnpike results
can be found in [30].

In [36] we studied the structure of approximate solutions of Lagrange problems
(P2) and (P3) in regions close to the endpoints of the time intervals. We showed
that in regions close to the right endpoint T of the time interval these approximate
solutions are determined only by the integrand, and are essentially independent of
the choice of the interval and the endpoint value x. For problems (P3), approximate
solutions are determined only by the integrand also in regions close to the left
endpoint 0 of the time interval.

More precisely, in [36] we define f̄(x, y) = f(x,−y) for all x, y ∈ Rn and consider
the set P(f̄) of all solutions of a corresponding infinite horizon variational problem
associated with the integrand f̄ . For given positive constants ϵ, τ , we show that if
T is large enough and v : [0, T ] → Rn is an approximate of the variational problem
(P2), then |v(T − t)− w(t)| ≤ ϵ for all t ∈ [0, τ ], where w ∈ P(f̄). Moreover, using
the Baire category approach, we showed that for most integrands f the set P(f̄) is
a singleton.

In the first part of the paper we discuss our results on the structure of approximate
solutions of Lagrange problems (P1)− (P3) obtained in [27,29,36]. The second part
of the paper contains new results on the structure of approximate solutions of Bolza
problems (P4) and (P5).

Denote by | · | the Euclidean norm in Rn. Let a be a positive constant and let
ψ : [0,∞) → [0,∞) be an increasing function such that ψ(t) → ∞ as t → ∞.
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Denote by A the set of all continuous functions f : Rn × Rn → R1 which satisfy
the following assumptions:

A(i) for each x ∈ Rn the function f(x, ·) : Rn → R1 is convex;
A(ii) f(x, u) ≥ max{ψ(|x|), ψ(|u|)|u|} − a for each (x, u) ∈ Rn ×Rn;
A(iii) for each M, ϵ > 0 there exist Γ, δ > 0 such that

|f(x1, u1)− f(x2, u2)| ≤ ϵmax{f(x1, u1), f(x2, u2)}
for each u1, u2, x1, x2 ∈ Rn which satisfy

|xi| ≤M, i = 1, 2, |ui| ≥ Γ, i = 1, 2, |x1 − x2|, |u1 − u2| ≤ δ.

It is easy to show that an integrand f = f(x, u) ∈ C1(R2n) belongs to A if
f satisfies assumptions A(i), A(ii) and if there exists an increasing function ψ0 :
[0,∞) → [0,∞) such that

max{|∂f/∂x(x, u)|, |∂f/∂u(x, u)|} ≤ ψ0(|x|)(1 + ψ(|u|)|u|)
for each x, u ∈ Rn. Here ∂f/∂x = (∂f/∂x1, . . . , ∂f/∂xn) and ∂f/∂u =
(∂f/∂u1, . . . , ∂f/∂un).

For the set A we consider the uniformity which is determined by the following
base:

E(N, ϵ, λ) = {(f, g) ∈ A×A : |f(x, u)− g(x, u)| ≤ ϵ

for all u, x ∈ Rn satisfying |x|, |u| ≤ N}
∩{(f, g) ∈ A×A : (|f(x, u)|+ 1)(|g(x, u)|+ 1)−1 ∈ [λ−1, λ]

for all x, u ∈ Rn satisfying |x| ≤ N},
where N, ϵ > 0 and λ > 1. It is known [30] that the uniform space A is metrizable
and complete.

We consider functionals of the form

(1.1) If (T1, T2, x) =

∫ T2

T1

f(x(t), x′(t))dt

where f ∈ A, −∞ < T1 < T2 <∞ and x : [T1, T2] → Rn is an absolutely continuous
(a.c.) function.

For f ∈ A, y, z ∈ Rn and real numbers T1, T2 satisfying T1 < T2 we set

Uf (T1, T2, y, z) = inf{If (T1, T2, x) : x : [T1, T2] → Rn

(1.2) is an a.c. function satisfying x(T1) = y, x(T2) = z}.
It is easy to see that −∞ < Uf (T1, T2, y, z) < ∞ for each f ∈ A, each y, z ∈ Rn

and all numbers T1, T2 satisfying T1 < T2.
A function x(·) defined on unbounded interval with the values in a finite–

dimensional Euclidean space is called absolutely continuous (a. c.) if it is abso-
lutely continuous on any bounded subinterval of its domain.

Let f ∈ A. For any a.c. function v : [0,∞) → Rn we set

(1.3) J(v) = lim inf
T→∞

T−1If (0, T, v).

The real number

(1.4) µ(f) = inf{J(v) : v : [0,∞) → Rn is an a.c. function}
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is called the minimal long-run average cost growth rate of f .

Clearly, −∞ < µ(f) <∞. By Theorems 3.6.1 and 3.6.2 of [30],

(1.5) Uf (0, T, x, y) = Tµ(f) + πf (x)− πf (y) + θfT (x, y)

for all x, y ∈ Rn and all T ∈ (0,∞), where πf : Rn → R1 is a continuous function
and

(1.6) (T, x, y) → θfT (x, y) ∈ R1 is a continuous nonnegative function

defined for all T > 0 and all x, y ∈ Rn,

πf (x) = inf{lim inf
T→∞

[If (0, T, v)− µ(f)T ] : v : [0,∞) → Rn

(1.7) is an a.c. function satisfying v(0) = x}, x ∈ Rn

and

(1.8) for every T > 0, every x ∈ Rn there is y ∈ Rn satisfying θfT (x, y) = 0.

An a.c. function x : [0,∞) → Rn is called (f)-good if the function

T → If (0, T, x)− µ(f)T, T ∈ (0,∞)

is bounded.

By Theorem 3.6.3 of [30], for each f ∈ A and each z ∈ Rn there exists an (f)-good
function v : [0,∞) → Rn satisfying v(0) = z.

In the sequel we use the following result (Proposition 4.1.1 of [30]).

Proposition 1.1. For any a.c. function x : [0,∞) → Rn either If (0, T, x) −
Tµ(f) → ∞ as T → ∞ or

sup{|If (0, T, x)− Tµ(f)| : T ∈ (0,∞)} <∞.

Moreover any (f)-good function x : [0,∞) → Rn is bounded.

We denote d(x,B) = inf{|x− y| : y ∈ B} for x ∈ Rn and B ⊂ Rn and denote by
dist(A,B) the distance in the Hausdorff metric for two sets A ⊂ Rn and B ⊂ Rn.
For every bounded a. c. function x : [0,∞) → Rn define

Ω(x) = {y ∈ Rn : there exists a sequence {ti}∞i=1 ⊂ (0,∞)

(1.9) for which ti → ∞, x(ti) → y as i→ ∞}.
We say that an integrand f ∈ A has an asymptotic turnpike property, or briefly

(ATP), if Ω(v2) = Ω(v1) for all (f)-good functions vi : [0,∞) → Rn, i = 1, 2.

By Theorem 3.1.1 of [30], there exists a set F ⊂ A which is a countable intersec-
tion of open everywhere dense subsets of A such that each integrand f ∈ F posseses
(ATP). In other words, (ATP) holds for a typical (generic) integrand f ∈ A.

By Proposition 1.1 for each integrand f ∈ A which posseses (ATP) there exists
a compact set H(f) ⊂ Rn such that Ω(v) = H(f) for each (f)-good function
v : [0,∞) → Rn. In this case we say that the set H(f) is the turnpike of f .

The following turnpike result was obtained in [27]. For its proof see also Theorem
3.1.4 of [30].
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Theorem 1.2. Assume that an integrand f ∈ A has the asymptotic turnpike prop-
erty and that M0,M1, ϵ > 0. Then there exist a neighborhood U of f in A and
numbers l, S > 0 and integers L,Q∗ ≥ 1 such that for each g ∈ U , each pair of
numbers T1 ≥ 0, T2 ≥ T1 + L+ lQ∗ and each a.c. function v : [T1, T2] → Rn which
satisfies

|v(Ti)| ≤M1, i = 1, 2,

Ig(T1, T2, v) ≤ Ug(T1, T2, v(T1), v(T2)) +M0

the inequality |v(t)| ≤ S holds for all t ∈ [T1, T2] and there exist sequences of numbers

{bi}Qi=1, {ci}
Q
i=1 ⊂ [T1, T2] such that

Q ≤ Q∗, 0 ≤ ci − bi ≤ l, i = 1, . . . , Q

and that

dist(H(f), {v(t) : t ∈ [T, T + L]}) ≤ ϵ

for each T ∈ [T1, T2 − L] \ ∪Q
i=1[bi, ci].

Denote by M the set of all functions f ∈ C1(R2n) which satisfy the following
assumptions:

∂f/∂ui ∈ C1(R2n) for i = 1, . . . , n;

the matrix (∂2f/∂ui∂uj)(x, u), i, j = 1, . . . , n is positive definite for all (x, u) ∈ R2n;

f(x, u) ≥ max{ψ(|x|), ψ(|u|)|u|} − a for all (x, u) ∈ Rn ×Rn;

there exist a number c0 > 1 and monotone increasing functions ϕi : [0,∞) → [0,∞),
i = 0, 1, 2 such that

ϕ0(t)/t→ ∞ as t→ ∞,

f(x, u) ≥ ϕ0(c0|u|)− ϕ1(|x|), x, u ∈ Rn,

max{|∂f/∂xi(x, u)|, |∂f/∂ui(x, u)|} ≤ ϕ2(|x|)(1 + ϕ0(|u|)),

x, u ∈ Rn, i = 1, . . . , n.

It is easy to see that M ⊂ A.
In [29] we established the following result which shows that for an integrand

f ∈ M, (ATP) implies the turnpike property described above with the turnpike
H(f) (for its proof see also Theorem 5.1.1 of [30]).

Theorem 1.3. Assume that an integrand f ∈ M has the asymptotic turnpike
property and that ϵ,K > 0. Then there exist a neighborhood U of f in A and
numbers M > K, l0 > l > 0, δ > 0 such that for each g ∈ U , each T ≥ 2l0 and each
a.c. function v : [0, T ] → Rn which satisfies

|v(0)|, |v(T )| ≤ K, Ig(0, T, v) ≤ Ug(0, T, v(0), v(T )) + δ

the inequality |v(t)| ≤M holds for all t ∈ [0, T ] and

(1.10) dist(H(f), {v(t) : t ∈ [τ, τ + l]}) ≤ ϵ

for each τ ∈ [l0, T − l0]. Moreover, if d(v(0),H(f)) ≤ δ, then (1.10) holds for each
τ ∈ [0, T − l0] and if d(v(T ),H(f)) ≤ δ, then (1.10) holds for each τ ∈ [l0, T − l].
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Let k ≥ 1 be an integer. Denote by Ak the set of all integrands f ∈ A∩Ck(R2n).

For any p = (p1, . . . , p2n) ∈ {0, . . . , k}2n set |p| =
∑2n

i=1 pi. For each f ∈ Ck(R2n)
and each p = (p1, . . . , p2n) ∈ {0, . . . , k}2n satisfying |p| ≤ k define

Dpf = ∂|p|f/∂yp11 . . . ∂yp2n2n .

Here D0f = f .
For the set Ak we consider the uniformity which is determined by the following

base:

Ek(N, ϵ, λ) = {(f, g) ∈ Ak ×Ak : |Dpf(x, u)−Dpg(x, u)| ≤ ϵ

for all u, x ∈ Rn satisfying |x|, |u| ≤ N

and each p ∈ {0, . . . , k}2n satisfying |p| ≤ k}

∩{(f, g) ∈ Ak ×Ak : (|f(x, u)|+ 1)(|g(x, u)|+ 1)−1 ∈ [λ−1, λ]

for all x, u ∈ Rn satisfying |x| ≤ N},
where N, ϵ > 0 and λ > 1. It is known (see Chapter 5 of [30]) that the uniform
space Ak is metrizable and complete.

Set A0 = A, M0 = M. For each integer k ≥ 1 set Mk = M∩Ak.
Let k ≥ 0 be an integer. Denote by M̄k the closure of Mk in Ak and consider

the topological subspace M̄k ⊂ Ak equipped with the relative topology.
Denote by L the set of all f ∈ M∩ C2(R2n) such that

∂f/∂ui ∈ C2(R2n) for i = 1, . . . , n.

For any k ∈ {0, 1, 2} denote by Lk the closure of L in the space Ak and consider
the topological subspace Lk ⊂ Ak equipped with the relative topology.

In [29] we established the following generic turnpike result which shows that
most integrands possess the turnpike property described above (for its proof see
also Theorem 5.1.2 of [30]).

Theorem 1.4. Let M be one of the following spaces:

Lk, k = 0, 1, 2, M̄q, q ≥ 0.

Then there exists a set F ⊂ M which is a countable intersection of open everywhere
dense subsets of M such that each f ∈ F has (ATP) and the following property.

For each ϵ,K > 0 there exist a neighborhood U of f in A and numbers M > K,
l0 > l > 0, δ > 0 such that for each g ∈ U , each T ≥ 2l0 and each a.c. function
v : [0, T ] → Rn which satisfies

|v(0)|, |v(T )| ≤ K, Ig(0, T, v) ≤ Ug(0, T, v(0), v(T )) + δ

the inequality |v(t)| ≤M holds for all t ∈ [0, T ] and

(1.11) dist(H(f), {v(t) : t ∈ [τ, τ + l]}) ≤ ϵ

for each τ ∈ [l0, T − l0]. Moreover, if d(v(0),H(f)) ≤ δ, then (1.11) holds for each
τ ∈ [0, T − l0] and if d(v(T ),H(f)) ≤ δ, then (1.11) holds for each τ ∈ [l0, T − l].
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Note that in [29,30] the result stated above was proved in the case when M in any
of the spaces M̄q, q ≥ 0. In the case when M is in any of the spaces Lq, q = 0, 1, 2
Theorem 1.4 is proved with the same proof.

Our paper is organized as follows. Turnpike properties for problems (P2) and
(P3) are considered in Section 2. Section 3 contains preliminaries. In Section 4
we discuss the structure of approximate solutions of Lagrange problems (P2) and
(P3) in the regions close to the endpoint of time intervals. In Section 5 we begin
to study Bolza problems (P4) and (P5) and state a boundedness result (Theorem
5.1) and turnpike results (Theorems 5.3-5.6). Section 6 contains results on the the
structure of approximate solutions of Bolza problems (P4) and (P5) in the regions
close to the endpoints of time intervals (Theorems 6.2-6.9). Auxiliary results are
collected in Section 7. Theorem 5.1 is proved in Section 8. The proofs of Theorems
5.3, 5.4 and 5.6 are given in Sections 9, 10 and 11 respectively. In Section 12 we
prove auxiliary results for Theorems 6.2 and 6.3 which are proved in Sections 13
and 14 respectively. Section 15 contains auxiliary results for Theorems 6.5 and 6.8
which are proved in Section 16.

2. Turnpike results for problems (P2) and (P3)

Theorems 1.2-1.4 establish the turnpike property for the problems (P1). In this
section we obtain their analogs for the problems (P2) and (P3).

For f ∈ A, x ∈ Rn and a real number T > 0 set

Uf (T, x) = inf{If (0, T, v) : v : [0, T ] → Rn

(2.1) is an a.c. function satisfying v(0) = x},

(2.2) Uf (T ) = inf{If (0, T, v) : v : [0, T ] → Rn is an a.c. function}.

The following result plays an important role in our study.

Theorem 2.1. Let f ∈ A and let M1,M2, c > 0. Then there exist a neighborhood
U of f in A and S > 0 such that for each g ∈ U , each T1 ∈ [0,∞) and each
T2 ∈ [T1 + c,∞) the following properties hold:

(i) if an a. c. function v : [T1, T2] → Rn satisfies

|v(Ti)| ≤M1, i = 1, 2, Ig(T1, T2, v) ≤ Ug(T1, T2, v(T1), v(T2)) +M2,

then

(2.3) |v(t)| ≤ S, t ∈ [T1, T2];

(ii) if an a. c. function v : [T1, T2] → Rn satisfies

|v(T1)| ≤M1, I
g(T1, T2, v) ≤ Ug(T2 − T1, v(T1)) +M2,

then (2.3) holds;
(iii) if an a. c. function v : [T1, T2] → Rn satisfies

Ig(T1, T2, v) ≤ Ug(T2 − T1) +M2,

then (2.3) holds.
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The properties (i) and (ii) were established in [28]. See also Theorem 1.2.3 of [30].
The property (iii) is proved analogously to the properties (i) and (ii).

Theorems 1.2 and 2.1 imply the following turnpike result.

Theorem 2.2. Assume that an integrand f ∈ A has the asymptotic turnpike prop-
erty and that M0,M1, ϵ > 0. Then there exist a neighborhood U of f in A, numbers
l, S > 0 and integers L,Q∗ ≥ 1 such that for each g ∈ U , each T ≥ L+ lQ∗ and each
a.c. function v : [0, T ] → Rn which satisfies at least one of the following conditions:

|v(0)|, |v(T )| ≤M1, I
g(0, T, v) ≤ Ug(0, T, v(0), v(T )) +M0;

|v(0)| ≤M1, I
g(0, T, v) ≤ Ug(T, v(0)) +M0;

Ig(0, T, v) ≤ Ug(T ) +M0

the inequality |v(t)| ≤ S holds for all t ∈ [0, T ] and there exist sequences of numbers

{bi}Qi=1, {ci}
Q
i=1 ⊂ [0, T ] such that

Q ≤ Q∗, 0 ≤ ci − bi ≤ l, i = 1, . . . , Q

and that
dist(H(f), {v(t) : t ∈ [τ, τ + L]}) ≤ ϵ

for each τ ∈ [0, T − L] \ ∪Q
i=1[bi, ci].

Theorems 1.3 and 2.1 imply the following result.

Theorem 2.3. Assume that an integrand f ∈ M has the asymptotic turnpike
property and that ϵ,K > 0. Then there exist a neighborhood U of f in A and
numbers M > K, l0 > l > 0, δ > 0 such that for each g ∈ U , each T ≥ 2l0 and each
a.c. function v : [0, T ] → Rn which satisfies at least one of the two conditions

|v(0)| ≤ K, Ig(0, T, v) ≤ Ug(T, v(0)) + δ;

Ig(0, T, v) ≤ Ug(T ) + δ

the inequality |v(t)| ≤M holds for all t ∈ [0, T ] and that

(2.4) dist(H(f), {v(t) : t ∈ [τ, τ + l]}) ≤ ϵ

for each τ ∈ [l0, T − l0]. Moreover, if d(v(0),H(f)) ≤ δ, then (2.4) holds for each
τ ∈ [0, T − l0] and if d(v(T ),H(f)) ≤ δ, then (2.4) holds for each τ ∈ [l0, T − l].

Theorems 1.4 and 2.1 imply the following result.

Theorem 2.4. Let M be one of the following spaces:

Lk, k = 0, 1, 2, M̄q, q ≥ 0

and let the set F ⊂ M be as guaranteed by Theorem 1.4. Assume that f ∈ F and
that ϵ,K > 0. Then there exist a neighborhood U of f in A and numbers M > K,
l0 > l > 0, δ > 0 such that for each g ∈ U , each T ≥ 2l0 and each a.c. function
v : [0, T ] → Rn which satisfies at least one of the two conditions

|v(0)| ≤ K, Ig(0, T, v) ≤ Ug(T, v(0)) + δ;

Ig(0, T, v) ≤ Ug(T ) + δ

the inequality |v(t)| ≤M holds for all t ∈ [0, T ] and that

(2.5) dist(H(f), {v(t) : t ∈ [τ, τ + l]}) ≤ ϵ
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for each τ ∈ [l0, T − l0]. Moreover, if d(v(0),H(f)) ≤ δ, then (2.5) holds for each
τ ∈ [0, T − l0] and if d(v(T ),H(f)) ≤ δ, then (2.5) holds for each τ ∈ [l0, T − l].

3. Preliminaries

For each f ∈ A define

(3.1) f̄(x, y) = f(x,−y), x, y ∈ Rn.

It is clear that for each f ∈ A, f̄ ∈ A, if f ∈ M, then f̄ ∈ M, the mapping
f → f̄ , f ∈ A is continuous. This implies that f̄ ∈ M̄ for each f ∈ M̄. It is easy
to see that for each integer k ≥ 1, f̄ ∈ Ak for all f ∈ Ak, for each integer k ≥ 0,
f̄ ∈ Mk for all f ∈ Mk and that the mapping f → f̄ , f ∈ Ak is continuous. This
implies that for each integer k ≥ 0, f̄ ∈ M̄k for each f ∈ M̄k. Evidently, f̄ ∈ L for
all f ∈ L and for any k ∈ {0, 1, 2} and any f ∈ Lk, f̄ ∈ Lk.

Let f ∈ A. For any T > 0 and any a. c. function v : [0, T ] → Rn, put

(3.2) v̄(t) = v(T − t), t ∈ [0, T ].

Clearly, for each T > 0 and each a. c. function v : [0, T ] → Rn,

(3.3)

∫ T

0
f̄(v̄(t), v̄′(t))dt =

∫ T

0
f(v(T − t), v′(T − t))dt =

∫ T

0
f(v(t), v′(t))dt.

The next result easily follows from (3.3).

Proposition 3.1. Let f ∈ A, T > 0, M ≥ 0 and vi : [0, T ] → Rn, i = 1, 2 be an a.
c. functions. Then

If (0, T, v1) ≤ If (0, T, v2) +M if and only if I f̄ (0, T, v̄1) ≤ I f̄ (0, T, v̄2) +M.

For each f ∈ A, each x ∈ Rn and each real number T > 0 set

Uf (T, x) = inf{If (0, T, v) : v : [0, T ] → Rn

(3.4) is an a.c. function satisfying v(T ) = x},

Proposition 3.1 implies the following result.

Proposition 3.2. Let f ∈ A, T > 0,M ≥ 0 and v : [0, T ] → Rn be an a. c.
function. Then

if If (0, T, v) ≤ Uf (T ) +M, then I f̄ (0, T, v̄) ≤ U f̄ (T ) +M ;

if If (0, T, v) ≤ Uf (0, T, v(0), v(T )) +M,

then I f̄ (0, T, v̄) ≤ U f̄ (0, T, v̄(0), v̄(T )) +M ;

if If (0, T, v) ≤ Uf (T, v(T )) +M, then I f̄ (0, T, v̄) ≤ U f̄ (T, v̄(0)) +M ;

if If (0, T, v) ≤ Uf (T, v(0)) +M, then I f̄ (0, T, v̄) ≤ Uf̄ (T, v̄(T )) +M.

The next result follows from Proposition 3.2, Theorem 2.1 and the continuity of
the mapping f → f̄ , f ∈ A.
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Proposition 3.3. Let f ∈ A and letM1,M2, c > 0. Then there exist a neighborhood
U of f in A and S > 0 such that for each g ∈ U , each T ≥ c and each a. c. function
v : [0, T ] → Rn which satisfies

Ig(0, T, v) ≤ Ug(T, v(T )) +M2, |v(T )| ≤M1

the inequality |v(t)| ≤ S holds for all t ∈ [0, T ].

The following result was proved in [36].

Proposition 3.4. Assume that f ∈ A has (ATP). Then f̄ has (ATP) and H(f̄) =
H(f).

The following result is proved in [30] (see Chapter 4, Proposition 4.2.1).

Proposition 3.5. Let f ∈ A. Then πf (x) → ∞ as |x| → ∞.

Let f ∈ A. Define

(3.5) D(f) = {x ∈ Rn : πf (x) ≤ πf (y) for all y ∈ Rn}.
Since the function πf is continuous it follows from Proposition 3.5 that the set D(f)
is nonempty, bounded and closed.

For each τ1 ∈ R1, τ2 > τ1, each r1, r2 ∈ [τ1, τ2] satisfying r1 < r2 and each a.c.
function u : [τ1, τ2] → Rn set

(3.6) Γf (r1, r2, u) = If (r1, r2, u)− πf (u(r1)) + πf (u(r2))− (r2 − r1)µ(f).

In view of (1.2), (1.5), (1.6) and (3.6),

Γf (r1, r2, u) ≥ 0 for each τ1 ∈ R1, τ2 > τ1, each r1, r2 ∈ [τ1, τ2]

(3.7) satisfying r1 < r2 and each a.c. function u : [τ1, τ2] → Rn.

Proposition 3.6 (Theorem 3.6.3 of [30]). Let f ∈ A. For every x ∈ Rn there exists
an (f)-good function v : [0,∞) → Rn such that v(0) = x and Γf (T1, T2, v) = 0 for
each T1 ≥ 0 and each T2 > T1.

Let f ∈ A. An a. c. function v : [0,∞) → Rn is called (f)-perfect if
Γf (T1, T2, v) = 0 for all T1 ≥ 0 and all T2 > T1.

Propositions 3.5 and 1.1 imply the following result.

Proposition 3.7. Let f ∈ A and v : [0,∞) → Rn be an (f)-perfect function. Then
the function v is bounded and (f)-good.

4. Structure of solutions of Lagrange problems near the endpoints

For each f ∈ A and each x ∈ Rn denote by P(f, x) the set of all (f)-perfect
functions v : [0,∞) → Rn such that v(0) = x. In view of Proposition 3.6 this set is
nonempty.

Let f ∈ A and x ∈ Rn. By Proposition 3.7 any function belonging to P(f, x) is
bounded and (f)-good. The following results were obtained in [36].

Proposition 4.1. Let f ∈ A and D be a nonempty bounded subset of Rn. Then
there exist a number S > 0 and a neighborhood U of f in A such that for each
x ∈ D, each g ∈ U and each v ∈ P(g, x), |v(t)| ≤ S for all t ≥ 0.
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Theorem 4.2. Suppose that an integrand f ∈ M has the asymptotic turnpike
property. Let ϵ,M, τ0 > 0. Then there exist a neighborhood U of f in A and
numbers δ ∈ (0, ϵ) and T0 > τ0 such that for each g ∈ U , each T ≥ T0 and each a.c.
function v : [0, T ] → Rn which satisfies

|v(0)| ≤M, Ig(0, T, v) ≤ Ug(T, v(0)) + δ

there exists an a. c. function w ∈ ∪{P(f̄ , z) : z ∈ D(f̄)} such that |v(T − t) −
w(t)| ≤ ϵ for all t ∈ [0, τ0].

Theorem 4.3. Suppose that an integrand f ∈ M has the asymptotic turnpike
property. Let ϵ,M, τ0 > 0. Then there exist a neighborhood U of f in A and
numbers δ ∈ (0, ϵ) and T0 > τ0 such that for each g ∈ U , each T ≥ T0 and each a.c.
function v : [0, T ] → Rn which satisfies

|v(T )| ≤M, Ig(0, T, v) ≤ Ug(T, v(T )) + δ

there exists an a. c. function w ∈ ∪{P(f, z) : z ∈ D(f)} such that |v(t)− w(t)| ≤
ϵ for all t ∈ [0, τ0].

Theorem 4.4. Suppose that an integrand f ∈ M has the asymptotic turnpike
property. Let ϵ, τ0 > 0. Then there exist a neighborhood U of f in A and numbers
δ ∈ (0, ϵ) and T0 > τ0 such that for each g ∈ U , each T ≥ T0 and each a.c. function
v : [0, T ] → Rn which satisfies

Ig(0, T, v) ≤ Ug(T ) + δ

there exist a. c. functions

w1 ∈ ∪{P(f, z) : z ∈ D(f)} and w2 ∈ ∪{P(f̄ , z) : z ∈ D(f̄)}
such that |v(t)− w1(t)| ≤ ϵ and |v(T − t)− w2(t)| ≤ ϵ for all t ∈ [0, τ0].

Theorem 4.5. Let M be one of the following spaces:

Lk, k = 0, 1, 2, M̄q, q ≥ 3.

Then there exists a set F ⊂ M which is a countable intersection of open everywhere
dense subsets of M such that for each f ∈ F there exist a unique pair of points
zf , zf̄ ∈ Rn satisfying D(f) = {zf} and D(f̄) = {zf̄}, a unique (f)-perfect function

vf : [0,∞) → Rn satisfying vf (0) = zf and a unique (f̄)-perfect function vf̄ :

[0,∞) → Rn satisfying vf̄ (0) = zf̄ and such that the following assertion holds.
Let ϵ,M, τ0 > 0. Then there exist a neighborhood U of f in A and numbers

δ ∈ (0, ϵ) and T0 > τ0 such that for each g ∈ U , each T ≥ T0 and each a.c. function
v : [0, T ] → Rn,

if |v(0)| ≤M, Ig(0, T, v) ≤ Ug(T, v(0)) + δ, then

|v(T − t)− vf̄ (t)| ≤ ϵ for all t ∈ [0, τ0],

if |v(T )| ≤M, Ig(0, T, v) ≤ Ug(T, v(T )) + δ, then

|v(t)− vf (t)| ≤ ϵ for all t ∈ [0, τ0],

if Ig(0, T, v) ≤ Ug(T ) + δ, then

|v(T − t)− vf̄ (t)| ≤ ϵ and |v(t)− vf (t)| ≤ ϵ for all t ∈ [0, τ0].
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5. Turnpike properties of Bolza problems

Denote my mes(E) the Lebesgue measure of a Lebesgue measurable set E ⊂ R1.
Let a1 > 0. Denote by A(Rn) the set of all lower semicontinuous functions h : Rn →
R1 which are bounded on bounded subsets of Rn and satisfy

(5.1) h(z) ≥ −a1 for all z ∈ Rn.

For simplicity we set A = A(Rn). We equip the set A with the uniformity which is
determined by the following base:

E(N, ϵ) = {(h1, h2) ∈ A× A : |h1(z)− h2(z)| ≤ ϵ

(5.2) for each z ∈ Rn satisfying |z| ≤ N},
where N, ϵ > 0. It is not difficult to see that the uniform space A is metrizable and
complete. We consider the following Bolza variational problems

(P4) Ig(T1, T2, v) + h(v(T2)) → min, v(T1) = y,

v : [T1, T2] → Rn is an a. c. function,

(P5) Ig(T1, T2, v) + h(v(T2)) + ξ(v(T1)) → min,

v : [T1, T2] → Rn is an a. c. function,

where g ∈ A, h, ξ ∈ A, y ∈ Rn and −∞ < T1 < T2 <∞. Set

σ(g, h, y, T1, T2) = inf{Ig(T1, T2, v) + h(v(T2)) :

(5.3) v : [T1, T2] → Rn is an a. c. function, v(T1) = y},
σ(g, h, ξ, T1, T2) = inf{Ig(T1, T2, v) + h(v(T2)) + ξ(v(T1)) :

(5.4) v : [T1, T2] → Rn is an a. c. function},
σ̂(g, ξ, z, T1, T2) = inf{Ig(T1, T2, v) + ξ(v(T1)) :

(5.5) v : [T1, T2] → Rn is an a. c. function, v(T2) = z},
σ(g, h, ξ, y, z, T1, T2) = inf{Ig(T1, T2, v) + h(v(T2)) + ξ(v(T1)) :

(5.6) v : [T1, T2] → Rn is an a. c. function, v(T1) = y, v(T2) = z}.
We begin with the following uniform boundedness result which is proved in Sec-

tion 8.

Theorem 5.1. Let f ∈ A, h1, h2 ∈ A and let M1,M2, c > 0. Then there exist a
neighborhood U of f in A, a neighborhood Vi of hi in A, i = 1, 2 and S > 0 such
that for each g ∈ U , each ξi ∈ Vi, i = 1, 2 each T1 ∈ [0,∞) and each T2 ∈ [T1+c,∞)
the following properties hold:

(i) if an a. c. function v : [T1, T2] → Rn satisfies

|v(T1)| ≤M1,

Ig(T1, T2, v) + ξ1(v(T2)) ≤ σ(g, ξ1, v(T1), T1, T2) +M2,

then

(5.7) |v(t)| ≤ S, t ∈ [T1, T2];
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(ii) if an a. c. function v : [T1, T2] → Rn satisfies

Ig(T1, T2, v) + ξ1(v(T2)) + ξ2(v(T1)) ≤ σ(g, ξ1, ξ2, T1, T2) +M2

then (5.7) holds.

Relation (3.3) implies the following result.

Proposition 5.2. Let g ∈ A, h ∈ A, T > 0,M ≥ 0, v : [0, T ] → Rn be an a. c.
function and v̄(t) = v(T − t), t ∈ [0, T ]. Then the following assertions hold:

Ig(0, T, v) + h(v(T )) + ξ(v(0)) ≤ σ(g, h, ξ, 0, T ) +M

if and only if I ḡ(0, T, v̄) + ξ(v̄(T )) + h(v̄(0)) ≤ σ(ḡ, ξ, h, 0, T ) +M ;

Ig(0, T, v) + h(v(T )) ≤ σ(g, h, v(0), 0, T ) +M

if and only if I ḡ(0, T, v̄) + h(v̄(0)) ≤ σ̂(ḡ, h, v̄(T ), 0, T ) +M ;

Ig(0, T, v) + h(v(0)) ≤ σ̂(g, h, v(T ), 0, T ) +M

if and only if I ḡ(0, T, v̄) + h(v̄(T )) ≤ σ(ḡ, h, v̄(0), 0, T ) +M.

Let f ∈ A have (ATP). By Theorem 2.1, there exist a neighborhood Uf of f in
A and Sf > 0 such that the following properties hold:

(P1) for each g ∈ Uf , each T ≥ 1 and each a. c. function u : [0, T ] → Rn

satisfying
Ig(0, T, u) ≤ Ug(T ) + 1

we have
|u(t)| ≤ Sf , t ∈ [0, T ];

(P2) for each g ∈ Uf , each T ≥ 1 and each a. c. function u : [0, T ] → Rn

satisfying
d(u(0),H(f)) ≤ 1,

Ig(0, T, u) ≤ Ug(T, u(0)) + 1

we have
|u(t)| ≤ Sf , t ∈ [0, T ].

The following turnpike results for Bolza variational problems show that the turn-
pike phenomenon, for approximate solutions on large intervals, is stable under small
perturbations of the objective functions.

Theorem 5.3. Assume that an integrand f ∈ A has the asymptotic turnpike prop-
erty and that M0,M1,M2, ϵ > 0. Then there exist a neighborhood U of f in A,
numbers l, S > 0 and integers L,Q∗ ≥ 1 such that for each g ∈ U , each T ≥ L+lQ∗,
each h, ξ ∈ A satisfying

|h(z)|, |ξ(z)| ≤M2 for all z ∈ Rn such that |z| ≤ Sf

and each a.c. function v : [0, T ] → Rn which satisfies at least one of the following
conditions:

(a)
|v(0)| ≤M0,

Ig(0, T, v) + h(v(T )) ≤ σ(g, h, v(0), 0, T ) +M1;
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(b)
Ig(0, T, v) + h(v(T )) + ξ(v(0)) ≤ σ(g, h, ξ, 0, T ) +M1

the inequality |v(t)| ≤ S holds for all t ∈ [0, T ] and there exist sequences of numbers
{bi}qi=1, {ci}

q
i=1 ⊂ [0, T ] such that

q ≤ Q∗, 0 ≤ ci − bi ≤ l, i = 1, . . . , q

and that
dist(H(f), {v(t) : t ∈ [τ, τ + L]}) ≤ ϵ

for each τ ∈ [0, T − L] \ ∪q
i=1[bi, ci].

Theorem 5.3 is proved in Section 9.
The next result is proved in Section 10.

Theorem 5.4. Assume that an integrand f ∈ M has the asymptotic turnpike
property and that ϵ,M0 > 0. Then there exist a neighborhood U of f in A and
numbers M1 > M0, l1 > l > 0, δ > 0 such that for each g ∈ U , each T ≥ 2l1 + l
and each a.c. function v : [0, T ] → Rn which satisfies

|v(0)|, |v(T )| ≤M0,

Ig(0, T, v) ≤ Ug(0, T, v(0), v(T ))) +M0

and
Ig(S, S + l1, v) ≤ Ug(S, S + l1, v(S), v(S + l1)) + δ

for each S ∈ [0, T − l1], the inequality |v(t)| ≤ M1 holds for all t ∈ [0, T ] and that
there exist

τ1 ∈ [0, l1], τ2 ∈ [T − l1, T ]

such that for all τ ∈ [τ1, τ2 − l],

dist(H(f), {v(t) : t ∈ [τ, τ + l]}) ≤ ϵ.

Moreover, if d(v(0),H(f)) ≤ δ, then τ1 = 0 nd if d(v(T ),H(f)) ≤ δ, then τ2 = T .

Theorems 2.1 and 5.4 imply the following result.

Theorem 5.5. Assume that an integrand f ∈ M has the asymptotic turnpike
property and that ϵ,M0,M1 > 0. Then there exist a neighborhood U of f in A and
numbers M2 > M1,M0, l1 > l > 0, δ > 0 such that for each g ∈ U , each T ≥ 2l1+ l
and each a.c. function v : [0, T ] → Rn which satisfies at least one of the following
conditions below:

|v(0)|, |v(T )| ≤M0,

Ig(0, T, v) ≤ Ug(0, T, v(0), v(T )) +M1;

|v(0)| ≤M0, I
g(0, T, v) ≤ Ug(T, v(0)) +M1;

Ig(0, T, v) ≤ Ug(T ) +M1

and
Ig(S, S + l1, v) ≤ Ug(S, S + l1, v(S), v(S + l1)) + δ

for each S ∈ [0, T − l1], the inequality |v(t)| ≤ M2 holds for all t ∈ [0, T ] and that
there exist

τ1 ∈ [0, l1], τ2 ∈ [T − l1, T ]
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such that for all τ ∈ [τ1, τ2 − l],

dist(H(f), {v(t) : t ∈ [τ, τ + l]}) ≤ ϵ.

Moreover, if d(v(0),H(f)) ≤ δ, then τ1 = 0 and if d(v(T ),H(f)) ≤ δ, then τ2 = T .

The next result is proved in Section 11.

Theorem 5.6. Assume that an integrand f ∈ M has the asymptotic turnpike
property and that ϵ,M0,M1,M2 > 0. Then there exist a neighborhood U of f in A
and numbers S > 0, L > l > 0, δ > 0 such that for each g ∈ U , each h, ξ ∈ A
satisfying

|h(z)|, |ξ(z)| ≤M2 for all z ∈ Rn such that |z| ≤ Sf ,

each T ≥ 2L+ l and each a.c. function v : [0, T ] → Rn which satisfies at least one
of the following conditions below:

(a) |v(0)| ≤M0, I
g(0, T, v) + h(v(T )) ≤ σ(g, h, v(0), 0, T ) +M1;

(b)
Ig(0, T, v) + h(v(T )) + ξ(v(0)) ≤ σ(g, h, ξ, 0, T ) +M1

and such that for each τ ∈ [0, T − L],

Ig(τ, τ + L, v) ≤ Ug(τ, τ + L, v(τ), v(τ + L)) + δ

the inequality |v(t)| ≤ S holds for all t ∈ [0, T ] and that there exist

τ1 ∈ [0, L], τ2 ∈ [T − L, T ]

such that for all τ ∈ [τ1, τ2 − l],

dist(H(f), {v(t) : t ∈ [τ, τ + l]}) ≤ ϵ.

Moreover, if d(v(0),H(f)) ≤ δ, then τ1 = 0 and if d(v(T ),H(f)) ≤ δ, then τ2 = T .

6. Structure of solutions of Bolza problems near the endpoints

For each nonempty set X and each η : X → R1 define

inf(η) = inf{η(x) : x ∈ X}.
Let f ∈ M have the asymptotic turnpike property and let h, ξ ∈ A. Proposition
3.5 and (5.1) imply the following result.

Proposition 6.1. The function πf + h is lower semicontinuous, for every M > 0
the set

{x ∈ Rn : (πf + h)(x) ≤M}
is bounded, inf(πf + h) is finite and the function πf + h has a point of minimum.

The next result is proved in Section 13.

Theorem 6.2. Suppose that an integrand f ∈ M has the asymptotic turnpike
property and that h ∈ A. Let ϵ,M,L0 > 0. Then there exist a neighborhood U of f
in A, a neighborhood V of h in A and numbers δ ∈ (0, ϵ) and T0 > L0 such that for
each T ≥ T0, each g ∈ U , each ξ ∈ V and each a.c. function v : [0, T ] → Rn which
satisfies

|v(0)| ≤M,

Ig(0, T, v) + ξ(v(T )) ≤ σ(g, ξ, v(0), 0, T ) + δ
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there exists an (f̄)-perfect function w : [0,∞) → Rn such that

(πf̄ + h)(w(0)) = inf(πf̄ + h),

|v(T − t)− w(t)| ≤ ϵ for all t ∈ [0, L0].

The proof of the following result is given in Section 14.

Theorem 6.3. Suppose that an integrand f ∈ M has the asymptotic turnpike
property and that h1, h2 ∈ A. Let ϵ, L0 > 0. Then there exist a neighborhood U of
f in A, a neighborhood Vi of hi, i = 1, 2 in A and numbers δ ∈ (0, ϵ) and T0 > L0

such that for each T ≥ T0, each g ∈ U , each ξi ∈ Vi, i = 1, 2 and each a.c. function
v : [0, T ] → Rn which satisfies

Ig(0, T, v) + ξ1(v(T )) + ξ2(v(0)) ≤ σ(g, ξ1, ξ2, 0, T ) + δ

there exists an (f)-perfect function w1 : [0,∞) → Rn and an (f̄)-perfect function
w2 : [0,∞) → Rnsuch that

(πf + h2)(w1(0)) = inf(πf + h2),

(πf̄ + h1)(w2(0)) = inf(πf̄ + h1),

|v(t)− w1(t)| ≤ ϵ for all t ∈ [0, L0].

|v(T − t)− w2(t)| ≤ ϵ for all t ∈ [0, L0].

Theorem 6.4. Let h ∈ A and M be one of the following spaces:

Lk, k = 0, 1, 2, M̄q, q ≥ 3.

Then there exists a set F ⊂ M which is a countable intersection of open everywhere
dense subsets of M such that for each f ∈ F there exist a unique pair of points
zf , zf̄ ∈ Rn satisfying

{z ∈ Rn : (πf + h)(z) = inf(πf + h)} = {zf},

{z ∈ Rn : (πf̄ + h)(z) = inf(πf̄ + h)} = {zf̄},
a unique (f)-perfect function vf : [0,∞) → Rn satisfying vf (0) = zf and a unique
(f̄)-perfect function vf̄ : [0,∞) → Rn satisfying vf̄ (0) = zf̄ and such that the
following assertion holds.

Let ϵ,M, τ0 > 0. Then there exist a neighborhood U of f in A, a neighborhood V
of h in A and numbers δ ∈ (0, ϵ) and T0 > τ0 such that for each g ∈ U , each ξ ∈ V,
each T ≥ T0 and each a.c. function v : [0, T ] → Rn,

if |v(0)| ≤M, Ig(0, T, v) + ξ(v(T )) ≤ σ(g, ξ, v(0), 0, T ) + δ, then

|v(T − t)− vf̄ (t)| ≤ ϵ for all t ∈ [0, τ0];

if |v(T )| ≤M, Ig(0, T, v) + ξ(v(0)) ≤ σ̂(g, ξ, v(T ), 0, T ) + δ, then

|v(t)− vf (t)| ≤ ϵ for all t ∈ [0, τ0].

Theorem 6.4 follows from the continuity of the mapping f → f̄ , f ∈ Ak, k =
0, 1, . . . , Proposition 5.2 and the following result which is proved in Section 16.
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Theorem 6.5. Let h ∈ A and M be one of the following spaces:

Lk, k = 0, 1, 2, M̄q, q ≥ 3.

Then there exists a set F ⊂ M which is a countable intersection of open everywhere
dense subsets of M such that for each f ∈ F there exist a unique point zf ∈ Rn

satisfying
{z ∈ Rn : (πf + h)(z) = inf(πf + h)} = {zf}

and a unique (f)-perfect function vf : [0,∞) → Rn satisfying vf (0) = zf and such
that the following assertion holds.

Let ϵ,M, τ0 > 0. Then there exist a neighborhood U of f in A, a neighborhood V
of h in A and numbers δ ∈ (0, ϵ) and T0 > τ0 such that for each g ∈ U , each ξ ∈ V,
each T ≥ T0 and each a.c. function v : [0, T ] → Rn such that

|v(T )| ≤M, Ig(0, T, v) + ξ(v(0)) ≤ σ̂(g, ξ, v(T ), 0, T ) + δ

the inequality |v(t)− vf (t)| ≤ ϵ holds for all t ∈ [0, τ0].

Theorems 5.1 and 6.4 imply the following result.

Theorem 6.6. Let h1, h2 ∈ A and M be one of the following spaces:

Lk, k = 0, 1, 2, M̄q, q ≥ 3.

Then there exists a set F ⊂ M which is a countable intersection of open everywhere
dense subsets of M such that for each f ∈ F there exist a unique pair of points
zf , zf̄ ∈ Rn satisfying

{z ∈ Rn : (πf + h1)(z) = inf(πf + h1)} = {zf},

{z ∈ Rn : (πf̄ + h2)(z) = inf(πf̄ + h2)} = {zf̄},
a unique (f)-perfect function vf : [0,∞) → Rn satisfying vf (0) = zf and a unique
(f̄)-perfect function vf̄ : [0,∞) → Rn satisfying vf̄ (0) = zf̄ and such that the
following assertion holds.

Let ϵ,M, τ0 > 0. Then there exist a neighborhood U of f in A, a neighborhood Vi

of hi, i = 1, 2 in A and numbers δ ∈ (0, ϵ) and T0 ≥ τ0 such that for each g ∈ U ,
each ξi ∈ Vi, i = 1, 2, each T ≥ T0 and each a.c. function v : [0, T ] → Rn which
satisfies

Ig(0, T, v) + ξ1(v(T )) + ξ2(v(0)) ≤ σ(g, ξ1, ξ2, , 0, T ) + δ,

for all t ∈ [0, τ0], |v(T − t)− vf̄ (t)| ≤ ϵ, |v(t)− vf (t)| ≤ ϵ.

In the next theorems M is one of the following spaces:

Lk, k = 0, 1, 2, M̄q, q ≥ 3

and the spaces M× A and M× A× A are equipped with the product topology.

Theorem 6.7. There exists a set F ⊂ M× A which is a countable intersection of
open everywhere dense subsets of M×A such that for each (f, h) ∈ F there exist a
unique pair of points zf,h, zf̄ ,h ∈ Rn satisfying

{z ∈ Rn : (πf + h)(z) = inf(πf + h)} = {zf,h},

{z ∈ Rn : (πf̄ + h)(z) = inf(πf̄ + h)} = {zf̄ ,h},
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a unique (f)-perfect function vf,h : [0,∞) → Rn satisfying vf,h(0) = zf,h and a
unique (f̄)-perfect function vf̄ ,h : [0,∞) → Rn satisfying vf̄ ,h(0) = zf̄ ,h and such
that the following assertion holds.

Let ϵ,M, τ0 > 0. Then there exist a neighborhood U of (f, h) in M × A and
numbers δ ∈ (0, ϵ) and T0 > τ0 such that for each (g, ξ) ∈ U , each T ≥ T0 and each
a.c. function v : [0, T ] → Rn,

if |v(0)| ≤M, Ig(0, T, v) + ξ(v(T )) ≤ σ(g, ξ, v(0), 0, T ) + δ, then

|v(T − t)− vf̄ ,h(t)| ≤ ϵ for all t ∈ [0, τ0];

if |v(T )| ≤M, Ig(0, T, v) + ξ(v(0)) ≤ σ̂(g, ξ, v(T ), 0, T ) + δ, then

|v(t)− vf,h(t)| ≤ ϵ for all t ∈ [0, τ0].

Theorem 6.7 follows from the continuity of the mapping f → f̄ , f ∈ Ak, k =
0, 1, . . . , Proposition 5.2 and the following result which is proved in Section 16.

Theorem 6.8. There exists a set F ⊂ M× A which is a countable intersection of
open everywhere dense subsets of M×A such that for each (f, h) ∈ F there exist a
unique point zf,h ∈ Rn satisfying

{z ∈ Rn : (πf + h)(z) = inf(πf + h)} = {zf,h}
and a unique (f)-perfect function vf,h : [0,∞) → Rn satisfying vf,h(0) = zf,h and
such that the following assertion holds.

Let ϵ,M, τ0 > 0. Then there exist a neighborhood U of (f, h) in M × A and
numbers δ ∈ (0, ϵ) and T0 > τ0 such that for each (g, ξ) ∈ U , each T ≥ T0 and each
a.c. function v : [0, T ] → Rn which satisfies

|v(T )| ≤M, Ig(0, T, v) + ξ(v(0)) ≤ σ̂(g, ξ, v(T ), 0, T ) + δ

the inequality |v(t)− vf,h(t)| ≤ ϵ holds for all t ∈ [0, τ0].

Theorems 5.1 and 6.8 imply the following result.

Theorem 6.9. Let the set F ⊂ M× A be as guaranteed by Theorem 6.7 and let

G = {(f, h1, h2) ∈ M× A× A :

(f, hi) ∈ F , i = 1, 2}.
Then G is a countable intersection of open everywhere dense subsets of M×A×A
such that for each (f, h1, h2) ∈ G there exist a unique pair of points z∗,1, z∗,2 ∈ Rn

satisfying
{z ∈ Rn : (πf + h2)(z) = inf(πf + h2)} = {z∗,1},
{z ∈ Rn : (πf̄ + h1)(z) = inf(πf̄ + h1)} = {z∗,2},

a unique (f)-perfect function v1 : [0,∞) → Rn satisfying v1(0) = z∗,1 and a unique
(f̄)-perfect function v2 : [0,∞) → Rn satisfying v2(0) = z∗,2 and such that the
following assertion holds.

Let ϵ,M, τ0 > 0. Then there exist a neighborhood U of (f, h1, h2) in M × A × A
and numbers δ ∈ (0, ϵ) and T0 > τ0 such that for each (g, ξ1, ξ2) ∈ U , each T ≥ T0
and each a.c. function v : [0, T ] → Rn satisfying

Ig(0, T, v) + ξ1(v(T )) + ξ2(v(0)) ≤ σ(g, ξ1, ξ2, 0, T ) + δ

for all t ∈ [0, τ0], |v(t)− v1(t)| ≤ ϵ, |v(T − t)− v2(t)| ≤ ϵ.
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7. Auxiliary results

Lemma 7.1 (Lemma 4.2.8 of [30]). Let f ∈ A possess (ATP). Then

sup{πf (z) : z ∈ H(f)} = 0.

Proposition 7.2 (Theorem 4.1.1 of [30]). Assume that f ∈ A has (ATP). Then f
is a continuity point of the mapping g → (µ(g), πg) ∈ R1 × C(Rn), g ∈ A, where
C(Rn) is the space of all continuous functions ϕ : Rn → R1 with the topology of the
uniform convergence on bounded sets.

Proposition 7.3 (Theorem 1.2.2 of [30]). For each f ∈ A there exists a neighbor-
hood U of f in A and a number M > 0 such that for each g ∈ U and each (g)-good
function x : [0,∞) → Rn the relation lim supt→∞ |x(t)| < M holds.

Proposition 7.4 (Proposition 1.3.5 of [30]). Assume that f ∈ A, M1 > 0, 0 ≤ T1 <
T2 < ∞ and that xi : [T1, T2] → Rn, i = 1, 2, . . . is a sequence of a.c. functions
such that If (T1, T2, xi) ≤M1 for all integers i ≥ 1. Then there exist a subsequence
{xik}∞k=1 and an a.c. function x : [T1, T2] → Rn such that If (T1, T2, x) ≤ M1,
xik(t) → x(t) as k → ∞ uniformly on [T1, T2] and x

′
ik

→ x′ as k → ∞ weakly in

L1(Rn; (T1, T2)).

Corollary 7.5 (Corollary 1.3.1 of [30]). For each f ∈ A, each pair of numbers
T1, T2 satisfying 0 ≤ T1 < T2 and each z1, z2 ∈ Rn there is an a.c. function
x : [T1, T2] → Rn such that x(Ti) = zi, i = 1, 2 and If (T1, T2, x) = Uf (T1, T2, z1, z2).

Corollary 7.6. For each f ∈ A, each pair of numbers T1, T2 satisfying 0 ≤ T1 < T2
and each z ∈ Rn there is an a.c. function x : [T1, T2] → Rn such that x(T1) = z
and If (T1, T2, x) = Uf (T2 − T1, z).

Corollary 7.7. For each f ∈ A and each pair of numbers T1, T2 satisfying 0 ≤ T1 <
T2 there is an a.c. function x : [T1, T2] → Rn such that If (T1, T2, x) = Uf (T2−T1).
Lemma 7.8 (Proposition 1.3.8 of [30]). Let f ∈ A, 0 < c1 < c2 < ∞ and let
D, ϵ > 0. Then there exists a neighborhood V of f in A such that for each g ∈ V ,
each T1, T2 ≥ 0 satisfying T2 − T1 ∈ [c1, c2] and each a.c. function x : [T1, T2] →
Rn satisfying min{Ig(T1, T2, x), If (T1, T2, x)} ≤ D the inequality |If (T1, T2, x) −
Ig(T1, T2, x)| ≤ ϵ holds.

Lemma 7.9 (Lemma 5.2.4 of [30]). Let f ∈ M have (ATP) and let ϵ > 0. Then
there exists a number q ≥ 8 such that for each h1, h2 ∈ H(f) there exists an a.c.
function v : [0, q] → Rn which satisfies

v(0) = h1, v(q) = h2, Γ
f (0, q, v) ≤ ϵ.

Proposition 7.10 (Proposition 8 of [33]). Let g ∈ M possess (ATP) and v :
[0,∞) → Rn be an a.c. function such that sup{|v(t)| : t ∈ [0,∞)} <∞,

Ig(0, T, v) = Ug(0, T, v(0), v(T )) for all T > 0.

Then the function v is (g)-perfect.

Proposition 7.11 (Theorem 1.2 of [31]). Let g ∈ L and v1, v2 : [0,∞) → Rn be
(g)-perfect functions such that v1(0) = v2(0). If there exist t1, t2 ∈ [0,∞) such that
(t1, t2) ̸= (0, 0) and v1(t1) = v2(t2), then v1(t) = v2(t) for all t ∈ [0,∞).
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The following lemma is a particular case of Lemma 3.3 of [31].

Lemma 7.12. Let f ∈ A have (ATP) and h ∈ H(f). Then there exists an a.c.
function v : R1 → H(f) such that v(0) = h and Γf (−T, T, v) = 0 for all T > 0.

The following lemma is a particular case of Lemma 5.1 of [31].

Lemma 7.13. Let f ∈ L, v1, v2 : [0,∞) → Rn be (f)-perfect functions, 0 ≤ T1 < T2
and let v1(t) = v2(t) for all t ∈ [T1, T2]. Then v1(t) = v2(t) for all t ∈ [0,∞).

Lemma 7.14 ([36]). Let f ∈ A have (ATP) and S0 > 0. Then there exist K0 > 0
and a neighborhood U of f in A such that for each g ∈ U and each x ∈ Rn satisfying
|x| > K0 the inequality πg(x) > S0 holds.

Lemma 7.15 ( [36]). Let f ∈ M have (ATP) and let ϵ > 0. Then there exist
numbers q ≥ 8 and δ > 0 such that for each h1, h2 ∈ Rn satisfying d(hi,H(f)) ≤ δ,
i = 1, 2 and each T ≥ q there exists an a.c. function v : [0, T ] → Rn which satisfies
v(0) = h1, v(T ) = h2, Γ

f (0, T, v) ≤ ϵ.

8. Proof of Theorem 5.1

By Theorem 2.1, there exist a neighborhood U1 of f in A and S1 > 0 such that
for each g ∈ U1, each T1 ∈ [0,∞) and each T2 ∈ [T1 + c,∞) the following properties
hold:

(i) if an a. c. function v : [T1, T2] → Rn satisfies

|v(T1)| ≤M1, I
g(T1, T2, v) ≤ Ug(T2 − T1, v(T1)) + 1,

then |v(t)| ≤ S1 for all t ∈ [T1, T2];
(ii) if an a. c. function v : [T1, T2] → Rn satisfies

Ig(T1, T2, v) ≤ Ug(T2 − T1) + 1,

then |v(t)| ≤ S1 for all t ∈ [T1, T2].
In view of (5.2), there exist a neighborhood Vi of hi, i = 1, 2 in A and S2 > 0

such that for all ξi ∈ Vi, i = 1, 2 and each z ∈ Rn satisfying |z| ≤ S1,

(8.1) |ξi(z)| ≤ S2, i = 1, 2.

By Theorem 2.1, there exist a neighborhood U ⊂ U1 of f in A and S > S1 + S2
such that for each g ∈ U , each T1 ∈ [0,∞) and each T2 ∈ [T1 + c,∞) the following
properties hold:

(iii) if an a. c. function v : [T1, T2] → Rn satisfies

|v(T1)| ≤M1,

Ig(T1, T2, v) ≤ Ug(T2 − T1, v(T1)) + 1 +M2 + 2S2 + 2a1,

then |v(t)| ≤ S for all t ∈ [T1, T2];
if an a. c. function v : [T1, T2] → Rn satisfies

Ig(T1, T2, v) ≤ Ug(T2 − T1) + 1 +M2 + 2S2 + 2a1,

then |v(t)| ≤ S for all t ∈ [T1, T2].
Assume that

(8.2) g ∈ U , ξi ∈ Vi, i = 1, 2, T1 ∈ [0,∞), T2 ≥ T1 + c
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and an a. c. function v : [T1, T2] → Rn satisfies

(8.3) |v(T1)| ≤M1,

(8.4) Ig(T1, T2, v) + ξ1(v(T2)) ≤ σ(g, ξ1, v(T1), T1, T2) +M2

or

(8.5) Ig(T1, T2, v) + ξ1(v(T2)) + ξ2(v(T1)) ≤ σ(g, ξ1, ξ2, T1, T2) +M2.

There exists an a. c. function u : [T1, T2] → Rn such that:
if (8.3) and (8.4) hold, then

u(T1) = v(T1),

(8.6) Ig(T1, T2, u) ≤ Ug(T2 − T1, u(T1)) + 1;

if (8.5) holds, then

(8.7) Ig(T1, T2, u) ≤ Ug(T2 − T1) + 1.

It follows from (8.2), (8.4), (8.6), (8.7) and property (i) that

(8.8) |u(t)| ≤ S1, t ∈ [T1, T2].

By (8.2), (8.8) and the choice of Vi, i = 1, 2 (see (8.1)),

(8.9) |ξ1(u(T2))|, |ξ2(u(T1))| ≤ S2.

Assume that (8.3) and (8.4) hold. In view of (5.1), (8.2), (8.4), (8.6) and (8.9),

Ig(T1, T2, v)− a1 ≤ Ig(T1, T2, v) + ξ1(v(T2))

≤M2 + σ(g, ξ1, v(T1), T1, T2) ≤M2 + Ig(T1, T2, u) + ξ1(u(T2))

≤M2 + S2 + Ig(T1, T2, u) ≤M2 + S2 + Ug(T2 − T1, v(T1)) + 1,

(8.10) Ig(T1, T2, v) ≤ Ug(T2 − T1, v(T1)) + 1 +M2 + S2 + a1.

Property (iii), (8.2), (8.3) and (8.10) imply that |v(t)| ≤ S, t ∈ [T1, T2].
Assume that (8.5) holds. In view of (5.1), (8.2), (8.5), (8.7) and (8.9),

Ig(T1, T2, v)− 2a1 ≤ Ig(T1, T2, v) + ξ1(v(T2)) + ξ2(v(T1))

≤M2 + σ(g, ξ1, ξ2, T1, T2) ≤M2 + Ig(T1, T2, u) + ξ1(u(T2)) + ξ2(u(T1))

≤M2 + 2S2 + Ig(T1, T2, u) ≤M2 + 2S2 + Ug(T2 − T1) + 1,

(8.11) Ig(T1, T2, v) ≤ Ug(T2 − T1) + 1 +M2 + 2S2 + 2a1.

Property (iii), (8.2) and (8.11) imply that |v(t)| ≤ S, t ∈ [T1, T2]. Theorem 5.1 is
proved.
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9. Proof of Theorem 5.3

By Theorems 1.2 and 2.1, there exist a neighborhood U0 ⊂ Uf of f in A and
L0 ≥ 1 such that the following property holds:

(i) for each g ∈ U0, each T ≥ L0 and each a. c. function u : [0, T ] → Rn which
satisfies

|u(0)| ≤M0, I
g(0, T, u) ≤ Ug(T, u(0)) + 1

there exists S0 ∈ [0, L0] such that d(u(S0),H(f)) ≤ 1.
By Theorem 2.2, there exist a neighborhood U ⊂ U0 of f in A and numbers

l, S ≥ 1 and integers L ≥ 1, Q∗ ≥ L0 such that the following property holds:
(ii) for each g ∈ U , each T ≥ L + lQ∗ and each a.c. function v : [0, T ] → Rn

which satisfies at least one of the following conditions:

|v(0)| ≤M0, I
g(0, T, v) ≤ Ug(T, v(0)) +M2 +M1 + a1;

Ig(0, T, v) ≤ Ug(T ) + 2M2 + 2M1 + 2a1

the inequality |v(t)| ≤ S holds for all t ∈ [0, T ] and there exist sequences of numbers

{bi}Qi=1, {ci}
Q
i=1 ⊂ [0, T ] such that

Q ≤ Q∗, 0 ≤ ci − bi ≤ l, i = 1, . . . , Q,

dist(H(f), {v(t) : t ∈ [τ, τ + L]}) ≤ ϵ for each τ ∈ [0, T − L] \ ∪Q
i=1[bi, ci].

Assume that

(9.1) g ∈ U , T ≥ L+ lQ∗, h, ξ ∈ A,

(9.2) |h(z)|, |ξ(z)| ≤M2 for all z ∈ Rn such that |z| ≤ Sf

and v : [0, T ] → Rn is an a. c. function which satisfies at least one of the conditions
(a), (b). By Corollaries 7.6 and 7.7, there exists an a. c. function u : [0, T ] → Rn

such that if condition (a) holds, then

(9.3) u(0) = v(0),

(9.4) Ig(0, T, u) = Ug(T, v(0))

and if condition (b) holds, then

(9.5) Ig(0, T, u) = Ug(T ).

If condition (b) holds, then (9.1), (9.5) and property (P1) imply that

(9.6) |u(t)| ≤ Sf , t ∈ [0, T ].

Assume that condition (a) holds. We show that

|u(T )| ≤ Sf .

By condition (a), property (i) and (9.1)-(9.5), there exists S0 ∈ [0, L0] such that

(9.7) d(u(S0),H(f)) ≤ 1.

Property (P2) applied to the function u(t + S0), t ∈ [0, T − S0], (9.1), (9.4) and
(9.7) imply that

(9.8) |u(t)| ≤ Sf , t ∈ [S0, T ].
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Together with (9.6) this implies that in both cases

(9.9) |u(T )| ≤ Sf .

If condition (a) holds, then by (5.1), (9.1)-(9.4) and (9.9),

Ig(0, T, v)− a1 ≤ Ig(0, T, v) + h(v(T ))

≤M1 + σ(g, h, v(0), 0, T ) ≤M1 + Ig(0, T, u) + h(u(T ))

≤M2 +M1 + Ig(0, T, u) ≤M2 +M1 + Ug(T, v(0)),

(9.10) Ig(0, T, v) ≤ Ug(T, v(0)) +M2 +M1 + a1.

If condition (b) holds, then by (5.1), (9.1), (9.2), (9.5) and (9.6),

Ig(0, T, v)− 2a1 ≤ Ig(0, T, v) + h(v(T )) + ξ(v(0))

≤M1 + σ(g, h, ξ, 0, T ) ≤M1 + Ig(0, T, u) + h(u(T )) + ξ(u(0))

≤ 2M2 +M1 + Ig(0, T, u) ≤ 2M2 +M1 + Ug(T ),

(9.11) Ig(0, T, v) ≤ Ug(T ) + 2M2 +M1 + 2a1.

Property (ii), (9.1), (9.10) and (9.11) imply that he inequality |v(t)| ≤ S holds for
all t ∈ [0, T ] and there exist sequences of numbers

{bi}qi=1, {ci}
q
i=1 ⊂ [0, T ]

such that q ≤ Q∗, 0 ≤ ci − bi ≤ l, i = 1, . . . , q and that

dist(H(f), {v(t) : t ∈ [τ, τ + L]}) ≤ ϵ

for each τ ∈ [0, T − L] \ ∪q
i=1[bi, ci]. This completes the proof of Theorem 5.3.

10. Proof of Theorem 5.4

By Theorem 1.3, there exist a neighborhood U1 of f in A and numbers l0 > l > 0,
δ > 0 such that the following property holds:

(i) for each g ∈ U1, each T ≥ 2l0 and each a.c. function v : [0, T ] → Rn which
satisfies

d(v(0),H(f)) ≤ δ, d(v(T ),H(f)) ≤ δ,

Ig(0, T, v) ≤ Ug(0, T, v(0), v(T )) + δ

the inequality dist(H(f), {v(t) : t ∈ [τ, τ + l]}) ≤ ϵ holds for each τ ∈ [0, T − l].
By Theorem 1.2, there exist a neighborhood U ⊂ U1 of f in A and numbers

M1 > M0, l̃0 > 2l0 + 1 such that the following property holds:
(ii) for each g ∈ U , each T ≥ l̃0 and each a.c. function v : [0, T ] → Rn which

satisfies

|v(0)|, |v(T )| ≤M0, I
g(0, T, v) ≤ Ug(0, T, v(0), v(T )) +M0

the inequality |v(t)| ≤ M1 holds for all t ∈ [0, T ] and there exists a set E ⊂ [0, T ]

which is a finite union of closed subintervals of [0, T ] such that mes(E) < l̃0 and for
each t ∈ [0, T ] \ E, d(v(t),H(f)) ≤ δ.

Set

(10.7) l1 = 8l̃0 + 2.
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Assume that

(10.8) g ∈ U , T ≥ 2l1 + l

and that an a.c. function v : [0, T ] → Rn satisfies

(10.9) |v(0)|, |v(T )| ≤M0,

(10.10) Ig(0, T, v) ≤ Ug(0, T, v(0), v(T )) +M0

and that for each S ∈ [0, T − l1],

(10.11) Ig(S, S + l1, v) ≤ Ug(S, S + l1, v(S), v(S + l1)) + δ.

Property (ii) and (10.7)-(10.10) imply that

(10.12) |v(t)| ≤M1, t ∈ [0, T ]

and that that the following property holds:
(iii) for each τ ∈ [0, T − l̃0] there exists t ∈ [τ, τ + l̃0] such that

d(v(t),H(f)) ≤ δ.

Set
τ1 = inf{t ∈ [0, T ] : d(v(t),H(f)) ≤ δ},

(10.13) τ2 = sup{t ∈ [0, T ] : d(v(t),H(f)) ≤ δ}.
Property (ii), (10.7), (10.8) and (10.13) imply that

(10.14) d(v(τi),H(f)) ≤ δ, i = 1, 2,

(10.15) τ1 ≤ l̃0, τ2 ≥ T − l̃0,

(10.16) τ2 − τ1 ≥ T − 2l̃0 ≥ 2l1 − 2l̃0 ≥ 12l̃0 + 4.

Assume that

(10.17) S ∈ [τ1, τ2 − l].

There are the following cases:

(10.18) S − 2l̃0 < τ1, S + l + 2l̃0 > τ2;

(10.19) S − 2l̃0 < τ1, S + l + 2l̃0 ≤ τ2;

(10.20) S − 2l̃0 ≥ τ1, S + l + 2l̃0 > τ2;

(10.21) S − 2l̃0 ≥ τ1, S + l + 2l̃0 ≤ τ2;

If (10.18) holds, then in view of (10.16),

12l̃0 + 4 ≤ τ2 − τ1 < S + l + 2l̃0 − (S − 2l̃0) = 4l̃0 + l,

a contradiction. Therefore (10.18) does not hold.
If (10.19) holds, then we set S1 = τ1, property (iii) implies that there exists

S2 ∈ [S + l + l̃0, S + l + 2l̃0] such that d(v(S2),H(f)) ≤ δ and in view of (10.14),
(10.17) and (10.19),

(10.22) d(v(Si),H(f)) ≤ δ, i = 1, 2,



STRUCTURE OF APPROXIMATE SOLUTIONS OF VARIATIONAL PROBLEMS 137

(10.23) 2l0 + 1 + l < l + l̃0 ≤ S2 − S1 ≤ l + 4l̃0.

If (10.20) holds, then we set S2 = τ2, property (iii) implies that there exists S1 ∈
[S − 2l̃0, S − l̃0] such that d(v(S1),H(f)) ≤ δ and in view of (10.14), (10.17) and
(10.20), relation (10.22) is true and

l̃0 + l ≤ S2 − S1 ≤ l + 4l̃0.

If (10.21) holds, then property (iii) implies that there exist

S1 ∈ [S − 2l̃0, S − l̃0], S2 ∈ [S + l + l̃0, S + l + 2l̃0]

such that (10.22) holds. Thus in all the cases S1, S2 ∈ [τ1, τ2] and (10.22) and
(10.23) are true.

By (10.7), (10.11) and (10.23),

(10.24) Ig(S1, S2, v) ≤ Ug(S1, S2, v(S1), v(S2)) + δ.

It follows from (10.8), (10.17), (10.22)-(10.24), the choice of S1, S2 and property (i)
that dist(H(f), {v(t) : t ∈ [S, S + l]}) ≤ ϵ. Theorem 5.4 is proved.

11. Proof of Theorem 5.6

By Theorem 5.4, there exist a neighborhood U1 of f in A and numbers l1 > l > 0,
δ ∈ (0, 1] such that the following property holds:

(i) for each g ∈ U1, each T ≥ 2l1 + l and each a.c. function v : [0, T ] → Rn which
satisfies

d(v(0),H(f)) ≤ δ, d(v(T ),H(f)) ≤ δ,

Ig(0, T, v) ≤ Ug(0, T, v(0), v(T )) +M1

and such that for each S ∈ [0, T − l1],

Ig(S, S + l1, v) ≤ Ug(S, S + l1, v(S), v(S + l1)) + δ

the inequality

(11.1) dist(H(f), {v(t) : t ∈ [τ, τ + l]}) ≤ ϵ

holds for all τ ∈ [0, T − l].
By Theorem 5.3, there exist a neighborhood U ⊂ U1 of f in A and numbers

S > 0, L0 > 2l1 + 1 such that the following property holds:
(ii) for each g ∈ U , each h, ξ ∈ A satisfying

(11.2) |h(z)|, |ξ(z)| ≤M2 for all z ∈ Rn such that |z| ≤ Sf ,

each T ≥ L0 and each a.c. function v : [0, T ] → Rn which satisfies at least one of
the following conditions:

|v(0)| ≤M0,

Ig(0, T, v) + h(v(T )) ≤ σ(g, h, v(0), 0, T ) +M1;

Ig(0, T, v) + h(v(T )) + ξ(v(0)) ≤ σ(g, h, ξ, 0, T ) +M1

the inequality |v(t)| ≤ S holds for all t ∈ [0, T ] and there exist a set E ⊂ [0, T ]
which is a finite union of closed subintervals of [0, T ] such that mes(E) < L0 and
for each t ∈ [0, T ] \ E, d(v(t),H(f)) ≤ δ.
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Set

(11.3) L = 4L0.

Assume that g ∈ U , h, ξ ∈ A, (11.2) and (11.4) hold, T ≥ 2L + l and that an a.
c. function v : [0, T ] → Rn satisfies at least one of conditions (a), (b) and that for
each τ ∈ [0, T − L],

(11.5) Ig(τ, τ + L, v) ≤ Ug(τ, τ + L, v(τ), v(τ + L)) + δ.

By property (ii), conditions (a),(b) and (11.2)-(11.4) , |v(t)| ≤ S, t ∈ [0, T ] and
there exist

(11.6) τ1 ∈ [0, L0], τ2 ∈ [T − L0, T ]

such that

(11.17) d(v(τi),H(f)) ≤ δ, i = 1, 2.

If d(v(0),H(f)) ≤ δ, then τ1 = 0 and if d(v(T ),H(f)) ≤ δ, then τ2 = T . Property
(i), conditions (a), (b), (11.3), (11.4), (11.6) and (11.7) imply that for each τ ∈
[τ1, τ2 − l], (11.1) is true. Theorem 5.6 is proved.

12. An auxiliary result for Theorem 6.2 and 6.3

Suppose that an integrand f ∈ M has the asymptotic turnpike property and that
h ∈ A. Set

(12.1) D(f, h) = {z ∈ Rn : (πf + h)(z) = inf(πf + h)}.

Lemma 12.1. Let ϵ ∈ (0, 1) and T0 > 0. Then there exists δ ∈ (0, ϵ) such that for
each a.c. function u : [0, T0] → Rn which satisfies

(πf + h)(u(0)) ≤ inf(πf + h) + δ, Γf (0, T0, u) ≤ δ

there exists an (f)-perfect function w : [0,∞) → Rn such that

(πf + h)(w(0)) = inf(πf + h), |u(t)− w(t)| ≤ ϵ for all t ∈ [0, T0].

Proof. Assume that the lemma does not hold. Then there exist a sequence {δk}∞k=1 ⊂
(0, 1) and a sequence of a. c. functions uk : [0, T0] → Rn, k = 1, 2, . . . such that

(12.2) lim
k→∞

δk = 0

and that for each integer k ≥ 1 and each

(12.3) w ∈ ∪{P(f, z) : z ∈ D(f, h)},
we have

(12.4) (πf + h)(uk(0)) ≤ inf(πf + h) + δk, Γ
f (0, T0, uk) ≤ δk,

(12.5) sup{|uk(t)− w(t)| : t ∈ [0, T0]} > ϵ.

By (12.2), (12.4) and Proposition 6.1, extracting a subsequence and re-indexing if
necessary we may assume without loss of generality that the sequence {uk(0)}∞k=1
converges and

(12.6) lim
k→∞

uk(0) ∈ D(f, h).
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Let k ≥ 1 be an integer. By Proposition 3.6, there exists an (f)-good and (f)-perfect
function yk : [0,∞) → Rn such that

(12.7) yk(0) = uk(T0).

In view of (12.7) there exists an a. c. function vk : [0,∞) → Rn such that

(12.8) vk(t) = uk(t), t ∈ [0, T0], vk(t) = yk(t− T0), t ∈ (T0,∞).

Since the function yk is (f)-perfect it follows from (12.4) and (12.8) that for any
T > 0,

(12.9) Γf (0, T, vk) ≤ Γf (0, T0, uk) ≤ δk.

In view of Propositions 1.1 and 3.5, the function vk is (f)-good. By Proposition
7.3, there exists a number S1 > 0 such that

(12.10) lim sup
t→∞

|vk(t)| ≤ S1 for all integers k ≥ 1.

It follows from (8.23), (12.6), (12.9) and Theorem 2.1 that

(12.11) sup{sup{|uk(t)| : t ∈ [0, T0]} : k = 1, 2, . . . } <∞.

By (3.6) and (12.4), for each natural number k,

If (0, T0, uk) = Γf (0, T0, uk) + T0µ(f) + πf (uk(0))− πf (uk(T0))

(12.12) ≤ δk + T0µ(f) + πf (uk(0))− πf (uk(T0)).

By (12.11), (12.12) and the continuity of πf , the sequence {If (0, T0, uk)}∞k=1 is
bounded. By Proposition 7.4, extracting subsequences we can show the existence
of a subsequence {uik}∞k=1 and an a.c. function u : [0, T0] → Rn such that

(12.13) If (0, T0, u) ≤ lim inf
k→∞

If (0, T0, uk),

(12.14) uik(t) → u(t) as k → ∞ uniformly on [0, T0].

In view of (12.6) and (12.14),

(12.15) u(0) ∈ D(f, h).

By (3.6), (12.2), (12.4), (12.13), (12.14) and the continuity of πf ,

Γf (0, T0, u) = If (0, T0, u)− πf (u(0)) + πf (u(T0))− T0µ(f)

≤ lim inf
k→∞

If (0, T0, uik)− lim
k→∞

πf (uik(0)) + lim
k→∞

πf (uik(T0))− T0µ(f)

= lim inf
k→∞

[If (0, T0, uik)− πf (uik(0)) + πf (uik(T0))− T0µ(f)]

≤ lim inf
k→∞

Γf (0, T0, uik) ≤ lim
k→∞

δik = 0.

Together with (3.7) this implies that Γf (0, T0, u) = 0. Combined with Proposition
3.6 this implies that there exists an (f)-perfect function ũ : [0,∞) → Rn such that

(12.16) ũ(t) = u(t), t ∈ [0, T0].

It follows from (12.15) and (12.16) that

(12.17) ũ ∈ ∪{P(f, z) : z ∈ D(f, h)}.
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By (12.14) and (12.16), for all sufficiently large natural numbers k,

sup{|uik(t)− ũ(t)| : t ∈ [0, T0]} ≤ ϵ/2.

Together with (12.17) this contradicts (12.5) which holds for any integer k ≥ 1 and
any function w satisfying (12.3). The contradiction we have reached proves Lemma
12.1. □

13. Proof of Theorem 6.2

By Lemma 12.1, there exist δ0 ∈ (0, ϵ) such that the following property holds:
(i) for each a.c. function u : [0, L0] → Rn which satisfies

(πf̄ + h)(u(0)) ≤ inf((πf̄ + h) + 8δ0, Γ
f̄ (0, τ0, u) ≤ 4δ0

there exists a (f̄)-perfect function w : [0,∞) → Rn such that

(πf̄ + h)(w(0)) = inf((πf̄ + h), |u(t)− w(t)| ≤ ϵ for all t ∈ [0, L0].

By Lemma 7.15, there exist a number q ≥ 8 and δ1 ∈ (0, δ0) such that the
following property holds:

(ii) for each z1, z2 ∈ Rn satisfying d(zi,H(f)) ≤ δ1, i = 1, 2 and each T ≥ q there
exists an a.c. function u : [0, T ] → Rn which satisfies

u(0) = z1, u(T ) = z2, Γ
f̄ (0, T, u) ≤ δ0.

By Propositions 3.6 and 6.1, there exists an (f̄)-perfect function w∗ : [0,∞) → Rn

such that

(13.1) (πf̄ + h)(w∗(0)) = inf(πf̄ + h).

Proposition 4.1 implies that

(13.2) sup{|w∗(t)| : t ∈ [0,∞)} <∞.

It follows from (ATP) and (13.2) that there exists S0 > 0 such that

(13.3) d(w∗(t),H(f)) ≤ δ1 for all t ≥ S0.

By Theorem 5.6, there exist a neighborhood U1 of f in A, a neighborhood V1 of h
in A and numbers L1 > l1 > 0, S1 > 0, δ ∈ (0, δ1) such that the following property
holds:

(iii) for each g ∈ U1, each ξ ∈ V1, each T ≥ 2L1 + l1 and each a.c. function
v : [0, T ] → Rn which satisfies |v(0)| ≤M,

Ig(0, T, v) + ξ(v(T )) ≤ σ(g, ξ, v(0), 0, T ) + δ

we have |v(t)| ≤ S1, t ∈ [0, T ], dist(H(f), {v(t) : t ∈ [τ, τ + l1]}) ≤ δ1 for each
τ ∈ [L1, T − L1 − l1].

Fix

(13.4) T0 ≥ 4(L1 + L0 + q + S0).

By Lemma 7.8 there exists a neighborhood U ⊂ U1 of f in A such that the
following property holds:

(iv) for each g ∈ U , each τ ≥ 0 and each a.c. function u : [τ, τ+S0+L0+L1+q] →
Rn satisfying

min{If (τ, τ + S0 + L0 + L1 + q, u), Ig(τ, τ + S0 + L0 + L1 + q, u)}
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≤ a1 + q + 8 + |πf̄ (w∗(0))|+ sup{|πf̄ (z)| : z ∈ Rn and |z| ≤ S1}
+|µ(f)|(S0 + L0 + L1 + q) + |h(w∗(0))|

we have

|If (τ, τ + S0 + L0 + L1 + q, u)− Ig(τ, τ + S0 + L0 + L1 + q, u)| ≤ δ0.

Clearly, there exists a neighborhood V ⊂ V1 of h in A such that the following
property holds:

(v) for each ξ ∈ V,
|ξ(z)− h(z)| ≤ δ0

for all z ∈ Rn such that |z| ≤ S1 + |w∗(0)|.
Assume that

(13.5) g ∈ U , ξ ∈ V, T ≥ T0

and that an a. c. function v : [0, T ] → Rn satisfies

(13.6) |v(0)| ≤M1

(13.7) Ig(0, T, v) + ξ(v(T )) ≤ σ(g, ξ, v(0), 0, T ) + δ.

Property (iii) and (13.4)-(13.7) imply that

(13.8) d(v(t),H(f)) ≤ δ1, t ∈ [L1, T − L1],

(13.9) |v(t)| ≤ S1, t ∈ [0, T ].

In view of (13.3),

(13.10) d(w∗(S0 + L0),H(f)) ≤ δ1.

By (13.4), (13.5) and (13.8),

(13.11) d(v(T − S0 − L0 − q − L1),H(f)) ≤ δ1.

Property (ii), (13.4), (13.5), (13.10) and (13.11) imply that there exists an a. c.
function w1 : [S0 + L0, S0 + L0 + q + L1] → Rn such that

(13.12) Γf̄ (S0 + L0, S0 + L0 + q + L1, w1) ≤ δ0,

(13.13) w1(S0+L0) = w∗(S0+L0), w1(S0+L0+q+L1) = v(T −S0−L0−q−L1).

Set

(13.14) w2(t) = w∗(t), t ∈ [0, S0 + L0],

(13.15) w2(t) = w1(t), t ∈ (S0 + L0, S0 + L0 + q + L1].

Clearly, w2 : [0, S0 + L0 + q + L1] → Rn is an a. c. function. By (13.12), (13.14),
(13.15) and the choice of w∗,

Γf̄ (0, S0 + L0 + q + L1, w2)

(13.16) = Γf̄ (0, S0 + L0, w∗) + Γf̄ (S0 + L0, S0 + L0 + q + L1, w1) ≤ δ0.

Set

(13.17) ŵ2(t) = w2(T − t), t ∈ [T − (S0 + L0 + q + L1), T ].
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It follows from (13.13), (13.15) and (13.17) that

(13.18) w2(T − (S0 + L0 + q + L1)) = v(T − S0 − L0 − L1 − q).

By (13.7) and (13.18),

Ig(T − S0 − L0 − L1 − q, T, v) + ξ(v(T ))

(13.19) ≤ Ig(T − S0 − L0 − L1 − q, T, ŵ2) + ξ(ŵ2(T )) + δ.

It follows from (3.3), (3.6) and (3.13)-(3.17) that

If (T − S0 − L0 − L1 − q, T, ŵ2) = I f̄ (0, S0 + L0 + L1 + q, w2)

= Γf̄ (0, S0 + L0 + L1 + q, w2) + πf̄ (w2(0))

−πf̄ (w2(S0 + L0 + L1 + q)) + (S0 + L0 + L1 + q)µ(f)

≤ δ0 + πf̄ (w2(0))− πf̄ (w2(S0 + L0 + L1 + q)) + (S0 + L0 + L1 + q)µ(f)

(13.20) = δ0 + πf̄ (w∗(0))− πf̄ (v(T −S0 −L0 −L1 − q)) + (S0 +L0 +L1 + q)µ(f).

In view of (13.9) and (13.20),

If (T − S0 − L0 − L1 − q, T, ŵ2)

(13.21)

≤ δ0 + |πf̄ (w∗(0))|+ sup{|πf̄ (z)| : z ∈ Rn, |z| ≤ S1}+ (S0 + L0 + L1 + q)|µ(f)|.
Property (iv), (13.5) and (13.21) imply that

(13.22) |If (T − S0 − L0 − L1 − q, T, ŵ2)− Ig(T − S0 − L0 − L1 − q, T, ŵ2)| ≤ δ0.

By (13.14) and (13.17),

(13.23) ŵ2(T ) = w2(0) = w∗(0).

Property (v), (13.5) and (13.23) imply that

(13.24) |h(ŵ2(T ))− ξ(ŵ2(T ))| ≤ δ0.

It follows from (13.19), (13.20) and (13.22)-(13.24) that

Ig(T − S0 − L0 − L1 − q, T, v) + ξ(v(T ))

≤ If (T − S0 − L0 − L1 − q, T, ŵ2) + h(ŵ2(T )) + 3δ0

≤ δ0 + πf̄ (w∗(0))− πf̄ (v(T − S0 − L0 − L1 − q))

(13.25) +(S0 + L0 + L1 + q)µ(f) + h(w∗(0)) + 3δ0.

Property (v) and (13.9) imply that

(13.26) |ξ(v(T ))− h(v(T ))| ≤ δ0.

By (5.1), (13.9) and (13.25),

Ig(T − S0 − L0 − L1 − q, T, v) ≤ a1 + 4δ0 + |πf̄ (w∗(0))|+ |h(w∗(0))|

(13.27) + sup{|πf̄ (z)| : z ∈ Rn, |z| ≤ S1}+ (S0 + L0 + L1 + q)|µ(f)|.
Property (iv), (13.5) and (13.27) imply that

(13.28) |Ig(T − S0 − L0 − L1 − q, T, v)− If (T − S0 − L0 − L1 − q, T, v)| ≤ δ0.
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It follows from (13.25), (13.26) and (13.28) that

If (T − S0 − L0 − L1 − q, T, v) + h(v(T ))

≤ Ig(T − S0 − L0 − L1 − q, T, v) + ξ(v(T )) + 2δ0

≤ 6δ0 + πf̄ (w∗(0))− πf̄ (v(T − S0 − L0 − L1 − q))

(13.29) +(S0 + L0 + L1 + q)µ(f) + h(w∗(0)).

Set

(13.30) v̂(t) = v(T − t), t ∈ [0, T ].

By (3.3), (13.29) and (13.30),

I f̄ (0, S0 + L0 + L1 + q, v̂) + h(v̂(0))

= If (T − S0 − L0 − L1 − q, T, v) + h(v(T ))

≤ 6δ0 + πf̄ (w∗(0))− πf̄ (v(T − S0 − L0 − L1 − q))

(13.31) +(S0 + L0 + L1 + q)µ(f) + h(w∗(0)).

In view of (3.6) and (13.31),

Γf̄ (0, S0 + L0 + L1 + q, v̂) + πf̄ (v̂(0)) + h(v̂(0))

−πf̄ (v(T − S0 − L0 − L1 − q)) + (S0 + L0 + L1 + q)µ(f)

≤ 6δ0 + πf̄ (w∗(0))− πf̄ (v(T − S0 − L0 − L1 − q))

+(S0 + L0 + L1 + q)µ(f) + h(w∗(0))

and

(13.32) Γf̄ (0, S0 + L0 + L1 + q, v̂) + (πf̄ + h)(v̂(0)) ≤ 6δ0 + (πf̄ + h)(w∗(0)).

By (3.6), (3.7), (13.1) and (13.32),

Γf̄ (0, L0, v̂) ≤ Γf̄ (0, S0 + L0 + L1 + q, v̂) ≤ 6δ2,

(πf̄ + h)(v̂(0)) ≤ 6δ0 + (πf̄ + h)(w∗(0)) = inf(πf̄ + h) + 6δ0.

The inequalities above and property (i) imply that there exists a (f̄)-perfect function
w : [0,∞) → Rn such that

(13.33) (πf̄ + h)(w(0)) = inf((πf̄ + h)

and

(13.34) |v̂(t)− w(t)| ≤ ϵ for all t ∈ [0, L0].

By (13.30) and (13.34), for all t ∈ [0, L0], |w(t) − v(T − t)| ≤ ϵ. Theorem 6.2 is
proved.
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14. Proof of Theorem 6.3

Theorem 6.2 and Proposition 5.2 imply the following result.

Theorem 14.1. Suppose that an integrand f ∈ M has the asymptotic turnpike
property and that h ∈ A. Let ϵ,M,L0 > 0. Then there exist a neighborhood U of f
in A, a neighborhood V of h in A and numbers δ ∈ (0, ϵ) and T0 > L0 such that for
each T ≥ T0, each g ∈ U , each ξ ∈ V and each a.c. function v : [0, T ] → Rn which
satisfies

|v(T )| ≤M,

Ig(0, T, v) + ξ(v(0)) ≤ σ̂(g, ξ, v(T ), 0, T ) + δ

there exists an (f)-perfect function w : [0,∞) → Rn such that

(πf + h)(w(0)) = inf(πf + h),

|v(t)− w(t)| ≤ ϵ for all t ∈ [0, L0].

Theorem 6.3 easily follows from Theorems 5.1, 6.2 and 14.1.

15. Auxiliary results for Theorems 6.5 and 6.8

Let M be one of the following spaces: L0, L1, L2, M̄q, q ≥ 3 is an integer. If

M = M̄q, where q ≥ 3 is an integer, then we set M̃ = Mq; if M = Lq, where

q ∈ {0, 1, 2}, then we set M̃ = L. Denote by E0 the set of all f ∈ M̃ which has
(ATP).

Lemma 15.1 ([36]). The set E0 is an everywhere dense subset of M.

This lemma was proved on page 170 of [30]. The following result was proved in
Section 3 of Chapter 2 of [3] (see also Proposition 3.7.1 of [30]).

Lemma 15.2. Let Ω be a closed subset of Rs. Then there exists a bounded nonnega-
tive function ϕ ∈ C∞(Rs) such that Ω = {x ∈ Rs : ϕ(x) = 0} and for each sequence

of nonnegative integers p1, . . . , ps, the function ∂|p|ϕ/∂xp11 . . . ∂xpss : Rs → R1 is
bounded, where |p| =

∑s
i=1 pi.

For each h ∈ A denote by Eh the set of all f ∈ E0 such that there exists a a
unique (f)-perfect function v : [0,∞) → Rn such that

(πf + h)(v(0)) = inf(πf + h).

Lemma 15.3. Let f ∈ E0, h ∈ A,

(15.1) inf{(πf + h)(z) : z ∈ H(f)} > inf(πf + h)

and let V be a neighborhood of f in M. Then V ∩ Eh ̸= ∅.

Proof. Let z0 ∈ Rn satisfy

(15.2) (πf + h)(z0) = inf(πf + h).

By Proposition 3.6, there exists an (f)-good and (f)-perfect function v : [0,∞) →
Rn for which

(15.3) v(0) = z0.
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In view of (ATP),

(15.4) Ω(v) = H(f).

Together with (15.1) and (15.3) this implies that there exists ϵ > 0 such that for all
sufficiently large positive numbers t,

(πf + h)(z0) + ϵ < (πf + h)(v(t)).

Therefore there is a number τ0 ≥ 0 such that

(15.5) (πf + h)(v(τ0)) = (πf + h)(z0),

(15.6) (πf + h)(v(t)) > (πf + h)(z0) for all t > τ0.

We may assume without loss of generality that τ0 = 0. Then

(15.7) (πf + h)(v(t)) > (πf + h)(z0) for all t > 0.

Since the function v is (f)-perfect it follows from (3.6), (15.3), (15.4) and Lemma
7.1 that

(15.8) lim inf
T→∞

[If (0, T, v)− Tµ(f)] = lim inf
T→∞

[πf (v(0))− πf (v(T ))] = πf (z0).

By Lemma 15.2 and (15.4), there exists a bounded nonnegative function ϕ ∈
C∞(Rn) such that the function ∂|p|ϕ/∂xp11 . . . ∂xpnn : Rn → R1 is bounded, for
each sequence of nonnegative integers p1, . . . , pn, where |p| =

∑n
i=1 pi and

(15.9) {x ∈ Rn : ϕ(x) = 0} = H(f) ∪ {v(t) : t ∈ [0,∞)}.
For any r ∈ (0, 1) define a function fr : R

n ×Rn → R1 by

fr(x, y) = f(x, y) + rϕ(x), x, y ∈ Rn.

Arguing as in the proof of Lemma 10.3 of [36] we can show that for any r ∈ (0, 1),

fr ∈ M̃,

µ(fr) = µ(f), fr ∈ E0, H(fr) = H(f)

and fr ∈ Eh. Clearly, fr → f as r → 0+ in M. Therefore V ∩Eh ̸= ∅. Lemma 15.3
is proved. □
Lemma 15.4. Let f ∈ E0, h ∈ A,

(15.10) inf{(πf + h)(z) : z ∈ H(f)} = inf(πf + h)

and let V be a neighborhood of f in M. Then V ∩ Eh ̸= ∅.

Proof. There exists z0 ∈ Rn satisfying

(15.11) z0 ∈ H(f), (πf + h)(z0) = inf(πf + h).

For each λ > 1 define

(15.12) f (λ)(x, y) = λf(x, y) + 2(λ− 1)a, x, y ∈ Rn

(a was used in A(ii)).

It is clear that for each λ > 1, f (λ) ∈ M̃ and f (λ) → f as λ → 1+ in M. Thus
there is λ0 > 1 such that

(15.13) f (λ) ∈ V for all λ ∈ (1, λ0].
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Fix

(15.14) λ ∈ (1, λ0).

By (15.12), an a. c. function v : [0,∞) → Rn is (f)-good if and only if it is

(f (λ))-good. This implies that f (λ) has (ATP) and

(15.15) H(f (λ)) = H(f), f (λ) ∈ E0.

By (15.12),

(15.16) πf
(λ)

(z) = λπf (z)∀z ∈ Rn.

If

inf{(πf (λ)
+ h)(z) : z ∈ H(f)} > inf(π(f

(λ)
+ h),

then by Lemma 15.3, V ∩ Eh ̸= ∅.
Assume that

(15.17) inf{(πf (λ)
+ h)(z) : z ∈ H(f)} = inf(π(f

(λ)
+ h).

By (15.17), there exists z1 ∈ Rn satisfying

(15.18) z1 ∈ H(f), (πf
(λ)

+ h)(z1) = inf(πf
(λ)

+ h).

There exists a real-valued function ξ ∈ C∞(Rn) such that the set {x ∈ Rn : ξ(x) ̸=
0} is bounded,

(15.19) ξ(x) ≤ 0 for all x ∈ Rn,

(15.20) 0 > ξ(z1), ξ(z) > ξ(z1) for all z ∈ Rn \ {z1}.

For each x = (x1, . . . , xn) ∈ Rn set∇ξ(x) = (∂ξ/∂x1(x), . . . , ∂ξ/∂xn(x)) and denote
by ⟨·, ·⟩ the inner product in Rn.

For any r ∈ (0, 1) define a function f
(λ)
r : Rn ×Rn → R1 by

(15.21) f (λ)r (x, y) = f (λ)(x, y)− r⟨∇ξ(x), y⟩, x, y ∈ Rn.

Arguing as in the proof of Lemma 10.3 of [36] we can show that there exists r0 ∈
(0, 1) such that for every r ∈ (0, r0), f

(λ)
r ∈ M̃. In view of (15.21), f

(λ)
r → f (λ) in

M as r → 0+. Thus there exists r ∈ (0, r2) such that

f (λ)r ∈ V.

Arguing as in the proof of Lemma 10.3 of [36] we can show that f
(λ)
r ∈ Eh and

complete the proof of Lemma 15.4. □

Lemmas 15.3 and 15.4 imply the following result.

Lemma 15.5. For every h ∈ A, the set Eh is an everywhere dense subset of M.
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16. Proofs of Theorems 6.5 and 6.8

Let h ∈ A and let M be one of the following spaces: L0, L1, L2, M̄q, q ≥ 3

is an integer. If M = M̄q, where q ≥ 3 is an integer, then we set M̃ = Mq; if

M = Lq, where q ∈ {0, 1, 2}, then we set M̃ = L. Denote by Eh the set of all

f ∈ M̃ which has (ATP) and for which there exists a unique (f)-perfect function
vf,h : [0,∞) → Rn such that

(16.1) (πf + h)(vf,h(0)) = inf(πf + h).

Let f ∈ Eh and k ≥ 1 be an integer. By Proposition 7.3, there exist an open
neighborhood U(f) of f in A and a number M(f) > 0 such that the following
property holds:

(i) for each g ∈ U(f) and each (g)-good function x : [0,∞) → Rn,

lim sup
t→∞

|x(t)| < M(f).

By Theorem 14.1, there exist an open neighborhood U(f, h, k) ⊂ U(f) of f in A,
an open neighborhood V(f, h, k) of h in A and numbers L(f, h, k) > k, δ(f, h, k) ∈
(0, k−1) such that the following properties hold:

(ii) for each g ∈ U(f, h, k), each ξ ∈ V(f, h, k), each T ≥ L(f, h, k) and each a.c.
function u : [0, T ] → Rn which satisfies

|u(T )| ≤M(f) + k,

Ig(0, T, v) + ξ(v(0)) ≤ σ̂(g, ξ, v(T ), 0, T ) + δ(f, h, k)

we have |u(t)− vf,h(t)| ≤ k−1 for all t ∈ [0, k].
Assume that

(16.2) g ∈ U(f, h, k), ξ ∈ V(f, h, k),
z ∈ Rn satisfies

(16.3) (πg + ξ)(z) ≤ inf(πg + ξ) + δ(f, h, k)

and that u : [0,∞) → Rn is an (g)-perfect function satisfying

(16.4) u(0) = z.

Property (i) implies that there exists T0 > L(f, h, k) such that

(16.5) |u(t)| < M(f) for all t ≥ T0.

Fix

(16.6) T ≥ T0

and let an a. c. function w : [0, T ] → Rn satisfy

(16.7) w(T ) = u(T ).

In view of (16.5)-(16.7),

(16.8) |u(T )| < M(f).

Since the function u is (g)-perfect it follows from (3.6), (3.7), (16.3), (16.4) and
(16.7) that

Ig(0, T, w) + ξ(w(0))
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= Tµ(g) + Γg(0, T, w) + πg(w(0))− πg(w(T )) + ξ(w(0))

≥ Tµ(g) + πg(w(0)) + ξ(w(0))− πg(u(T ))

≥ Tµ(g)− πg(u(T )) + (πg + ξ)(u(0))− δ(f, h, k)

= Ig(0, T, u) + ξ(u(0))− δ(f, h, k).

Since the relation above holds for any function w : [0, T ] → Rn satisfying (16.7) we
conclude that

(16.9) Ig(0, T, u) + ξ(u(0)) ≤ δ(f, h, k) + σ̂(g, ξ, u(T ), 0, T ).

Property (ii), (16.2), (16.5), (16.6) and (16.9) imply that |u(t)−vf,h(t)| ≤ k−1 for all t ∈
[0, k]. Thus we have shown that the following property holds:

(iii) for each g ∈ U(f, h, k), each ξ ∈ V(f, h, k) and each (g)-perfect function
u : [0,∞) → Rn satisfying (πg + ξ)(u(0)) ≤ inf(πg + ξ) + δ(f, h, k) we have |u(t)−
vf,h(t)| ≤ k−1 for all t ∈ [0, k].

Completion of the proof of Theorem 6.5
Define

(16.10) F = ∩∞
p=1 ∪ {U(f, h, k) : f ∈ Eh, k ≥ p} ∩M.

In view of the construction and Lemma 15.5, F is a countable intersection of open
everywhere dense subsets of M.

Let f ∈ F , ϵ, τ0,M > 0. Assume that v1, v2 : [0,∞) → Rn are (f)-perfect
functions satisfying

(16.11) (πf + h)(vi(0)) = inf(πf + h), i = 1, 2

which exists by Proposition 3.6.
Let a natural number p satisfy p > τ0,M and 2p−1 < ϵ. By (16.10), for each

integer q ≥ p, there exist fq ∈ Eh and a natural number kq ≥ q such that

(16.12) f ∈ U(fq, h, kq).
By (16.2), (16.11) and the property (iii), for i = 1, 2, and all integers q ≥ p,

(16.13) |vi(t)− vfq ,h(t)| ≤ k−1
q ≤ q−1, t ∈ [0, kq].

This implies that |v1(t) − v2(t)| ≤ 2q−1 for all t ∈ [0, q] and any integer q ≥ p.
Therefore v1(t) = v2(t) for all t ∈ [0,∞) and there exists a unique (f)-perfect
function v∗ : [0,∞) → Rn such that

(16.14) (πf + h)(v∗(0)) = inf(πf + h).

Clearly, v1 = v2 = v∗. By (16.3) and the equality above,

(16.15) |v∗(t)− vfp,h(t)| ≤ p−1, t ∈ [0, p].

Let

(16.16) T0 = L(fp, h, kp), g ∈ U(fp, h, kp), ξ ∈ V(fp, h, kp)
and T ≥ T0. Assume that an a. c. function v : [0, T ] → Rn satisfies

|v(T )| ≤M,

(16.17) Ig(0, T, v) + ξ(v(0)) ≤ σ̂(g, ξ, v(T ), 0, T ) + δ(fp, h, kp).
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By (16.6), (16.17) and the property (ii),

(16.18) |v(t)− vfp,h(t)| ≤ k−1
p ≤ p−1 for all t ∈ [0, kp].

By (16.15) and (16.18), |v(t) − v∗(t)| ≤ 2p−1 < ϵ for all t ∈ [0, p]. Theorem 6.5 is
proved.

Completion of the proof of Theorem 6.8
Define

(16.19) F = ∩∞
p=1 ∪ {U(f, h, k)× V(f, h, k) : h ∈ A, f ∈ Eh, k ≥ p} ∩ (M× A).

In view of the construction, Lemma 15.5 and (16.19), F is a countable intersection
of open everywhere dense subsets of M× A.

Let (f, h) ∈ F , ϵ, τ0,M > 0. Assume that v1, v2 : [0,∞) → Rn are (f)-perfect
functions satisfying

(16.20) (πf + h)(vi(0)) = inf(πf + h), i = 1, 2

which exists by Proposition 3.6.
Let a natural number p satisfy p > τ0,M and 2p−1 < ϵ. By (16.19), for each

integer q ≥ p, there exist hq ∈ A, fq ∈ Ehq and a natural number kq ≥ q such that

(16.21) (f, h) ∈ U(fq, hq, kq)× V(fq, hq, kq).

By (16.20), (16.21) and the property (iii), for i = 1, 2, and all integers q ≥ p,

(16.22) |vi(t)− vfq ,hq(t)| ≤ k−1
q ≤ q−1, t ∈ [0, kq].

This implies that |v1(t) − v2(t)| ≤ 2q−1 for all t ∈ [0, q] and any integer q ≥ p.
Therefore v1(t) = v2(t) for all t ∈ [0,∞) and there exists a unique (f)-perfect
function v∗ : [0,∞) → Rn such that

(πf + h)(v∗(0)) = inf(πf + h).

Clearly, v1 = v2 = v∗. By (16.22) and the equality above,

(16.23) |v∗(t)− vfp,hp(t)| ≤ p−1, t ∈ [0, p].

Let

(16.24) T0 = L(fp, hp, kp),

(16.25) g ∈ U(fp, hp, kp), ξ ∈ V(fp, hp, kp)

and T ≥ T0. Assume that an a. c. function v : [0, T ] → Rn satisfies

|v(T )| ≤M,

(16.26) Ig(0, T, v) + ξ(v(0)) ≤ σ̂(g, ξ, v(T ), 0, T ) + δ(fp, hp, kp).

By (16.24)-((16.26) and the property (ii),

|v(t)− vfp,hp(t)| ≤ k−1
p ≤ p−1 for all t ∈ [0, kp].

By the relation above and (16.23), |v(t)−v∗(t)| ≤ 2p−1 < ϵ for all t ∈ [0, p]. Theorem
6.8 is proved.



150 ALEXANDER J. ZASLAVSKI

References

[1] B. D. O. Anderson and J. B. Moore,Linear Optimal Control, Prentice-Hall, Englewood Cliffs,
NJ, 1971.

[2] S. M. Aseev and V. M. Veliov, Maximum principle for infinite-horizon optimal control problems
with dominating discount, Dynamics of Continuous, Discrete and Impulsive Systems, SERIES
B 19 (2012), 43–63.

[3] J. P. Aubin and I. Ekeland,Applied Nonlinear Analysis, Wiley Interscience, New York, 1984.
[4] S. Aubry and P. Y. Le Daeron,The discrete Frenkel-Kontorova model and its extensions I,

Physica D 8 (1983), 381–422.
[5] M. Bashir and J. Blot,Infinite dimensional infinite-horizon Pontryagin principles for discrete-

time problems, Set-Valued Variational Anal. 23 (2015), 43–54.
[6] J. Blot,Infinite-horizon Pontryagin principles without invertibility, J. Nonlinear Convex Anal.

10 (2009), 177–189.
[7] J. Blot and P. Cartigny,Optimality in infinite-horizon variational problems under sign condi-

tions, J. Optim. Theory Appl. 106 (2009), 411–419.
[8] J. Blot and N. Hayek,Infinite-Horizon Optimal Control in the Discrete-Time Framework,

SpringerBriefs in Optimization, New York, 2014.
[9] I. Bright,A reduction of topological infinite-horizon optimization to periodic optimization in a

class of compact 2-manifolds, J. Math. Anal. Appl. 394 (2012), 84–101.
[10] D. A. Carlson, A. Haurie and A. Leizarowitz,Infinite Horizon Optimal Control, Springer-

Verlag, Berlin, 1991.
[11] P. Cartigny and P. Michel,On a sufficient transversality condition for infinite horizon optimal

control problems, Automatica J. IFAC 39 (2003), 1007–1010.
[12] T. Damm, L. Grune and M. Stieler and K. Worthmann, An exponential turnpike theorem

for dissipative discrete time optimal control problems, SIAM J. Control Optim. 52 (2014),
1935–1957.

[13] V. A. De Oliveira and G. N. Silva, Optimality conditions for infinite horizon control problems
with state constraints, Nonlinear Analysis 71 (2009), 1788–1795.

[14] V. Gaitsgory, L. Grune and N. Thatcher, Stabilization with discounted optimal control, Systems
and Control Letters 82 (2015), 91–98.

[15] N. Hayek,Infinite horizon multiobjective optimal control problems in the discrete time case,
Optimization 60 (2011), 509–529.

[16] D. V Khlopin,Necessary conditions of overtaking equilibrium for infinite horizon differential
games, Mat. Teor. Igr Pril. 5 (2013), 105–136.

[17] A. Leizarowitz and V. J. Mizel,One dimensional infinite horizon variational problems arising
in continuum mechanics, Arch. Rational Mech. Anal. 106 (1989), 161–194.

[18] V. Lykina, S. Pickenhain and M. Wagner,Different interpretations of the improper integral
objective in an infinite horizon control problem, J. Math. Anal. Appl. 340 (2008), 498–510.

[19] M. Mammadov, Turnpike theorem for an infinite horizon optimal control problem with time
delay, SIAM J. Control Optim.52 (2014), 420–438.

[20] M. Marcus and A. J. Zaslavski,The structure of extremals of a class of second order variational
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